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Abstract: Time series classification and forecasting have long been studied with the traditional
statistical methods. Recently, deep learning achieved remarkable successes in areas such as image,
text, video, audio processing, etc. However, research studies conducted with deep neural networks
in these fields are not abundant. Therefore, in this paper, we aim to propose and evaluate several
state-of-the-art neural network models in these fields. We first review the basics of representative
models, namely long short-term memory and its variants, the temporal convolutional network and the
generative adversarial network. Then, long short-term memory with autoencoder and attention-based
models, the temporal convolutional network and the generative adversarial model are proposed and
applied to time series classification and forecasting. Gaussian sliding window weights are proposed to
speed the training process up. Finally, the performances of the proposed methods are assessed using
five optimizers and loss functions with the public benchmark datasets, and comparisons between the
proposed temporal convolutional network and several classical models are conducted. Experiments
show the proposed models’ effectiveness and confirm that the temporal convolutional network is
superior to long short-term memory models in sequence modeling. We conclude that the proposed
temporal convolutional network reduces time consumption to around 80% compared to others
while retaining the same accuracy. The unstable training process for generative adversarial network
is circumvented by tuning hyperparameters and carefully choosing the appropriate optimizer of
“Adam”. The proposed generative adversarial network also achieves comparable forecasting accuracy
with traditional methods.

Keywords: time series forecasting; time series classification; long short-term memory;
attention mechanism; generative adversarial network

1. Introduction

In this paper, we focus on time series forecasting and classification tasks using state-of-the-art deep
neural network (DNN) models. A time series, X = X1, X2, . . . , Xn, contains indexed data points in a
timely order. It has been widely used in areas such as statistics, pattern recognition, communications
engineering, etc. The task of time series forecasting is to establish some model based on the continuous
or discrete observed values to forecast the future ones. Forecasting or prediction means transferring
knowledge about samples to whole populations in statistics. Time series forecasting is different from
conventional supervised learning in that the timely order should be preserved. Good models should
extract information as much as possible to achieve “closest to the future” forecasting.
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Time series classification aims at classifying new time series to a specific category. Suppose that
there are several time series X in each of three categories C1 = [Xa, Xa+1, . . .], C2 = [Xb, Xb+1, . . .],
C3 = [Xc, Xc+1, . . .]; the task is to establish models and designate the new time series Xn to the correct
category C. A large number of machine learning classification algorithms have been proposed, such
as logistic regression [1], the naive Bayes algorithm [2], support vector machines [3] and k-nearest
neighbors [4], etc. Metrics of accuracy, precision, recall rate and receiver operating characteristic curves,
etc. are used to measure the performances and trade-off between true/false positive/negative rates.

The no-free-lunch theorem states that all optimization algorithms, averaged over all optimization
problems without resampling, perform equally well [5]. There is no single model that works for
all given problems. Therefore, various empirical experiments have been carried out to compare
performances in the specified domains. Until now, determining the best model for the specific problem
was more of an art than a science.

Inspired by the recent successes of attention-based mechanisms and the temporal convolutional
network (TCN) in the area of natural language processing (NLP), we proposed and applied TCN with
attention to the time series forecasting and classification based on the fact that NLP and time series
share sequential similarity. We also desired to verify the proposition of TCN’s superiority to the the
recurrent neural network (RNN, long short-term memory (LSTM) as the representative) in sequential
problems. Applying generative adversarial networks (GANs) to time series foreasting provided new
insights and could potentially enhance the understanding of time series. In this contribution, we
proposed LSTM with an autoencoder and attention mechanism, TCN models and a GAN model to
evaluate and compare their performances for the time series forecasting and classification tasks.

1.1. Time Series Forecasting and Classification

Traditional statistical methods such as the autoregressive integrated moving average (ARIMA)
family and exponential smoothing (ETS) were often used for time series forecasting tasks.
After surveying 105 academic papers, 28 golden rules of forecasting theory were proposed in [6].
Judgement of orders of autoregressive and time lags for autoregressive moving average (ARMA). and
ARIMA were summarized as best practices. Time series could be decomposed to long-term trend,
seasonal, recurrent and abnormal variations with addictive or multiplicative models. CNN, RNN and
the attention mechanism could be used together to avoid the weakness of CNN capturing only local
dependency and promoting the strength of RNN in time series forecasting.

