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A prognostic signature of
cuproptosis and TCA-related
genes for hepatocellular
carcinoma
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Shuaijing Liu and Qiang Li*

Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University
Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of
Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
Background: Hepatocellular carcinoma (HCC) is the most common malignant

tumor of the liver. Cuproptosis is a newly defined form of cell death. Copper ion

induces cell death by binding to the tricarboxylic acid cycle (TCA). The effect of

cuproptosis-related and TCA-related genes on the clinical prognosis of HCC is

still unclear. In this study, we explores the genetic changes of cuproptosis-

related genes that affect the TCA process and their potential therapeutic value

in HCC patients.

Methods: The cuproptosis and TCA-related genes were obtained from

cuproptosis-related articles and the molecular signatures database. The

prognosis signatures of eight related genes were constructed using the last

absolute shrinkage and selection operator (LASSO), and Receiver Operating

Characteristic (ROC) curves were used to evaluate the signature. In addition,

we analyzed downstream functional enrichment and immune infiltration to

explore cuproptosis-inducing drugs and immunotherapeutic responses. All

these analyses were validated using multiple datasets of the International

Cancer Genome Consortium (ICGC).

Results: TCA and copper malnutrition-related genes (CDKN2A, IDH1, OGDHL,

IDH3G, IDH3B, GLS, DLAT, LIPT1) were finally included. According to the risk

score, they were divided into high-risk and low-risk groups. Survival analysis

showed that the overall survival (OS) of the high-risk group was significantly

lower than that of the low-risk group. We established a risk prognostic feature

to predict the OS of patients with HCC. Based on this feature and the clinical

stage, we constructed a nomogram. Functional enrichment analysis revealed

pathways related to organelle division and the cell cycle. Different risk scores

had different immune abundances in immune cells (including macrophages

and regulatory T-cells) and immune pathways (including antigen-presenting

cells co-stimulation). Moreover, the drug sensitivity of eleschomol and PD-L1 in

the high-risk group was better than that in the low-risk group. The status of

TP53 somatic mutation was also closely related to the risk score.
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Conclusion: In this study, we established a new prediction signature of eight

genes related to cuproptosis and the TCA process, which can effectively

predict the prognosis of HCC patients.
KEYWORDS

cuproptosis, elesclomol, overall survival, hepatocellular carcinoma, tricarboxylic acid
cycle (TCA cycle)
Introduction

Liver cancer is the sixth most common type of malignant

tumor worldwide (1), and hepatocellular carcinoma (HCC) is

the most common subtype in the clinic, accounting for

approximately 90% of cases. Liver cancer is known to have a

very poor prognosis, and its high recurrence and mortality rates

have been criticized. Therefore, it is urgent to develop a better

prognosis prediction signature to evaluate the prognosis and

provide a more accurate treatment plan.

Resistance to cell death is an important feature of tumors (2),

and anti-tumor immunotherapy via induction of regulated cell

death (RCD) is a new target for cancer therapy (3). Non-

apoptotic RCD can be subdivided into autophagy, ferroptosis

iron death cell pyrosis, and necroptosis (4, 5). Cuproptosis, a

newly proposed RCD pattern, mediates cell death mainly

through cytotoxicity caused by the mitochondria-dependent

increase in energy metabolism and accumulation of reactive

oxygen species (ROS) (6), and this pattern has been shown to be

closely related to the tricarboxylic acid cycle (TCA). Tsvetkov’s

study (7) showed that copper ions can directly bind to fatty

acylated components in the TCA, which blocks the TCA,

triggering protein toxic stress and inducing cell death. The

decrease of TCA activity leads to the accumulation of acetyl

CoA, which reduces DLAT activity and inhibits cuproptosis

through competitive feedback inhibition. Both of which affect

each other. Cancer cells can adjust their copper homeostasis

mechanism by redistributing copper ions in the liver. The

imbalance of copper homeostasis in HCC cells will lead to

tumor progression (8) and drug resistance (9).Changes in gene

expression of key enzymes in the TCA are closely related to the

progression of HCC (10). Meanwhile, the Warburg effect in

patients with liver cancer downregulates the TCA, resulting in

the formation of a hypoxic microenvironment. The combined

effect of cytotoxic TCA metabolites and gene mutations reduces

cell differentiation, leading to the progression and metastasis of

HCC (11). Hsu’s study also found that high TCA activity and

mitochondrial respiration rate can increase the sensitivity of anti

HCC drugs (12). Although some studies have revealed the

impact of cuproptosis on HCC (13, 14), the close relationship
02
between TCA and copper death shows that comprehensive

research is more advantageous. Therefore, analyzing drug

sensitivity of cuproptosis and the TCA gene, and effectively

inducing cuproptosis to eliminate cancer cells will help provide

new strategies for the treatment of HCC.

