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Dendritic Cells and Macrophages in
the Pathogenesis of Psoriasis
Masahiro Kamata and Yayoi Tada*

Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan

Psoriasis is a chronic inflammatory skin disease characterized by scaly indurated
erythema. This disease impairs patients’ quality of life enormously. Pathological findings
demonstrate proliferation and abnormal differentiation of keratinocytes and massive
infiltration of inflammatory immune cells. The pathogenesis of psoriasis is complicated.
Among immune cells, dendritic cells play a pivotal role in the development of psoriasis in
both the initiation and the maintenance phases. In addition, it has been indicated that
macrophages contribute to the pathogenesis of psoriasis especially in the initiation phase,
although studies on macrophages are limited. In this article, we review the roles of
dendritic cells and macrophages in the pathogenesis of psoriasis.

Keywords: dendritic cell (DC), macrophage - cell, monocyte - macrophage, langerhans cell (LC), psoriasis, psoriatic
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1 INTRODUCTION

Psoriasis is a chronic inflammatory skin disease characterized by scaly indurated erythema. This
disease impairs patients’ quality of life enormously. Pathological findings demonstrate proliferation
and abnormal differentiation of keratinocytes and massive infiltration of inflammatory immune
cells. The pathogenesis of psoriasis is complicated, but it has been revealed by intensive research.
Among immune cells, dendritic cells (DC) play a pivotal role in the development of psoriasis in both
the initiation and the maintenance phases. In addition, it has been indicated that macrophages
contribute to the pathogenesis of psoriasis especially in the initiation phase, although studies on
macrophages are limited. In this article, we review the roles of DC and macrophages in the
pathogenesis of psoriasis. Since the contributions of DC to the pathogenesis of psoriasis have
already been well-described in the previous literature (1, 2), we give a concise overview of the
current understanding. Then we review findings on the involvement of macrophages in the
pathogenesis of psoriasis.
2 OVERVIEW OF THE CURRENT UNDERSTANDING OF THE
PATHOGENESIS OF PSORIASIS AND THE ROLES OF DENDRITIC
CELLS AND MACROPHAGES

Previous review articles have provided detailed descriptions of the pathogenesis of psoriasis (3–5). We
focus on DC and macrophages (Figure 1). Briefly, in early-phase psoriasis, nucleic acids and a variety of
antimicrobial peptides released from damaged keratinocytes activate innate immune cells, including
plasmacytoid DC (pDC) andmacrophages, which produce interferon (IFN)-a and tumor necrosis factor
org June 2022 | Volume 13 | Article 9410711
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(TNF)-a. The release of IFN-a causes the maturation of resident
dermal DC and the differentiation of monocytes into inflammatory
DC (iDC). Mature resident DC and the rapidly increasing numbers
of iDC produce interleukin (IL)-23, IL-12, TNF-a and other
cytokines, which strongly activate the differentiation of naive T
cells into Th1, Th17 and Th22. IL-23 maintains and promotes the
proliferation of pathogenic Th17 cells. The release of IL-17 and IL-
22 induces proliferation and abnormal differentiation of
keratinocytes. Keratinocytes also act as immune cells by
producing TNF-a, IL-8, vascular endothelial growth factor
(VEGF), antimicrobial peptides, etc., some of which activate DC.
This vicious inflammatory cycle causes the plaque to remain and
deteriorate in the chronic phase of psoriasis (1, 2, 5, 6).
3 DENDRITIC CELLS

3.1 Dendritic Cells Under Steady-State
Conditions
DC are heterogenous and are sub-classified based on location,
origin, and function. Detected subtypes of DC are different in the
steady state or in the inflammatory state (6). Furthermore, there
Frontiers in Immunology | www.frontiersin.org 2
is a little difference in surface marker expressions between
human DC and mouse DC (1).