While deep learning has achieved huge successes in many applications, only a few time series
classification algorithms have been proposed using deep NN [7]. Generative and discriminative
methods have been mostly used for time series classification tasks. Autoencoder and echo state
networks represent the classical generative methods. A baseline for three end-to-end algorithms,
namely MLP, FCN and residual network, without imposing heavy preprocessing on the raw data, was
proposed [8]. InceptionTime, a GoogleNet-like NN ensemble model, was proposed for time series
classification and slightly outperformed the existing models [9]. Facebook unleashed the “prophet”,
which improved the controllability and interpretability over traditional models. A comprehensive
repository for research in time series classification is hosted in [10]. Fusion of deep NN models for
time series represents the future direction and warrants in-depth studying.

1.2. Related Research

A hybrid of ARIMA and ANN models, taking advantage of the strength of ARIMA and ANN
models in linear and nonlinear modeling, respectively, was proposed in [11]. A comprehensive review
on forecasting methods, such as autoregressive and machine learning methods, for spatial–temporal
data from a remote sensing satellite was given in [12]. The near-real-time disturbance detection method
was based on least-squares spectral and cross-wavelet analyses and could be used as assessment of the
results of time series [13].
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Autoencoder frameworks were proposed for sequential modeling and achieved good
results [14–16]. RNN or LSTM was used as an encoder to extract features from high-dimensional
data and the decoder reconstruct dataset from feature embedding. Their results all showed that the
proposed models matched or outperformed the existing methods. Research studies indicated that
the dominant models for sequence tasks were mainly based on RNN or CNN with encoder-decoder
architecture. Furthermore, the best performing models connect the encoder and decoder through
attention mechanisms [14–16]. Attention mechanisms became a research hotspot and they could be
applied to a variety of tasks such as machine translation, image caption generation, speech recognition,
etc. Attention mechanisms improved neural machine translation (NMT) performances evidenced by
BLEU (metrics of translation) scores. The combined architecture of connectionist temporal classification
and LSTM (RNN) was proposed, and it achieved the best recorded score on benchmark test [17].
Transformer, the network architecture based on attention mechanisms, was proposed. Experiments
presented superiority of the transformer in translation and could be potentially generalized to other
sequence modeling tasks [18].

The fusion model of CNN and LightGBM to forecasting is proposed in [19]. Bias and variance
for time series forecasting were investigated using the Monte Carlo method. Results suggested
that ensemble NN models could potentially improve effectiveness [20]. The common research
thoughts for time series classification were to extract features from time series and calculate features’
distances [21–25]. Their methods all outperformed other existing models under forecasting metrics.

We surveyed recent influential GAN papers and found that a majority of these papers focused
on images, and that several papers focused on video generation; however, there were much fewer
papers that focused on generation and time series forecasting with GAN. GAN, the epoch-making
framework for estimating generative models via an adversarial process, was put forward. Experiments
demonstrated the potential of the framework through qualitative and quantitative evaluation in [26].
Great development of GAN has occurred in recent years. Several hundred variants of GANs have
evolved—for instance, Wasserstein GAN (WGAN) [27], SeqGAN [28], Auto-GAN [29] and stacked
GAN [30], to name just a few.

WGAN improved the stability of training, eliminated mode collapse, and provided tricks useful
for debugging and hyperparameter searches. Numerous papers on improving the unstable GAN
training process [31–33] and avoiding convergence failure [34,35] were published, and these problems
were still open as of the writing of this paper. Applying GANs to NLP is rather limited due to the
difficulty of backpropagation through discrete random variables plus the instability of the GAN
training. The authors analyzed distributions that were not differentiable, which caused problems, and
they proposed their solutions in [36,37].

Traditionally, RNNs were fit for sequence modeling; however, a recent study suggested that
convolutional architectures outperformed them on tasks such as audio synthesis and machine
translation. A systematic evaluation of the two architectures was conducted. Experiments showed
that convolutional architecture outperformed recurrent networks across different tasks and datasets.
The highlight of the paper suggested replacing RNN with CNN to model sequence tasks [38].

Inspired by these up-to-date research works, we proposed the related models to empirically verify
the attention mechanism’s superiority over RNN and applied GAN for the time series forecasting task.