In this study, we identified copper poisoning and TCA-

related genes that affect the prognosis of HCC, explored the

characteristic function of each gene and its relationship with

HCC, established a prediction model that affects overall survival

(OS), and analyzed the guiding role of the prediction model for

immunotherapy. In addition, we further explored the correlation

between the prognostic model and other factors such as pathway

analysis, immune score, and immune cell infiltration level. These

works can provide more value and feasibility for the clinical

treatment of HCC.
Materials and methods

Data source and processing

HCC mRNA expression and clinical data were obtained

from The Cancer Genome Atlas (TCGA) database (https://tcga-

data.nci.nih.gov/tcga/), including 345 patients. In addition, gene

expression and clinical data of liver cancer patients were also

downloaded from the International Cancer Genome

Consortium (ICGC) database (https://dcc.icgc.org/projects/

LIRI-JP), including 177 patients. Inclusion criteria included

patients with gene expression and OS data. Gene expression

data values were converted to log2 (TPM (transcripts per

million) + 1) format. Baseline information of patients with

HCC in the TCGA and ICGC datasets is shown in Table 1.
Gene selection

Ten cuproptosis-related genes (7) including CDKN2A, fdx1,

DLD, DLAT, LIAS, GLS, LIPT1, MTF1, PDHA1, and PDHB were

first retrieved from previous studies. Moreover, 28 TCA-related

genes were downloaded from the molecular signatures database,
frontiersin.org
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and 32 cuproptosis and TCA-related genes were included by

taking the intersection. Then, Cox analysis and Kaplan-Meier

(K-M) survival analysis were used to obtain 23 cuproptosis and

TCA-related genes affecting OS for further study. The Log-rank

method was used to test for statistical significance. The R

packages used in the above analysis were the “survival”

package and the “Survivor” package.
Prediction signature and nomogram

To construct and evaluate signatures, TCGA cohort was

used as the training set, and the ICGC data was used as the

validation set. Based on l, the “glmnet” software package was

used for Lasso analysis of the 23 cuproptosis and TCA-related
Frontiers in Oncology 03
genes and OS data, and the following formula was used for

calculation to establish a prognostic risk signature:

o
n

i¼1
Coef  Geneð Þ � Expr ðGeneÞ

where Coef (Gene) is the coefficient of genes related to OS, and

Expr (Gene) is the median of the corresponding gene expression

characteristics according to the risk score. Using the median risk

score as the cut-off value, patients were divided into a high-risk

group (n = 158) and low-risk group (n = 157) in the TCGA main

cohort. K-M and receiver operating characteristic (ROC) curves

were used to test the accuracy of the prediction signature in

predicting the prognosis of HCC patients. The ROC curve was

drawn using the “timeroc” package, which also performs

multivariate Cox analysis on TCGA and ICGC patients to

determine whether the signature can predict the prognosis of

patients independently of other factors. Finally, the RMS package

was used to construct the nomogram and calibration chart.
Cuproptosis-TCA signature
transcriptome and genomic variation in
hepatocellular carcinoma

The results of the differential gene expression analysis of

eight prognostic features between TCGA liver cancer tissues and

adjacent tissues, and the single-nucleotide variant (SNV) and

copy number variation(CNV) analysis results of liver cancer

samples were obtained from the GSCA website (http://bioinfo.

life.hust.edu.cn/web/GSCALite/). The results of the correlation

analysis of gene expression and IC50 values of antitumor drugs

were obtained from the genomics of the cancer therapeutic

response portal (CTRP) database.
Functional enrichment analysis

LIMMA package was used to obtain the differentially

expressed genes between the high-risk group and the low-risk

group. Log | FC | > 1, adj. P< 0.05 was used as the screening

criteria for significantly different genes. The differentially

expressed genes were subjected to GO enrichment analysis and

KEGG enrichment analysis using the R software package

“clusterprofiler.” The results showed that Q< 0.05 was used as

the screening standard.
Single-nucleotide polymorphism (SNP) in
the high and low-risk groups

The SNP data of HCC patients were obtained from the

TCGA cohort. The maftools R software package was used to

visualize the somatic mutation data of the high and low-risk
TABLE 1 Clinical characteristics of patients with liver cancer in two
datasets.