In human peripheral blood, three main subsets of DC can be
identified: plasmacytoid DC (pDC), and two types of
conventional DC (cDC), i.e., CD1c(BDCA-1)+ cDC (cDC1)
and CD141(BDCA-3)+ cDC (cDC2) (7, 8), as shown in
Table 1 (6). Hierarchical clustering of mouse lymph nodes and
human blood DC subsets by genome-wide expression profiling
revealed clustering of human pDC with mouse pDC, human
CD1c+ cDC1 with mouse CD11b+ DC, and human CD141+

cDC2 with mouse CD8a+ DC (9).
In the skin under steady-state conditions, two dermal DC

subsets identical to CD1c+ and CD141+ blood cDC have been
identified (10, 11) (Table 2). However, pDC are absent during
steady-state conditions. Human tissues also harbor migratory
CD14+ DC, which do not have an identified murine equivalent
(10, 11). Its phenotype and transcriptomic expression profiles
show the characteristics of blood monocytes and tissue
macrophages (10, 11), which raises the question of the origin
of DC. Langerhans cells (LC) which are located in the epidermis,
survey the epidermis for foreign antigens as antigen-presenting
cells and activate T cells as needed (12).
TABLE 1 | Three main subsets of dendritic cells in human peripheral blood under steady-state conditions.

Human dendritic cells Cell surface markers on the indicated DC Equivalent cells in mice

Plasmacytoid DC (pDC) CD11c+

CD123+

CD303(BDCA-2)+

CD304(BDCA-4)+

Mouse pDC

Conventional DC 1 (cDC1) CD11c+

CD1c(BDCA-1)+
Mouse CD11b+DC

Conventional DC 2 (cDC2) CD11c+

CD141(BDCA-3)+
Mouse CD8a+DC
June 2022 | V
DC, dendritic cells.
FIGURE 1 | Overview of the current understanding of the pathogenesis of psoriasis and the roles of dendritic cells and macrophages. DC, dendritic cells; pDC,
plasmacytoid DC; iDC, inflammatory DC.
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3.2 Dendritic Cells in the Skin of
Psoriasis Patients
In psoriatic lesions, pDC and myeloid DC in addition to Th1/17
CD4+ cells are observed in the dermis (13). Dermal DC in
lesional skin can be divided into three subsets: CD1c+ DC,
CD141+ DC, and CD11c+CD1c−CD141− inflammatory DC
(iDC), including Tip-DC and 6-sulfo LacNAc DC (slanDC), as
shown in Table 2. In inflammatory skin conditions including
psoriasis, in addition to LC, CD1c+ DC, and CD141+ DC that are
already present during the steady state, pDC and iDC migrate
into the skin. pDC originate in the bone marrow and migrate to
the skin under pathological conditions (14). The surface
expression of CCR2, a chemokine receptor expressed by
monocytes and required for their migration, on iDC indicates
that iDC are derived from monocytes (15–17).

3.2.1 Plasmacytoid DC
Increased infiltration of pDC is observed not only in lesional skin
but also in non-lesional skin of psoriasis patients, compared to
normal skin from healthy controls (18–21). pDC recognize self-
nucleic acids, thereby initiating inflammation of psoriasis
through IFN-a production (18). Antimicrobial peptides in the
epidermis of psoriasis patients, including LL-37, human b-
defensin (hBD)-2, hBD-3 and lysozyme, bind self-DNA/RNA
fragments released by stressed or injured keratinocytes, thereby
inducing activation of pDC via TLR7/9 (22–27). Furthermore,
DNA structures containing the neutrophil serine protease
cathepsin G (CatG) and the secretory leukocyte protease
inhibitor (SLPI), which are detected in lesional skin of
psoriasis patients, induce the production of IFN-a in pDC.
pDC play a role in early psoriasis (28).