1.3. Pros and Cons of the Models

RNN addressed the limitation of models having no memory, which is much needed for sequential
data. LSTM extends RNN’s capability by adding long short-term memory since word’s meaning
depends on the context. LSTM models were the mainstream technique for translations in the past
and could also be used for text generation. Early successes and wide applications accelerated RNN’s
development. However, RNN is time-consuming and deep NN cannot proceed due to its property of
one word/character at a time. The shortcomings of RNN block parallel processing, while TCN has no
such limits, which roughly explains TCN’s superiority to RNN in terms of efficiency.
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Intuitively, CNNs excel at processing image data with geometric attributes. However, it is not
ideal for sequence problems because of the filter size limit and failure of capturing long dependence
information. Although CNNs are much less sequential than RNNs, the number of steps required to
combine information from distant parts of the input still grows with increasing distance.

TCNs have the advantages of parallelism, low memory requirements for training and flexible
receptive field size. They outperformed LSTM architectures on a variety of tasks. This architecture
can map a sequence of any length to an output sequence of the same length and have longer memory
than RNN. The disadvantages of TCN adaptiveness in transfer learning and the amount of history
information might limit its development. Recent research boldly claimed that RNN could be even
replaced by TCN, which motivates us to verify this proposition.

GAN models have evolved into several hundred variants since its inception. However, the
unstable training processes and the lack of evaluation metrics remained unresolved. Although the
GAN framework has remarkable performances in area of image, video, etc., the number of academic
papers applying GAN to the area of time series forecasting and classification is still limited.

The paper’s contributions are summarized as follows:

1. LSTM with autoencoder and with attention mechanism is proposed and applied to the time
series forecast modeling. Gaussian sliding window is proposed for the weights initialization in
LSTM attention model;

2. Performances of TCN-based NN to model for time series forecasting and classification are
evaluated. The proposed models outperform the classification methods such as 1NN-DTW, BOSS
and WEASEL;

3. A GAN model with LSTM as the G and MLP as the D for time series forecasting task is proposed
and the performances are evaluated. Comparisons are made with the statistical ARIMA models.

The organization of the paper is as follows. In Section 1, we briefly introduce the background
information and related research studies. Methodologies are presented in Section 2. Proposed models
are tested and results are given in Section 3. Conclusions and possible future developments are
discussed in Sections 4 and 5, respectively.

2. Methodology

2.1. Basics for the Proposed Models

RNN/LSTM models were used for time series forecasting modeling in the past due to its
recurrent and autoregressive structure. The basic LSTM cell [39] is illustrated in Figure 1a and
Equation (1). The LSTM cells are building blocks of the input layer, hidden layer and output layer
of the deep NN. Autoencoders employ the unsupervised learning method to extract features from
high-dimensional data and to reconstruct them from feature representations. They consist of encoding
and decoding processes, where encoding maps the input to the feature spaces and then decodes back
to the original spaces.

ot = σ(Wo · [ht−1, xt + bo] (output gate)

ht = ot ∗ tanh(Ct)

Ct = ft ∗ Ct−1 + it ∗ C̃t (new state Ct)

C̃t = tanh(Wc · [ht−1, xt] + bc) (candidate state C̃t)

it = σ(wi · [ht−1, xt] + bi) (input gate)

ft = σ(w f · [ht−1, xt] + b f ) ( f orget gate) (1)

Recent study suggested that RNNs could be replaced by models such as attention-based NN.
In practice, LSTM-based neural machine translation (NMT) has been replaced by Google, Salesforce, etc.
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Wave-net proposed by Google for speech synthesis and CNN-based models for machine translation
by Facebook outperformed other models. The additive and multiplicative attention functions were
introduced in [18]. The attention mechanisms map vectors input (query, key, values) to a vector
output, which is computed as a weighted sum. The scaled dot-product attention detailed on the
computation of attention function where queries were packed into a matrix Q, keys and values into
matrices K and V. Query vector qi = wqai, thus (q1, q2, . . . , qn) = wq(a1, a2, . . . , an), Key vector ki =
wkai (k1, k2, . . . , kn) = wk(a1, a2, . . . , an), and Value vector vi = wvai, (v1, v2, . . . , vn) = wv(a1, a2, . . . , an),
a1,1 = k1q1 , a1,2 = k2q1. . . We gave the A matrix computation(the computation for K and V were

similar) in Equation (2) and Figure 2. Attention(Q, K, V) = so f tmax(QKT√
dk
)V.