Characteristics TCGA cohort LIRI-JP cohort

No. of patients 345 177

Age (years)

Range 16-90 26-92

Median 61 66

Gender

Female 108 81

Male 236 96

Unknown 1

AFP(ng/ml)

≤200 188 81

>200 73 96

Unknown 84

Vascular Invasion

Yes 102 81

No 189 96

Unknown 53

Stage

I 163 24

II 78 57

III 79 57

IV 3 39

Unknown 21 0

Grade

I 53

II 162

III 112

IV 12

Unknown 5 177

Overall survival outcome

live 221 104

death 124 73

Overall survival (months)

Median 20.81 42.27
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groups according to the descending order of mutation, and the

expression form is presented in a waterfall plot
Immune infiltration analysis

The relative enrichment levels of 16 immune cells and 13

immune functions in HCC samples were calculated using the

single-sample gene set enrichment analysis (SS GSEA) algorithm

in R software with the “GSVA” package. The immunogenicity was

then assessed using immunophenoscore (an indicator to measure

the overall immunogenicity of tumors), which comprised of four

modules, including effector cell (EC), immunosuppressive cell

(SC), immune checkpoint (CP), major histocompatibility complex

molecular(MHC). The higher the EC score, the greater the

number of effector cells, and the higher the SC score, the lesser

the number of immunosuppressive cells. The “IOBR” R package

was used for the immunophenoscore analysis.
Drug sensitivity analysis

According to the drug sensitivity results in the Cancer

Genome Project (CGP) database of the cancer genome project,

the estimated IC50 of TCGA and ICGC array samples for

multiple drugs in CGP was calculated using the “prophetic”

package. The test was performed according to the high-risk and

low-risk groups to observe the difference between both groups

based on drug sensitivity. In addition, the correlation coefficient

between IC50 and the risk score of each sample was calculated.
Correlation analysis of immunotherapy

The response to immunotherapy of different risk groups in

the imvigor210 (MUC) cohort was discussed. Advanced

urothe l ia l cancer ( imvigor210 cohor t ) ant i -PDL1

immunotherapy array was downloaded from http://research-

pub.gene.com/IMvigor210CoreBiologies. We calculated the risk

score of each sample of the imvigor210 array and compared the

difference in risk scores between the immune treatment response

group and the non-response group. The “ROC” package was

used to draw the ROC curve of the risk score predicting the

immune treatment response. The samples were divided into

high-risk and low-risk groups according to the risk score using

the best cut-off for K-M survival analysis.
Statistical analysis

All analysis in this study were performed using R language

(4.0.5). Rank-sum test or Kruskal–Wallis test was used to compare

quantitative data between two ormore groups. Spearman correlation
Frontiers in Oncology 04
coefficient was used for correlation analysis. For K-M survival

analysis, the log-rank method was used for the statistical test. P<

0.05 was considered statistically significant. The Benjamin Hochberg

method was used to calibrate the p value and reduce false positives.
Results

Construction of cuproptosis and TCA-
related prognosis signature

In this study, 345 HCC cases from TCGA were selected as

the training cohort, and 177 HCC patients from the ICGC

dataset were used as the validation cohort. The detailed

clinical characteristics of the two cohorts are summarized in

Table 1. We used LASSO Cox regression analysis to demonstrate

that eight genes had the highest predictive value of OS for HCC,

and screened out eight genes that affect the OS prognosis of HCC

patients based on the value of l (Figures 1A, B), using the

following formula to establish a prognostic signature related to

cuproptosis: Risk score = (−0.04 × OGDHL+0.23 × DLAT+0.11

× CDKN2A+0.05 × GLS+0.06 × IDH3B+0.02 × IDH3G+0.01 ×

IDH1+0.15 × Lipt1). HCC samples were divided into high-risk

group (n = 172) and low-risk group (n = 173). Then, we explored

the differential expression of related genes in the signature in the

high-risk and low-risk groups. OGDHL gene was highly

expressed in the low-risk group, and other genes were highly

expressed in the high-risk group (Figures 1C, D).
Differential expression and variation of
genes