IFN-a released by pDC activates dermal resident DC, and
drives their maturation (29). Moreover, IFN-a induces rapid
differentiation of human monocytes into iDC and polarizes
CD4+ T cells into Th1 and Th17 cells (30, 31). However, an
anti-IFN-a monoclonal antibody failed to ameliorate plaque
psoriasis in a phase I clinical trial (32), indicating that IFN-a
is not important in the maintenance phase. It rather contributes
to the development of psoriasis in the early phase.
Frontiers in Immunology | www.frontiersin.org 3
3.2.2 Dermal DC
IFN-a and TNF-a released by pDC, macrophages, and other
cells promote maturation and activation of myeloid DC, which
play an important role in the chronic phase of psoriasis. In
psoriasis patients, CD11c+ DC are abundant in lesional skin,
while there are relatively low numbers of these cells in non-
lesional skin (33). Dermal DC derived from lesional skin induce
proliferation of Th1 and polarization of Th17, and they are the
source of IL-23 (33–40). As stated above, dermal DC in lesional
skin can be divided into three subsets: CD1c+ DC, CD141+ DC,
and iDC (Table 2). The number of CD1c+ DC was lower in non-
lesional and lesional skin of psoriasis patients than in normal
skin, whereas the number of CD141+ DC was higher. Lesional
skin showed a considerable increase in infiltrating iDC compared
with samples obtained from healthy controls (37), which mostly
account for the total increase in CD11c+ DC in lesional skin.
Both the CD1c+ DC and CD1c− DC populations from psoriatic
skin strongly induced T-cell proliferation and production of
IFN-g and/or IL-17 to the same extent (37).

CD11c+CD1c−CD141− dermal iDC, including TNF-a and
inducible nitric oxide synthase (iNOS)-producing DC (Tip-DC)
and slanDC, have been identified in the dermis of psoriasis
patients (41–43), and they seem to play a pivotal role in the
pathogenesis of psoriasis (1). These iDC in psoriasis are
identified as CD11c+CD1c− DC, distinguishing them from
resident cDC, and are assumed to be derived from monocytes
(11, 37, 43, 44). Tip-DC express high levels of TNF-a and iNOS.
TNF-a induces keratinocytes to express ICAM-1, CXCL8, and
also pro-inflammatory cytokines including IL-1b and IL-6. iNOS
in inflamed tissues catalyzes the production of nitric oxide (NO),
which results in vasodilation of dermal blood vessels in the
lesional skin of psoriasis patients (13). In addition, Tip-DC have
been shown to produce high levels of IL-23 (6, 45, 46).

Through the expression of CX3CR1 and C5aR, slanDC are
recruited by the increased expression CX3CL1 and C5a in
psoriatic skin (42). The complete transcriptional overlap of
blood slanDC with CD16+ monocytes indicates that skin
slanDC are derived from monocytes (11, 44). As with pDC,
dermal slanDC are reactive to self-RNA-LL37 complexes (42)
TABLE 2 | Human dendritic cells in the skin of normal individuals and in psoriatic skin.

Location Human DC
in the skin

Steady
state

Cell surface markers in
steady state*

Psoriatic
skin

Cell surface markers in
lesional skin**

Function in psoriasis Equivalent
cells in mice

Epidermis LC Present CD11c+CD1a+CD1c(BDCA-
1)+CD207(Langerin)+

Present CD1a+CD1c(BDCA-
1)+CD11c+Langerin
(CD207)+

Controversial Mouse LC

Dermis CD1c+DC
(cDC1)

Present CD11c+CD1a+CD1c(BDCA-
1)+

Decreased CD1a+CD1c(BDCA-
1)+CD11c+

Induction and proliferation of Th1/17
cells and cytokine production

Mouse
CD11b+DC

CD141+DC
(cCD2)

Present CD11low

CD1a+CD1c(BDCA-1)low/int

CD141(BDCA-3)+

Increased CD11c+CD141(BDCA-3)+ Induction and proliferation of Th1/17
cells and cytokine production