A =


a1,1 a2,1 . . . an,1

a1,2 a2,2 . . . an,2

. . .
an,1 an,1 . . . an,n

 =


k1

k2

. . .
kn

 [
q1 q2 . . . qn

]
= KTQ (2)

(a) (b)

Figure 1. (a): Basic LSTM cell. (b): Overall Kaggle web traffic dataset forecastability.

Figure 2. Basic attention mechanism.

The TCN model combining dilated and causal convolutional layers that was presented ensured
that the previous time step will not use future information because the output of time step Tt was
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obtained based on Tt−1. TCN can be viewed as 1D FCN plus one-dimensional causal convolutions,
and each two convolutional layers and identity mapping are encapsulated into a residual module.
The residual module then stacks the deep network, and uses fully convolutional layers in the last few
layers. Dilated convolution enlarges the receptive field exponentially [38]. We simplified the TCN
model’s highlights using Equation (3). Dilated convolution operation F on elements of the sequence X
is defined as:

F(s) = (X ∗d f)(s) =
k−1

∑
i=0

f (i) · Xs−d·i (3)

where X ∈ Rn, f : {0, . . . k− 1} → R, d stands for dilation rate and f for filter size. For the GAN
structure, there are two NNs, Generator (G) and Discriminator (D). G and D contest with each other
in which G generates candidates while D evaluates them. G’s training objective is to increase the
error rate of D. The training could be expressed by the classical value function [26] demonstrated in
Equation (4).

Min
G

Max
D

= Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (4)

where G’s distribution is represented by pg over data x, a priori on input noise variables is pz(z),
G is a differentiable function represented by a multilayer perceptron (MLP) and D(x) represents the
probability that x comes from the data rather than pg. The maximizing of assigning correct labels for D
and minimizing of log(1− D(G(z)) are simultaneously trained.

2.2. Datasets

Public datasets were collected for the proposed models. Kaggle web traffic competition was used
for the time series forecasting task [40]. We evaluated the performance of the proposed LSTM, TCN
and GAN models using this dataset. ECG, a multivariate and classified dataset, was used to test the
performance of time series classification task with the TCN model. The dataset has 19 features, 150
time steps and 20 classes—that is, 19 features were collected for 150 time steps and they were classified
into 20 classes. The VPN-nonVPN dataset from the Canadian Institute of Cybersecurity was used for
time series classification, which can be found at [41].

The adding problem has been used repeatedly as a stress test for sequence models [39].
MNIST images are presented to the model as a 784 * 1 sequence for digit classification [42]. The
memory-copying task is to generate an output of the same length as the input sequence with predefined
restraints [43].

The dataset should generally be preprocessed before entry into the models. Typical preprocessing
consists of center and scale, impute for missing value, the dealing of imbalanced classification problems
(many more samples for one class and less for other), or the wrong labels, etc. There was some missing
value for the whole web traffic dataset and we deleted those missing value datasets and used 100,000
for the tests. The ECG dataset was perfectly labeled and no extra preprocessing was needed, and for
the VPN-nonVPN dataset, the scaling and centering was used.

The forecastability computation was defined using spectral density in Equation (5). We calculated
the forecastability of the Kaggle web traffic dataset of 100,000 time series and plot them in Figure 1b.
Each dot in Figure 1b represents one time series’ forecastability. The larger value of forecastability,
the easier to forecast. For example, the value of white noise nearly reaches 0, which means it’s hard to
forecast. We obtained the whole picture of dataset forecastability from reading Figure 1b.

ω (xt) = 1 +

∫ π
−π fx (θ) log fx (θ) dθ

log2π
(5)

where xt stands for stationary process, fx(θ) for normalized spectral density of the time series.
In particular

∫ π
−π fx(λ)dλ = 1.
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2.3. Long Short-Term Memory with Autoencoder and Attention

The LSTM with autoencoder was proposed to forecast the web traffic. The input was preprocessed
as time series data and the output were the 500 training and the forecasting horizon of 50 steps forward
(90% of the dataset was used for training and the remaining for test). We deleted the time series
with missing values. We designed one encoder and one decoder as illustrated in Figure 3. The left
branch from the first LSTM layer up was the encoder and the right was the decoder structure. Input
was repeated after the first LSTM layer to enter the encoder and decoder layer, respectively. We
defined a predict layer and tied all these together to establish the models. The basic LSTM layer
was used for each encoder and decoder with 100 neurons and RELU activation. We compared the
performances of losses, and the training time with five different optimizers (‘Adadelta’, “Adagrad”,
“Adam”, “RMSprop” and “SGD”) using the same loss function (mean_squared_error) and learning
rate. The test was repeated fifty times with the same parameters to avoid occasional bias.