Comparing the differential expression of eight genes in HCC

and normal tissues, CDKN2A showed significantly higher

expression, while the expression of OGDHL in HCC tissues was

lower than that in normal tissues (Figure 2A). Subsequently, we

studied the CNVs and SNVs of eight genes in the TCGA liver

cancer cohort. The gene with significant deletion of CNV was

CDKN2A, and the gene with the highest CNV amplification was

IDH3G (Figures 2B, C). Regarding SNV variation, the mutation

frequency of CDKN2A and IDH1 was significantly higher than

that of other genes (Figure 2D). Finally, drug sensitivity analysis

was carried out using CTRP database. It was found that the high

expression of IDH1 gene was the main gene causing drug

resistance. The high expression of DLAT, LIPT1, and CDKN2A

genes was negatively correlated with IC50 values (Figure 2E).
Survival analysis

Principal Component Analysis (PCA) analysis was performed

according to the gene expression level to compare the differences
frontiersin.org
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between the high-risk group and the low-risk group. The

prognosis signature can clearly divide HCC patients into a high-

risk group and a low-risk group (Figures 3A, B, 4A, B). The

distribution of the two groups on the PCA plot are relatively

scattered. Kaplan–Meier survival analysis was subsequently

performed on the 345 patients in the TCGA cohort, and

patients with higher risk scores were associated with higher risk

of death and shorter survival time (Figure 3C, p< 0.001). Similar

results were also obtained in the high-risk group (n = 115) and

low-risk group (n = 116) among the 231 patients in the ICGC

cohort (Figure 4C, p< 0.001). ROC analysis evaluated the

predictive effect of risk score on OS. The area under the curve

(AUC) of 1, 2, and 3 years in the TCGA was 0.775, 0.680, and

0.669 respectively (Figure 3D), and the AUC of 1, 2, and 3 years in

the ICGC cohort was 0.681, 0.687 and 0.709, respectively

(Figure 4D), proving that the prognostic features have good

accuracy, specificity, and clinical applicability, and can

accurately predict the prognosis of HCC patients.

Figure 5 illustrates the correlation between the prediction

signature of TCGA cohort and the clinical characteristics of

HCC. We found that higher risk score was positively correlated

with various adverse clinicopathological characteristics. The

risk score of T2 and above stages was significantly higher than

that of the T1 stage (Figure 5C, p< 0.05). The risk score also

increased with stages I, II, and III (Figure 5F, p< 0.05), and was
Frontiers in Oncology 05
significantly correlated with the size of alpha-fetoprotein(AFP)

(Figure 5H, p< 0.05). There was no statistical difference in

other clinical features including age (Figure 5A), vascular

invasion (Figure 5G), N stage (Figure 5E), and M stage

(Figure 5F) (p > 0.05).

To promote the clinical application of the prediction

signature, we integrated the clinical information of TCGA

patients. Univariate and multivariate Cox regression analysis

showed that risk score (p< 0.001, HR = 3.711, 95% CI: 2.557–

5.384) and liver cancer stage (p< 1.001, HR = 3.639, 95% CI:

2.510–5.277) were independent prognostic factors for OS

(Figures 6A, B, D, E).The relevant features were integrated to

construct nomograms to predict the one-year, two-year, and

three-year OS of HCC patients (Figure 6C). The calibration

curves of the one-year, two-year, and three-year OS nomogram

showed good consistency between the predictions and the actual

observations (Figure 6F). Compared with other prognostic factors,

we also found that the AUC of the one-year, two-year, and three-

year time ROC analysis was 0.811, 0.720, and 0.728 (Figures 6G–

I), respectively, which was higher than the AUC of risk score

(0.785, 0.681, and 0.66) and stage (0.698, 0.64, and 0.686). The

predictive performance of the nomogram was significantly higher

than that of other prognostic features. The above results indicate

that the risk signature can be used as an independent prognostic

factor and can also be combined with existing clinical indicators.
A B

DC

FIGURE 1

(A) LASSO coefficient profiles of the 23 cuproptosis and TCA-related genes from the TCGA cohort. (B) Partial-likelihood deviance of variables
revealed by the LASSO regression signature. Red dots represent the partial likelihood of deviance values, gray lines represent the standard error
(SE), and the two vertical dotted lines on the left and right represent optimal values by minimum criteria and 1–SE criteria, respectively.
(C) TCGA heatmap of the prognostic signature consisting of eight cuproptosis and TCA-related genes. (D) ICGC heatmap of the prognostic
signature consisting of eight cuproptosis and TCA-related genes.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1040736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1040736
Functional enrichment analysis