Mouse
CD103+DC

pDC Absent Present CD11c-CD123+CD303
(BDCA-2)+

Production of IFN-a and activation
and maturation of dermal DC

Mouse pDC

iDC-Tip-DC-
slan DC

Absent Present CD11c+CD206+ Production of TNF-a, iNOS, IL-23 Mouse iDC
June 2022 | Volume 13 |
DC, dendritic cells; LC, Langerhans cell; pDC, plasmacytoid cell; iDC, inflammatory cell.
*Cell surface markers on the indicated DC in the steady state.
**Cell surface markers on the indicated DC in lesional skin.
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and induce Th1/17 cells to produce IL-17, IL-22, TNF-a and
IFN-g (42, 43). In lesional skin of psoriasis patients, dermal
slanDC express abundant IL-23-p19 and TNF-a (42, 47).
Autocrine TNF-a stimulation of slanDC allows for higher
production levels of IL-12, IL-23, IL-1b and IL-6
(48). Treatment with infliximab and dimethyl fumarate rapidly
reduced the number of slanDC (1, 49, 50). Their phenotypic
signatures suggest that dermal Tip-DC and slanDC represent the
same inflammatory DC population although subpopulations
may exist (6).

DC3 is a newly identified subset of inflammatory
CD5−CD163+CD14+ DC (51). Recently, single-cell analysis of
human skin revealed that CD14+ DC3 increased in psoriasis
lesional skin, and they produced IL-1b and IL-23 (52), which
could contribute to the pathogenesis of psoriasis.

Accumulating dermal iDC play a key role in the progression
and sustenance of psoriasis by secreting large amounts of pro-
inflammatory factors including iNOS, IL-23, and TNF-a (1, 6).

3.2.3 Langerhans Cells
LC are antigen-presenting cells residing in the epidermis. Once
they recognize an antigen, they migrate into regional lymph
nodes and present antigens. A Recent study reported
identification of two steady-state (LC1 and LC2) and two
activated LC subsets in the epidermis of human skin and in LC
derived from CD34+ hemopoietic stem cells (53). LC1 are
characterized as classical LCs, mainly related to innate
immunity and antigen processing. LC2 are involved in
immune responses and leukocyte activation. LC1 remain stable
under inflammatory microenvironment, whereas LC2 are prone
to being activated and demonstrated elevated expression of
immuno-suppressive molecules.

In the steady state, LC are continuously replaced from a
resident precursor pool (54–56). However, in the inflammatory
state, LC are repopulated by blood precursors (6, 57–60).

Their role in psoriasis has not yet been elucidated. The
number of LCs in lesional skin of psoriasis patients was
reported to be increased (61, 62), decreased (63, 64), or the
same as the number of LC in control skin samples in various
articles (65, 66).

The migration of LC is impaired in psoriatic patients (67,
68). Impaired LC migration in psoriasis is due to an altered
keratinocyte phenotype induced by IL-17 (69).

LC play various roles in psoriasis according to previous
studies. Some articles reported that LC play an anti-
inflammatory role in psoriasis (53, 62, 70). In contrast, other
studies indicated that LC are involved in the development of
psoriasis (66, 71–74). Several studies demonstrated that LC
produced IL-23 (66, 71, 72).

The discrepant data on LC are possibly due to different LC-
deficient models, methods, or other factors (1). Further
investigation is necessary to clarify the roles of LC in the
pathogenesis of psoriasis.

The diversity of DC populations and different functions in
psoriasis may be accounted for by plasticity of DC.
Frontiers in Immunology | www.frontiersin.org 4
4 MACROPHAGES

4.1 Roles of Macrophages Under
Steady-State Conditions and
Inflammatory Conditions
Macrophages are categorized into two types: tissue-resident and
infiltrating macrophages (6). Tissue-resident macrophages are
long-lived non-migratory cells, and play an essential role in
maintaining tissue homeostasis by clearing cell debris and
promoting resolution of inflammation and wound healing (75).
They are potent promoters of inflammation by producing
chemokines, including CCL2, CXCL1, and macrophage
inhibitory factor (MIF), and cytokines such as IL-6 and TNF-
a, resulting in recruitment and activation of other immune cells
(76, 77). Most tissue-resident macrophages are considered to be
present from birth and are self-maintaining, independently from
monocytes (78–81), except intestinal macrophages (82);
however, this is still controversial.