Figure 3. Architecture for LSTM with autoencoder.
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Inspired by the “sandwich transformer” of reordering the sublayers of more self-attention (S)
toward the bottom and more feedforward (F) toward the top perform better [44], we designed the
balanced architecture, which consist of four self-attention sublayers, four feed forward sublayers and
reordered them from “FSFSFSFS” to “SSFSFSFF”. The proposed architecture of attention (Figure 4)
was based on autoencoder framework with S layers and F layers as the encoder, and masked S, F,
and encoder-attention layer as the decoder.

We proposed using the sliding Gaussian windows as the initial weights for the attention layer
(Figure 5). The length of input vectors was n and the weights were randomly allocated for basic
attention. Gaussian distribution for the weights was based on that distant part of the sequence
might play a decreasing role. The parameters of ak, bk and ck were optimized gradually using back
propagation through time during training. The Gaussian windows vectors were then input into the
LSTM with attention network demonstrated in Figure 5. Layer normalization reduced the “covariance
shift” problems faced by batch normalization through fixing the mean and variance of the summed
inputs within each layer [45]. We designed one RNN layer normalization between S and F layer.

Figure 4. Transformers with attention mechanisms.

Figure 5. Gaussian sliding windows for initial weights in attention NN.

Activation function of “Sigmoid” and “Tanh” were used in the basic LSTM cells (see Equation (1)).
The basic function softmax(xi) = exi /∑j exj might suffer from computational underflow (the value of
numerator was very small) or overflow (the value of denominator was approaching zero). We proposed
using the following equation softmax(x̃i) = exi−max(xi)/∑j exj−max(xi) The value of denominator was at
least more than e0 = 1 and the numerator becomes larger so this problem was avoided. The optimizers
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selection influenced the training processes and the results, so five candidate optimizers were tested to
find the most suitable one for the proposed models and dataset. Performances of losses, mean squared
error rate and the training time were reported.

2.4. Temporal Convolutional Network Architectures for Forecasting and Classification

TCN model with dilations was proposed for time series forecasting and classification task.
TCN uses a 1D-FCN architecture where each hidden layer is the same length as the input layer,
and zero padding of length is added to keep subsequent layers the same length. Causal convolutions
where an output at time t is convolved only with elements from time t and earlier in the previous
layer. Those features differentiate TCN architectures from FCN and CNN models. We illustrated
the TCN models with dilation rate set to 4 and filter size to 3 in Figure 6. The number of CNN
layers (convolutional 1D + activation + max_pooling) defined the TCN model architecture. To make
the training process stable and achieve better performance fine-tuning the parameters of filter size,
kernel size, pooling_size and dropout rate were crucial. The number of hidden CNN layers depends
on the characteristic of the targeted data, which has no golden-rules and trial and error method were
often used. We observed the dataset and constructed the TCN model with the number of hidden
CNN layers set to 2, 3, 4, 5 which correlated with the filter size length. The flatten and dense layers
were then added for the convolutional layers. The filter size, kernel size, pooling_size and drop out
rate are all hyperparameters, which play important roles for the models’ performances. We proposed
the grid search method and using the RMSE score to find the best fit parameters’ values. These four
parameters, namely, dilation rate of [8,16,32,64], filter size of [16,32,64,128,256], kernel size of [2,3,4,5],
pooling_size of [2,3,4,5] and dropout rate of [10%,20%,40%,60%], were set for the tests, which added up
to 1280 (4× 5× 4× 4× 4) possible combinations. The candidate parameters which led to the unstable
training process was deleted. For each of the combinations five optimizers were tested. The RMSE
score was used to measure the performance. The combination of dilation rate of 64, filter size of 128,
kernel size to 5, pooling_size to 2 and dropout rate to 20% for the regularization was chose for the
model’s parameters.

(a) (b)

Figure 6. Comparisons between ARIMA and ETS models (a): ARIMA model, (b): ETS model.