Based on the risk signature, we studied the differences in

gene functions and related pathways among different risk groups

and explored the biological processes related to the cuproptosis

and TCA-related genes. We analyzed the relevant pathways

through the GO and KEGG databases. GO enrichment

analysis revealed the main pathway of nuclear division and

organelle fission (Figures 7A, B). Moreover, in the KEGG

pathway enrichment analysis, the main related pathways

included cell cycle, P450, and complement and coordination

Cascades (Figures 7C, D). To clarify whether there were

differences in gene mutations between the high-risk group and

the low-risk group, we downloaded and analyzed the SNP

variant data of TCGA, and missense mutations were the most

common mutation type in HCC patients. T > A ranked the

highest in the single nucleotide variant (SNV) category. TP53

(41%) and CTNNB1 (24%) showed a higher mutation frequency
Frontiers in Oncology 06
than other genes in the high-risk group, and CTNNB1 had a

higher mutation frequency in the low-risk population

(Figures 7E, F).
Immune feature analysis of cuproptosis
and TCA-related gene signature

The differences in immune status between the high-risk and

low-risk populations were further discussed, and we estimated

the degree of immune cell enrichment and the scoring path of

immune-related functions (Figures 8A–D). In the TCGA cohort,

follicular helper T cells, macrophages, and Tregs were

significantly upregulated. Regarding the immune pathway,

the high-risk group was significantly enriched in antigen-

presenting cell (APC) co-stimulation, APC co-inhibition,

parainflammation, and the endogenous pathway (MHC-1).

The activation of immune components in the tumor
A B

D

E

C

FIGURE 2

Mutation analysis of the 8-gene signature. (A) Differential expression of the eight genes in TCGA HCC tissues and normal adjacent tissues. Red
(log2FC>1) indicates high expression, while blue indicates low expression. (B) Homozygous copy number variation of the eight genes in the
TCGA HCC cohort. Amplifications are shown on the left and deletions are shown on the right. (C) Heterozygous copy number variation of the
eight genes in the TCGA HCC cohort. (D) Single nucleotide variant (SNV) variation of the eight genes in the TCGA HCC cohort. (E) Correlation
analysis of the expression of the eight genes and drug sensitivity using the CTRP database.
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microenvironment and oncogenic pathways activated by

immune pathways may lead to worse prognosis of patients in

the high-risk group. Then, we described the immunogenicity of

the tumor by immunophenotypic scoring. Effector cell (EC) was

highly expressed in the high-risk group (Figures 8E, G; p< 0.05),

but the immunsuppressive cell (SC) score was lower (Figures 8F,

H; p< 0.05). The above results indicate that the high-risk group

has more immune effector cells and fewer immunosuppressive

cells and has a stronger ability to regulate the immune edge and

immune microenvironment. However, there was no statistical

difference in checkpoint score and antigen presentation score (p

> 0.05, Supplementary Figure S1).
Drug sensitivity analysis

Poor prognosis is often closely related to drug resistance. We

predicted the resistance response of the two risk subgroups to

common drugs and calculated the IC50 of multiple drugs in the

TCGA and ICGC array samples cancer genome project (CGP).
Frontiers in Oncology 07
The screening criteria were p< 0.01 and correlation coefficient<

-0.5. We found that in TCGA and ICGC arrays, the estimated

IC50 and risk score of 38 drugs were significantly negatively

correlated (Figure 9A), and the IC50 of the high-risk group was

lower. Moreover, the IC50 and risk score of 9 drugs were also

significantly positively correlated (p< 0.01), while the low-risk

group had a lower IC50 (Figure 9B). Among the drugs was

eleschomol, a cuproptosis inducing drug. We compared the

IC50 values of eleschomol in different risk groups, and the

high-risk group had a better sensitivity (Figures 9C, D; p< 0.05).

Regarding the drug analysis of targeted therapy, the high-

risk group was more sensitive to targeted drugs (including

tivozanib, mastinib, and crizotinib) than the low-risk group.

Subsequently, we analyzed sorafenib, linifanib, and other drugs,

and found that the high-risk group still had significant

sensitivity, while the low-risk group had better drug sensitivity

for trametinib and erlotinib, which can be further studied in

the future.