Meanwhile, infiltrating macrophages are recruited to tissues
in inflammatory conditions (6). Murine studies revealed that
infiltrating macrophages originate from inflammatory
monocytes. Infiltrating macrophages are divided into three
populations based on function, displaying a pro-inflammatory
profile (originally coined “classically activated” or “M1”
macrophages), a regulatory profile, or a wound-healing profile
(the latter two were originally grouped under the term
“alternatively activated” or “M2” macrophages), depending on
the tissue context and environmental stimuli (83, 84). According
to their cell surface markers, secreted cytokines and biological
functions, M2 macrophages are divided into M2a, M2b, M2c,
and M2d subcategories (85). M1 polarization occurs in the
presence of IFN-g, LPS, and TNF-a. Cell surface markers of
M1 macrophages are CD14++CD16−, CD40, and CD68. M1
macrophages produce IL-1b, IL-6, IL-12, IL-23, MCP-1, and
TNF-a. In contrast, M2 polarization occurs in response to IL-4,
IL-10, and IL-13. M2 macrophages express CD14+CD16++,
CD163, and CD209 on their surface. M2 macrophages produce
EGF, IL-10, PDGF, TGF-b, and VEGF (86). Among M2
macrophages, M2a macrophages, activated by IL-4 or IL-13,
lead to the increased expression of IL-10, TGF-b, CCL17, CCL18,
and CCL22 (85). These macrophages enhance the endocytic
activity, promote cell growth and tissue repairing.

4.2 Roles of Macrophages in the
Pathogenesis of Psoriasis
Murine studies demonstrated that depletion of macrophages
improved psoriasis inflammation (87–89) and reduced the
levels of Th1 cytokines, including IL-1a, IL-6, IL-23 and TNF-
a to normal levels (90). These results underscore that
macrophages contribute to the development and maintenance
of psoriatic lesions (86).

Psoriasis patients have an increased level of circulatingmonocytes
inperipheral blood (91, 92), and they favored theM1phenotype (93).
Furthermore, a considerable number of macrophages was observed
in lesional skin (94). Immunofluorescence staining revealed that
June 2022 | Volume 13 | Article 941071
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CD68+iNOS+ M1 macrophages were increased and CD68+CD163+

M2 macrophages were decreased in human psoriasis lesional skin
compared with skin samples from normal individuals (95). Another
study demonstrated accumulation of dermal CD68+ macrophages
that expressedTNF-a in humanpsoriatic plaques (96).Other studies
demonstrated that the number of CD163+macrophages increased in
psoriatic lesional human skin, which decreased to non-lesional skin
levels after an effective treatment with TNF-a inhibitors (33, 89, 97,
98). Moreover, it was indicated that CD163+ macrophages produce
IL-23p19and IL-12/23p40 inaddition toTNF-a and iNOS inhuman
lesional skin (97, 99). Murine experiments revealed that in skin
injected with IL-23, monocytes/macrophages characterized by the
strongpresence of Ly6ChiMHC-IIhi cellswere the dominant immune
population, particularly late in the model, and showed high
expression of TNF-a but not IL-17A (100). In another murine
study, when peritoneal macrophages freshly isolated from resting
mice were treated with IL-23, they produced large amounts of IL-
17A, IL-22 and IFN-g, and expressed a distinctive gene expression
profile compared with those of M1 and M2 macrophages (101).
Under the condition of abundant IL-23 in psoriasis lesional skin,
some macrophages possibly produce IL-17A, IL-22 and IFN-g in
addition to TNF-a. Since macrophage are highly plastic cells (102),
the diversity of macrophage populations in psoriasis may reflect a
heightened cellular plasticity.

Recently, the involvement of macrophage NLRP3
inflammasome activation in psoriasis has been reported (103–105).