Sensors 2020, 20, 7211 10 of 20

2.5. Comparisons with Statistical and Machine Learning Methods

We constructed the statistical ARIMA and Exponential Smoothing (ETS) model to compare the
performance with the proposed TCN models. Parameter p for AR, q for MA and d for difference
orders determine the ARIMA model. For example ARIMA(2,1,3) means after processing of one order
differencing, combines AR(2) model and MA(3). There are best practices for setting the values of these
parameters such as observing the (partial) autocorrelation of the dataset, identifying the stationarity
with differencing and the model selection (AR, MA, ARMA or ARIMA model), etc. After the model was
selected, the parameters estimation process began. We followed the steps to construct two candidate
models, compared the accuracy using two different parameter of p,d,q set to (2,1,2) and (3,0,0) for the
same Kaggle web traffic dataset. Metrics showed ARIMA(2,1,1) was slightly better than ARIMA(3,0,0).
ETS can be simplified as additive (A) or multiplicative (M) model. As for the target dataset, the additive
model was more appropriate. We modeled the time series with ETS (A,N,N) (simple exponential
smoothing with additive errors) and calculated the criteria. The analysis results of these two kinds of
models were illustrated in Figure 7.

Figure 7. Dilated causal convolution with dilation rate d = 4, filter size k = 3 and residual block.

We compared performances of four classical machine learning classification algorithms which are
Random Forest (RF), Gradient-Boosting tree (GB), Extra tree (ET) and Bagging methods (BA) with the
proposed TCN model using the VPN-nonVPN dataset with the Brier scores in Figure 8. The Brier score
(vertical axis in Figure 8) measures the accuracy of a probability forecast ranging from 0 to 1. BS =
1
N ∑N

t=1( ft − ot), where ft is the forecast probability, ot is the outcome. The score of 0 stands for complete
accuracy and 1 means the forecast was totally inaccurate. The results were illustrated using box-plot from
which we concluded TCN model outperformed the others. Although GB method might perform better
than TCN in some cases, the mean and the range of the scores was below the TCN model.

Figure 8. Performances comparisons among five models for time series classification task.



Sensors 2020, 20, 7211 11 of 20

2.6. Generative Adversarial Architecture for Forecasting

The proposed GAN model was designed with the MLP as the G and the stacked LSTM as the D
was for the time series forecasting task. The structures of G and D were given in Figure 9. We trained
the model on the same web traffic dataset for 10,000 epochs with batch size set to 500 using the five
optimizers (‘Adadelta’, ‘Adagrad’, ‘Adam’, ‘RMSprop’, and ‘SGD’), respectively.

Figure 9. GAN structure for time series forecasting task.

3. Results and Discussion

The metric of loss we used for all the experiments was Mean Squared Error. Forecasting error for
data i: ei = xi − x̂i, where x̂i represents the forecast data i. SSE stands for sum of squared error and
RMSE root mean squared error. The common metrics were defined in Equation (6) and used for TCN
model designed for time series classification task. P, N, TP, FP, TN, FN stand for positive, negative,
true positive, false positive, true negative, and false negative, respectively. For the optimizer of Adam,
we set the parameters [46] of the algorithm: step size α = 0.01, exponential decay rates for the first and
second moment estimates β1 = 0.9, β2 = 0.98, and ε = 10−6.

SSE =
n

∑
i=1

e2
i

RMSE =

√
1
n

SSE

Accuracy =
TP + TN

P + N
=

TP + TN
TP + TN + FP + FN

(6)

3.1. Long Short-Term Memory with Autoencoder

We used the same web traffic dataset and metric to evaluate the performances for this model.
We trained 100 epochs for each of five optimizers for fifty times. The results suggested that

around 10 min per optimizer and the optimizer of ’Adam’ and ’Adagrad’ performed best with nearly
the same RMSE score. Although the autoencoder model was more complex than the vanilla LSTM,
we found the time required for training was only increased by less than 2 min and the RMSE scores
slightly decreased.
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3.2. Attention-Based Long Short-Term Memory

Kaggle web traffic dataset was used to evaluate the performances for this model. We trained
100 epochs for each optimizer for fifty times and found that training time was around 2 minutes per
optimizer and the best performed optimizer was Adam. This model improved the performances by
cutting training time by around 80 percent compared to vanilla LSTM and the error rate of RMSE also
decreased (See Figure 10 and Table 1 for the results).