Finally, the risk score of patients was calculated in the anti-

PDL1 immunotherapy array of advanced urothelial carcinoma
A B

DC

FIGURE 3

Prognostic analysis of the 8-gene signature in the TCGA cohort. (A) Distribution of risk score in high-risk and low-risk groups of the TCGA
cohort; and distribution of overall survival in the TCGA cohort in different groups. (B) 3D-PCA analysis of the TCGA cohort. (C) Kaplan–Meier
curve of the 8-gene signature in the TCGA cohort (P<0.05). (D) ROC analysis for risk signature at 1, 2, and 3 year survival time in the TCGA
cohort.
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A B

D

C

FIGURE 4

Prognostic analysis of the 8-gene signature in the ICGC cohort. (A) Distribution of risk score in high-risk and low-risk groups of the ICGC
cohort; and distribution of overall survival in the ICGC cohort in different groups. (B) 3D-PCA analysis of the ICGC cohort. (C) Kaplan–
Meier curve of the 8-gene signature in the ICGC cohort (P<0.05). (D) ROC analysis for risk signature at 1,2, and 3 year survival time in the
ICGC cohort.
A B D

E F G H

C

FIGURE 5

Distribution of risk scores among age group (A); tumor grade (B); tumor pathologies T (C), N (D), and M (E); cancer stage group (F); vascular
invasion (G); and AFP group (H) (P < 0.05).
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(imvigor210 cohort), and the prognosis level of patients was

evaluated according to the m-resist criteria. Patients with partial

and complete remission after immunotherapy had higher risk

scores (Figure 9E). The ROC curve verified that the risk score

had a good predictive effect on the response to immunotherapy

(AUC = 0.593, Figure 9F). Imvigor210 array patients were

divided into high-risk group and low-risk group according to

the critical risk score. The K-M curve found that the prognosis of

the high-risk group was better (Figure 9G). Thus, the high-risk

group is more suitable for anti-PDL1 immunotherapy.
Discussion

The liver is an important organ for storing and metabolizing

copper, and the imbalance between copper deposition and

copper excretion often leads to liver injury, even liver cancer

(9). Overloaded copper ions in HCC can induce cell death by

targeting lipoacylated TCA circulating proteins (7). TCA can

promote HCC growth through metabolite biological

abnormalities (15, 16). However, few studies have discussed
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the predictive value of cuproptosis and TCA-related genes for

HCC prognosis. In this study, eight genes related to copper

dystrophy and the TCA process were included. These genes are

significantly related to OS of HCC patients and have a very

important predictive value. Therefore, we established a clinical

prognosis signature based on the TCGC cohort and verified the

predictive efficiency with the ICGC cohort.

The risk signature finally includes TCA and cuproptosis

related genes (DLAT, GLS, LIPT1, CDKN2A, IDH3B, IDH3G,

IDH1, OGDHL). DLAT, CDKN2A and GLS are genes regulating

PDH expression and LIPT1 is genes regulating protein fatty

acylation during cuproptosis. IDH and OGDHL genes are

important genes regulating TCA process. The down-regulation

of OGDHL and IDH genes in liver cancer tissue will lead to the

metabolic activity of the tricarboxylic acid cycle, even reversal of

the TCA cycle (17). Tumor cells can rely on reverse TCA cycle to

produce large amounts of citric acid and acetyl coenzyme a,

which can promote tumor proliferation and affect the process of

cuproptosis. CDKN2A is a negative regulator of cuproptosis.

Copy number deletion and SNV high mutation are the causes of

differential expression between HCC and normal tissues.
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FIGURE 6

Univariate Cox regression analyses of overall survival in the TCGA (A) and ICGC (D) cohorts, and multivariate Cox regression analyses of overall
survival in the TCGA (B) and ICGC (E) cohorts. (C) Nomograms for predicting 3-year survival in the TCGA cohort. (F) Calibration curves for the
nomograms the TCGA cohort. (G-I) ROC curves for 1, 2, and 3-year time showing the comparison between the survival prediction ability of
each nomogram and other risk factors.
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CDKN2A regulates the cell cycle and stops at the G phase, leading

to unlimited cell proliferation (18–20). Compared with normal

tissues, the expression of OGDHL is significantly reduced in

HCC, which promotes the metabolism of glutamine (21, 22).

Glutamine acts as a mitochondrial energy source to provide

energy to cancer cells. At the same time, the upregulation of

glutamylase (GLS) gene expression also converts glutamine into

glutamate, thus promoting the growth and metastasis of cancer

cells. IDH gene mutations lead to metabolic rearrangements that
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affect cellular redox homeostasis. IDHmutations are mainly copy

number amplification and SNV high mutations, and the mutated

IDH catalyzes a-KG and generates 2-hydroxyglutaric acid (2-

HG) (23), which leads to epigenetic and energy metabolism

abnormalities (24) and promotes the proliferation of liver

cancer. Meanwhile, some studies have found that IDH3a

promotes epithelial mesenchymal transition (EMT) in HCC

cells by regulating the expression of MTA1 (25). The catalytic

action of DLAT is the only way for pyruvate to be converted to
A B D

E F G H

C

FIGURE 8

Immune microenvironment and immunophenoscore analyses. Box plots showing immune cell infiltration fraction and immune function activity
in TCGA (A, B) and ICGC (C, D) cohorts. Correlation plot for effector cell (EC) score and risk score in TGCA (E) and ICGC (F) cohorts. Correlation
plot for immunosuppressive cell (SC) score and risk score in TCGA (G) and ICGC (H) cohorts. (***p < 0.001, **p < 0.05, *p < 0.1, ns, no
significance).
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FIGURE 7