4.3 Factors That Affect Macrophage
Polarization in Psoriasis
The ratio of M1 to M2a macrophage polarization was higher in
psoriatic patients comparing with that in controls (93).
Treatment with TNF-a inhibitors decreased M1 phenotypes
according to improvement of their clinical severity scores
(88, 93).

Inappropriate and excessive activation of endosomal Toll-like
receptors 7, 8, and 9 (TLRs 7-9) at the psoriasis lesion plays a
pathogenic role in the onset of psoriasis. Murine experiments
showed that treatment with a TLR7 agonist shifted macrophages
in the psoriatic lesions to a higher M1/M2 ratio. Both exogenous
and endogenous TLR7-9 ligands favored M1 macrophage
polarization (106).

Blocking the signaling of 4-1BBL, a member of the TNF
superfamily, reduced the expression of hallmark genes of M1
macrophages such as Tnf, Nos2, and Il23 in imiquimod-treated
mice. In vitro experiments revealed that deficiency of 4-1BBL
resulted in reduced expression of Tnf, Nos2, Il23, Il6, and Cxcl10
in LPS-and-IFN-g–treated macrophages (M1), whereas the
expression levels of Il10, Arg1, Fizz1, Ym1, Egr2, and Mrc1
(Cd206) were increased in IL-4–treated 4-1BBL knock-out
cells, suggesting that 4-1BBL favors the M1 polarization of
macrophages (107).

Response gene to complement (RGC)-32 is important for M2
macrophage polarization and phagocytic activity, and inhibits
the development of M1 macrophages (108). The level of RGCC
(the gene encoding RGC-32) mRNA was significantly lower in
lesional psoriasis than in samples from normal individuals (95).
Frontiers in Immunology | www.frontiersin.org 5
Furthermore, Rgcc expression was significantly reduced in the
lesional skin of imiquimod-induced psoriasiform dermatitis.
Considering that RGC-32 participates in M2 macrophage
polarization, its reduced expression in psoriatic lesions possibly
contributes to skewed macrophage polarization toward the M1
phenotype (95).

IL-35, known as an anti-inflammatory cytokine (109, 110),
decreased the total number of macrophages and ratio of M1/M2
macrophages in three psoriasis models: a human keratinocyte
cell line (HaCaT), a keratin 14-VEGF A-transgenic mouse
model, and an imiquimod-induced psoriasis mouse model (111).

Hsa_circ_0004287, one of circular RNA (circRNA), inhibited
M1 macrophage activation in an N 6-methyladenosine-
dependent manner in atopic dermatitis and psoriasis (112).

Increased M1 polarization was associated with higher disease
severity in psoriasis, returning to baseline after successful treatment
by TNF-a inhibitors (93). TNF-a blockage inhibited M1
polarization through STAT1- and IRF-1-independent pathways.

4.4 Factors That Affect Macrophage
Recruitment to the Skin in Psoriasis
Sphingosine-1-phosphate receptor 4 (S1PR4)-dependent CCL2
production may be involved in macrophage recruitment to the
psoriatic lesion (113). In imiquimod-induced psoriasiform
dermatitis, psoriasis severity was ameliorated in S1PR4-deficient
mice without altered IL-17 production compared with those in
psoriatic wild-type mice. Instead, deficiency of S1PR4 attenuated
the production of CCL2, IL-6, and CXCL1 and subsequently
reduced the number of infiltrating monocytes and granulocytes.
Migration assays revealed reduced CCL2 production in murine
skin and attenuation of monocyte migration under the conditions
lacking S1PR4. S1PR4 signaling synergized with TLR signaling in
resident macrophages to produce CCL2. They speculated that
S1PR4 activation enhanced the TLR response of resident
macrophages to increase CCL2 production, which attracted
further macrophages.