(a) (b)

(c) (d)

Figure 10. LSTM with autoencoder test results for time series forecasting task (a): encoder’s loss, (b):
decoder’s loss, LSTM with Attention test (c): accuracy, (d): loss.

Table 1. Test results of web traffic forecasting with different optimizers ‘training/test losses (time)’.

Optimizer LSTM LSTM-auto LSTM-att TCN

Adadelta 57.98/49.23 (10 m 34 s) 51.57/39.34 (12 m 30 s) 46.77/40.12 (1 m 50 s) 49.34/40.15 (41 s)
Adagrad 59.21/51.34 (11 m 02 s) 45.74/40.83 (12 m 29 s) 46.77/41.29 (1 m 48 s) 46.24/39.94 (42 s)

Adam 51.20/46.91 (10 m 29 s) 45.21/40.60 (11 m 53 s) 45.12/40.40 (1 m 29 s) 45.82/39.61 (31 s)
Rmsprop 55.23/51.29 (11 m 38 s) 45.81/40.38 (13 m 42 s) 46.34/40.52 (1 m 39 s) 45.85/40.27 (45 s)

SGD 56.54/52.38 (11 m 44 s) 51.79/39.47 (13 m 36 s) 50.32/40.54 (1 m 52 s) 52.92/41.76 (44 s)

Table 2. Test results for different tasks with the proposed models.

Sequence Modeling Model Size LSTM LSTM-auto LSTM-Att TCN

Adding problem (loss) 70 K 0.175 6.2× 10−3 6.1× 10−3 5.9× 10−3

MNIST (accuracy) 70 K 87.2 89.7 95.2 98.7
Music MIDI data (loss) 500 K 0.0822 0.0755 0.0671 0.0635
Copying memory (loss) 16 K 0.0301 0.0204 0.0198 0.0182

Kaggle web traffic (RMSE) 10 K 49.83 48.81 46.92 47.12
ECG classification (accuracy) 10 K 95.8 98.6 98.2 99.5
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3.3. Temporal Convolutional Network

The TCN model for time series forecasting task used the same web traffic dataset as we did in
the LSTM autoencoder and attention mechanism experiments. Training time for TCN was the least
among all the models with less than 1 min per 100 epochs, and the accuracy also improved compared
to vanilla LSTM (see Figure 11). The second TCN model was for time series classification task of
classifying of multi-variate, multi-class time series using the ECG dataset which achieved 99.5 percent
of accuracy (see Table 2).

The tests showed different optimizers impacted significantly in the performances of accuracy
and loss. The overall training time for each optimizer was around 3 min for 500 epochs (less than one
minute for 100 epochs in Table 1).

(a) (b)

(c) (d)

Figure 11. TCN with dilations test results for time series forecasting task (a) adadelta, (b) adagrad, (c)
adam, (d) rmsprop.

The best performed optimizer was ’RMSprop’ which improved the loss rate to an order of
magnitude. TCN’s efficiency was the best among the proposed models. The performance of TCN
model for time series classification task was compared with the classical models of 1NN-DTW, WEASEL
and BOSS using the VPN-nonVPN dataset. From the calibration curve in Figure 12 we could see that
TCN was closest to the perfectly calibrated dashed line which indicated the proposed TCN model
outperformed the aforementioned models.
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Figure 12. models calibration comparisons among 1DNN-DTW, BOSS, WEASEL and TCN.

3.4. Generative Adversarial Network

A GAN model for time series forecasting was proposed to model the Kaggle web traffic.
The 500-time steps were used for training and the remaining 50-time steps for test. We set the
same parameters (epochs, learning rate) for the models and loss functions as mean_squared_error for
all the time series forecasting experiments. The detailed parameters were shown in Figure 13.

The same web traffic was used as the input to this GAN model. After 2000 epochs of training
we plotted the results of the generator loss (blue curve), discriminator loss (green curve) and the
discriminator accuracy (red curve) for different optimizers in Figure 14. The discriminator accuracy
converged for optimizer of “Adadelta” and “Adam”. When using optimizer of “RMSprop” (c) and
“SGD” (d), the discriminator accuracy arrived at around 50%, which meant that it had a relative high
success rate of distinguishing the real dataset from generated ones.