Functional enrichment of the cuproptosis and TCA-related genes between risk groups. Results of GO enrichment analyses in the TCGA (A) and
ICGC (B) cohorts. Results of KEGG enrichment analyses in the TCGA (C) and ICGC (D) cohorts. The 20 genes with the highest mutation
frequency in the high-risk (E) and low-risk (F) groups of the TCGA cohort.
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acetyl CoA after entering the mitochondria (26). Its upregulation

promotes ATP production and catabolic responses and promotes

tumor cell growth and proliferation (27). A new prognostic

signature was then established. We first verified the predictive

effect of the prognostic risk score signature based on the

cuproptosis gene, and then combined the signature with the

liver cancer stage to further develop a nomogram for predicting

the prognosis of HCC patients. Compared with risk score and

other clinical features, the nomogram can better predict the one-

year, two-year, and 3-year survival rate of HCC. External

validation also confirmed the potential of the nomogram. We

compared the previously established cuproptosis signatures.

Including 6 lncRNA and 3 mRNA models established by Liu et

al (13); 6 lncRNA signatures related to cuproptosis established by

Zhang et al (14);and 16 prognosis signatures related to

cuproptosis genes established by Fu et al (28). Although all the

above signatures can accurately predict the prognosis of patients,

the combination of TCA and cuproptosis related signatures is

more comprehensive in terms of metabolism and genetics, and

anti-tumor drugs are more sensitive to cells with higher

mitochondrial metabolism and TCA activity.

Functional analysis showed that these genes rely on biological

pathways and functions related to the cell cycle, organelle fission,
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P450, and the complement pathway, and p53 and CDKN2A lead

to disorder of cell cycle regulation and may lead to uncontrolled

cell proliferation (29, 30). Mitochondria are the workplace of

TCA, and their dynamics are unbalanced. The enhancement of

the mitochondrial cleavage state can inhibit mitochondria-

dependent apoptosis (31), enhancing the Warburg effect (32),

and promoting the proliferation of liver cancer cells (33).

Anaphylatoxins C3a and C5a in the complement cascade can

increase mitotic signaling pathways, induce angiogenesis together

with M2 macrophages, and create an immunosuppressive

microenvironment (34–37). Inhibiting or blocking these

pathways could be a potential treatment target for liver cancer

in the future. The gene with the highest mutation frequency in the

high-risk group is TP53, which is the most significant difference

from the low-risk group and the middle risk group. It has been

found that p53 interacts with puma gene in HCC, inhibits

mitochondrial uptake of pyruvate, forces organelles to stop

respiratory function, and reduces copper-induced cell death (7),

which promote the enhancement of cancer cell metabolism and

the function of copper-induced drugs. The mutation frequency of

CTNNB1 in the low-risk group is the highest in the population,

and the mutation of CTNNB1 may be the main cause of

immunotherapy rejection (38, 39).
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FIGURE 9

(A) Bubble chart of negative correlation between estimated IC50 value and risk score of 38 drugs. (B) Bubble chart of positive correlation
between estimated IC50 value and risk score of 9 drugs. (C) Box plot of the estimated IC50 values of eleshomol in the high-risk and low-risk
groups of the TCGA cohort. (D) Box plot of the estimated IC50 values of eleshomol in the high-risk and low-risk groups of the ICGC cohort.
(E) Box plot of correlation between immunotherapy and risk score in imvigor210 cohort. (F) ROC curve of risk score to predict the effect of
immunotherapy. (G) K-M survival curve of immunotherapy prognosis in different risk groups.
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The roles of cuproptosis in the tumor immune