Furthermore, the importance of the interaction between
CX3CL1 and CX3CR1 has been postulated in psoriasis (114).
CX3CR1, a receptor for CX3CL1, mediates migration of
inflammatory cells. CX3CR1 deficiency attenuated imiquimod-
induced psoriasis-like skin inflammation with decreased
M1 macrophages.

4.5 Macrophage-Specific Soluble Factors
in Psoriasis
Macrophage-specific soluble factors are involved in the
pathogenesis of psoriasis. Macrophages produce monocyte
chemoattractant protein-1 (MCP-1), which recruits Th1
inflammatory cells (86). MCP-1 and its receptor CCR2,
expressed on dermal macrophages (115), are essential for
monocyte recruitment from the circulation (116). Increased
expression of MCP-1 is observed in psoriatic keratinocytes
(115, 117). MCP-1 polymorphisms have been associated with
an increased risk of psoriasis, and serumMCP-1 levels are higher
in psoriatic patients (118) and in induced psoriatic lesions of
murine models (88, 94). Local production of chemotactic MCP-1
June 2022 | Volume 13 | Article 941071
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correlated with macrophage accumulation in psoriasis,
suggesting that MCP-1 dysregulation may contribute to the
pathogenesis of psoriasis.

Macrophage migration inhibitory factor (MIF) is another
cytokine implicated in the pathogenesis of psoriasis. MIF is
produced by macrophages and recruits inflammatory cells (86).
MIF polymorphisms have been associated with an increased risk
of psoriasis (119–121). MIF drives murine psoriasiform dermatitis
(122). Serum MIF levels were higher in psoriasis patients than in
healthy controls, and the serumMIF level was positively correlated
with the clinical severity score. Peripheral blood mononuclear cells
from psoriatic patients spontaneously produced approximately
ten-fold more MIF in in vitro culture, indicating an inherent
overproduction of this cytokine in psoriatic patients (123). In
MIF-null mice, severity of psoriasiform dermatitis was lower and
macrophage recruitment was impaired (122). Thus, MIF may be
involved in the recruitment of macrophages in psoriasis patients.
However, in contrast to elevated serum MIF in psoriasis patients,
MIF-positive cells were significantly decreased in the lesional
psoriatic epidermis (124). Further studies are needed to clarify
the involvement of MIF in the pathogenesis of psoriasis.

4.6 Involvement of Macrophages in
Psoriatic Arthritis
Recently, studies on macrophages in the synovial fluid (SF) of
arthritic joints in patients with psoriatic arthritis (PsA) have
been reported.

PsA SF cells are dominated by monocytes/macrophages.
CD14+CD16- classical monocytes/macrophages were lower in
PsA SF than in the SF of patients with rheumatoid arthritis (RA),
while CD14+CD16+ intermediate monocytes/macrophages were
more predominant in PsA SF compared to RA SF (125).
Proteinase-activated receptor 2 (PAR2) and its activating
proteinases, including tryptase-6, could be important mediators
of inflammation in PsA (125).

In the synovial tissues of patients with PsA and RA, synovial
tissue stromal cells and CD163+ macrophages are the main
source of granulocyte-macrophage colony-stimulating factor
(GM-CSF) (126). Synovial tissue CD163+ macrophages express
pro-inflammatory polarization markers (activin A, TNF-a, and
MMP12) and exhibit a predominantly GM-CSF-dependent pro-
inflammatory polarization state.

Expression of the prolactin receptor (PRLR) is higher in
synovial tissue from RA and PsA patients than in synovial
tissue from osteoarthritis (OA) patients, and prolactin (PRL)
cooperates with other pro-inflammatory stimuli such as CD40L
and TNF to activate macrophages by increasing the expression of
pro-inflammatory cytokines including IL-6, IL-8 and IL-12b
(127). Although serum PRL levels were similar in female and
Frontiers in Immunology | www.frontiersin.org 6
male RA patients, PRLR expression was significantly higher in
RA and PsA synovial tissue compared with OA synovial tissue.
PRLR colocalized with synovial CD68+ macrophages and von
Willebrand factor+ endothelial cells. An in vitro study showed
that PRLR was prominently expressed in IFN-g- and IL-10-
polarized macrophages. The production of PRL by macrophages
was increased by unknown components of RA and PsA SF (128),
where PRL could contribute to disease progression.