This finding confirmed that training processes of GAN sometimes cannot converge to the
satisfying minimum. Carefully choosing optimizers such as “Adam” and fine-tuned the corresponding
parameters, the accuracy of discriminator converged to the minimum (see Figure 14).
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(a)

(b)

Figure 13. GAN structure for time series forecasting task (a): Generator (b): discriminator.
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(a) (b)

(c) (d)

Figure 14. GAN test results for time series forecasting task loss and accuracy for Discriminator and
Generator, (a) ‘adadelta’, (b) ‘adam’, (c) ‘rmsprop’, (d) ‘sgd’.

4. Discussions

A challenge faced by LSTM is that it is unable to parallel. RNNs once became the dominant
network architecture for translation and language modeling. However, one word at a time makes
RNNs unable to parallel, so performance improvement became unavailable. This sequential nature
also makes it hard to take advantage of fast computing devices such as TPU and GPU. Simply stacking
the FCN, CNN and RNN or tweaking their parameters to get better performance for sequence were
not enough and sometimes even failed. New architectures such as attention-based models (TCN
and transformer) were then invented to increase performance, extract better features from data,
generalization capability and reduce parameters.

TCN models with attention mechanisms have achieved remarkable successes, which makes us
rethink RNN models’ situation in sequence modeling. Time complexity was analyzed to explain
the experiment results why TCN outperformed others in terms of efficiency. In sequence models,
the hidden state matrix is of size d2 where d is the dimension of hidden state and n is the length of the
input sentence. The cost of computing an input sentence of length n equals n× d2. The complexity
of a sequence model where d and n are equal to 1000 and 50, respectively, is 50× 1000× 1000. For
models based on attention mechanisms, the complexity is n2× d. This is 50× 50× 1000. This is the key
reason that attention-based models are superior to the sequence model family ( RNNs / LSTMs)—the
n2 can be learned faster than the d2 matrix- thus no need to sequentially back-propagate the errors
through time. The experiments also confirmed the conclusions that TCN model has greatly improved
the efficiencies. Attention models were fast growing field and many improvement solutions were
put forward such as Sandwich transformer [44], Universal transformer [47], and the Residual shuffle
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exchange network [48] which requires less parameter compared to other models for the same task.
Applying state of the art language models such as BERT, ELMO, GPT, etc. to the time series forecasting
and classification areas worth researching.

The unstable training processes and lack of evaluation metrics hinder further development of
GAN. Many academic papers on how to enable the stable training process were published, however
the problem still needs further research. The evaluation metrics are still scarce (FID and IS dedicated
for images quality) and lack of objectivity (judged by humans). Furthermore the majority of influential
GAN papers were devoted their GAN models in the specific area of images, several for video
generation, however the metrics for generation and forecasting of times series with GAN are much
less (most cases visually, or RMSE metrics).

5. Conclusions

We proposed LSTM with autoencoder and attention, TCN with attention and GAN model to time
series forecasting and classification, and all of these models accomplished the tasks. The performances
of models using five different optimizers with the public datasets of Kaggle web traffic, VPN, ECG and
the stress tests were conducted. For the time series classification task, the TCN model outperformed
the classical algorithms such as random forest, gradient boosting and extra trees and bagging, and the
GAN achieved comparable performances with statistical models such as ARIMA. We proposed the
Gaussian sliding window weights to the attention mechanisms which showed reducing the training
time greatly at least 80% while remained the same accuracy. “Adam” performed best among all five
optimizers most of the time and the discretionary chosen parameters could result in the failure of
convergence, especially for GAN models. The grid search method was employed in the experiments
to the parameters tweaking, which helped the models’ reaching convergence and performed better.
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Abbreviations

The following abbreviations are used in this manuscript:

MLP Multiple Layer Perceptron
DNN Deep Neural Network
TCN Temporal Convolutional Networks
LSTM Long Short-Term Memory
GAN Generative Adversarial Network
RNN Recurrent Neural Network
NLP Natural Language Processing
ARIMA Auto Regressive Integrated Moving Average
ETS Exponential Smoothing
CNN Covolutional Neural Network
ECG Electrocardiogram
VPN Virtual Private Network
FCN Fully Connected Network
SSE Sum of Squared Error
RMSE Root Mean Squared Error
RF Random Forest
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GB Gradient Boosting
ET Extra Tree
BA BAgging method
BS Brier Score
RF Generative Adversarial Network
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