microenvironment are still unclear. We explored the

relationship between genes and tumor-infiltrating immune cells

in the signature. The high-risk group had a high proportion of

macrophages, Treg cells, and dendritic cells. Macrophages secrete

CCL22 to induce Treg migration to the tumor area and inhibit the

activation of CD4 (+) CD25 (-) T cells, resulting in poor prognosis

in the high-risk group (40). Direct immunosuppression of

macrophages can mediate immune escape through the PD-1/

PD-L1 ax i s and promote the exp re s s i on o f the

immunosuppressive molecule PD-L1 (41–43). Meanwhile, PD-

1/PD-L1 inhibitors can promote the pro-inflammatory

polarization of macrophages and limit the spread and metastasis

of tumors (44, 45). In the study of immune pathways, the

expression of MHC-1 differs according to risk groups and plays

an important role in immune evasion and immune surveillance

(46, 47). Another parainflammatory pathway, as a possible

pathway, has been proven to be the main driving force of TP53

mutation (48). The change in immune microenvironment is very

important for PD-L1 inhibitor treatment to obtain the optimal

antitumor immune response. Therefore, we selected the gene

expression profile and clinical features from the immunotherapy

cohort (imvigor210) of urothelial carcinoma (UC) treated with

anti-PD-L1 drugs to study the relationship between the

constructed risk signature and immune response. In this anti-

PD-L1 cohort, patients with high-risk scores who received PD-L1

inhibitor therapy showed significant clinical benefits and

significantly prolonged survival. Therefore, PD-L1 inhibitors are

more suitable for the high-risk group.

Cuproptosis is a new type of cell death, and future drug-

induced therapy may provide a new scheme for liver cancer.

Eleschomol, a drug for cuproptosis, causes cuproptosis in cells by

transporting copper ions to the mitochondria (49). In this study, we

evaluated the drug sensitivity of eleschomol and found that it has a

better prognosis in high-risk groups. Regarding the most common

targeted therapy in the treatment of liver cancer, the benefit of

targeted therapy in the high-risk group is higher than that in the

low-risk group, which can be further studied in the future.

Our study has several limitations. The clinical features

extracted from the TCGA and ICGC databases are limited and

incomplete. This study is a retrospective study and requires an

independent prospective cohort to validate the prognostic

signature developed in the present study. The value of these

genes as potential pharmacological targets also needs further

study. Further clinical experiments are also needed; therefore,

further in vivo or in vitro experiments will be carried out in the

later stage.
Conclusion

A prognostic signature composed of eight cuproptosis and

TCA-related genes was constructed by various bioinformatics
Frontiers in Oncology 12
methods, and a nomogram was developed in combination with

liver cancer staging, which showed a good predictive value for

the prognosis of liver cancer. The high-risk group received

copper-induced drugs and PD-L1 inhibitors, which may

provide some basis for the individualized treatment and

evaluation of liver cancer patients.
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47. Dersh D, Hollý J, Yewdell JW. A few good peptides: MHC class I-based
cancer immunosurveillance and immunoevasion. Nat Rev Immunol (2021) 21:116–
28. doi: 10.1038/s41577-020-0390-6
Frontiers in Oncology 14
48. Aran D, Lasry A, Zinger A, Biton M, Pikarsky E, Hellman A, et al.
Widespread parainflammation in human cancer. Genome Biol (2016) 17:145.
doi: 10.1186/s13059-016-0995-z

49. Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, et al.
The oncology drug elesclomol selectively transports copper to the mitochondria to
induce oxidative stress in cancer cells. Free Radic Biol Med (2012) 52:2142–50.
doi: 10.1016/j.freeradbiomed.2012.03.017
frontiersin.org

https://doi.org/10.1038/s41590-017-0004-z
https://doi.org/10.1038/s41577-020-0390-6
https://doi.org/10.1186/s13059-016-0995-z
https://doi.org/10.1016/j.freeradbiomed.2012.03.017
https://doi.org/10.3389/fonc.2022.1040736
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	A prognostic signature of cuproptosis and TCA-related genes for hepatocellular carcinoma
	Introduction
	Materials and methods
	Data source and processing
	Gene selection
	Prediction signature and nomogram
	Cuproptosis-TCA signature transcriptome and genomic variation in hepatocellular carcinoma
	Functional enrichment analysis
	Single-nucleotide polymorphism (SNP) in the high and low-risk groups
	Immune infiltration analysis
	Drug sensitivity analysis
	Correlation analysis of immunotherapy
	Statistical analysis

	Results
	Construction of cuproptosis and TCA-related prognosis signature
	Differential expression and variation of genes
	Survival analysis
	Functional enrichment analysis
	Immune feature analysis of cuproptosis and TCA-related gene signature
	Drug sensitivity analysis

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