Tie2 is a tyrosine kinase receptor essential for vascular
development and blood vessel remodeling through interaction
with its ligands, angiopoietin-1 (Ang-1) and Ang-2 (129). Tie2
and its ligands were expressed in RA and PsA synovial tissue at
higher levels than in the synovial tissue of healthy controls and
OA patients (130–132). In RA and PsA synovial tissue, Tie2 was
expressed by fibroblast-like synoviocytes, endothelial cells and
macrophages (131, 133). Kabala et al. revealed that Tie2 signaling
enhanced TNF-dependent activation of macrophages in synovial
inflammation in RA and PsA patients (134).

Some of the above-mentioned factors are not specific to PsA.
The role of macrophages in arthritis might be common in many
aspects between RA and PsA. Although the contribution of
macrophages to the development of PsA is indicated, the data
are limited at present.
5 CONCLUSION

pDC play an important role in the early phase of psoriasis by
producing IFN-a, which causes the maturation of resident dermal
DC and the differentiation of monocytes into iDC. Increased
numbers of iDC produce key cytokines of psoriasis, including IL-
23, which strongly activate the differentiation of naive T cells into
Th17 and Th22. IL-23 contributes to the maintenance and
proliferation of pathogenic Th17 cells. The contribution of LC to
the pathogenesis of psoriasis is controversial.

M1 macrophages are considered to contribute to the
development of psoriasis especially in early-phase psoriasis, by
producing TNF-a. Recently, IL-23 production by CD163+

macrophages has been reported. Further investigation is needed
to clarify the involvement of macrophages in the pathogenesis
of psoriasis.
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2. VičićM,KasťelanM,BrajacI,SotosěkV,MassariLP.CurrentConceptsofPsoriasis

Immunopathogenesis. Int JMol Sci (2021) 22:11574. doi: 10.3390/ijms222111574
3. Lynde CW, Poulin Y, Vender R, Bourcier M, Khalil S. Interleukin 17A:
Toward a New Understanding of Psoriasis Pathogenesis. J Am Acad
Dermatol (2014) 71:141–50. doi: 10.1016/j.jaad.2013.12.036

4. Ogawa E, Sato Y, Minagawa A, Okuyama R. Pathogenesis of Psoriasis and
Development of Treatment. J Dermatol (2018) 45:264–72. doi: 10.1111/
1346-8138.14139
June 2022 | Volume 13 | Article 941071

https://doi.org/10.1111/1346-8138.15184
https://doi.org/10.3390/ijms222111574
https://doi.org/10.1016/j.jaad.2013.12.036
https://doi.org/10.1111/1346-8138.14139
https://doi.org/10.1111/1346-8138.14139
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kamata and Tada Macrophages/Dendritic Cells in Psoriasis
5. Kamata M, Tada Y. Efficacy and Safety of Biologics for Psoriasis and
Psoriatic Arthritis and Their Impact on Comorbidities: A Literature
Review. Int J Mol Sci (2020) 21:1690. doi: 10.3390/ijms21051690

6. Boltjes A, van Wijk F. Human Dendritic Cell Functional Specialization in
Steady-State and Inflammation. Front Immunol (2014) 5:131. doi: 10.3389/
fimmu.2014.00131

7. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, et al. BDCA-
2, BDCA-3, and BDCA-4: Three Markers for Distinct Subsets of Dendritic
Cells in Human Peripheral Blood. J Immunol (2000) 165:6037–46.
doi: 10.4049/jimmunol.165.11.6037

8. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al.
Nomenclature of Monocytes and Dendritic Cells in Blood. Blood (2010) 116:
e74–80. doi: 10.1182/blood-2010-02-258558
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