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Abstract

Genome-wide association studies (GWAS) usually rely on the assumption that different

samples are not from closely related individuals. Detection of duplicates and close relatives

becomes more difficult both statistically and computationally when one wants to combine

datasets that may have been genotyped on different platforms. The dbGaP repository at the

National Center of Biotechnology Information (NCBI) contains datasets from hundreds of

studies with over one million samples. There are many duplicates and closely related indi-

viduals both within and across studies from different submitters. Relationships between

studies cannot always be identified by the submitters of individual datasets. To aid in cura-

tion of dbGaP, we developed a rapid statistical method called Genetic Relationship and Fin-

gerprinting (GRAF) to detect duplicates and closely related samples, even when the sets of

genotyped markers differ and the DNA strand orientations are unknown. GRAF extracts

genotypes of 10,000 informative and independent SNPs from genotype datasets obtained

using different methods, and implements quick algorithms that enable it to find all of the

duplicate pairs from more than 880,000 samples within and across dbGaP studies in less

than two hours. In addition, GRAF uses two statistical metrics called All Genotype Mismatch

Rate (AGMR) and Homozygous Genotype Mismatch Rate (HGMR) to determine subject

relationships directly from the observed genotypes, without estimating probabilities of iden-

tity by descent (IBD), or kinship coefficients, and compares the predicted relationships with

those reported in the pedigree files. We implemented GRAF in a freely available C++ pro-

gram of the same name. In this paper, we describe the methods in GRAF and validate the

usage of GRAF on samples from the dbGaP repository. Other scientists can use GRAF on

their own samples and in combination with samples downloaded from dbGaP.

Introduction

Genome-wide association studies (GWAS) have identified numerous associations between

genotypes and complex clinical conditions and phenotypic traits. Thousands of research arti-

cles have been published; more than 20,000 single nucleotide polymorphisms (SNPs) have
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been identified to be associated with various human phenotypes and diseases [1]. Knowledge

of any close relationships between individuals is crucial to the validity of the analysis results.

Closely related individuals should not be used together in case-control and population based

association studies [2–5]. Cryptic relatedness can increase both false positive and false negative

rates [4,6]. Although genetic relatedness can be calculated from reported pedigree structures,

these structures are often incomplete and incorrect due to unreported relationships, non-

paternity, adoption or sample labeling errors [7,8]. Fortunately, pedigree errors and cryptic

relatedness can be detected using genotype data obtained in GWAS studies.

Algorithms and software packages have been developed to determine the subject relation-

ships using genotype data [2,9–17]. Most of the existing methods determine genetic relationships

by estimating the genome-wide averages of the number of alleles shared identical by descent

(IBD) and/or kinship coefficient between each pair of individuals, with computation complexi-

ties at least O(n2S), where n is the number of samples, and S is the number of SNPs. These algo-

rithms were not optimized to determine subject relationships in datasets with more than a few

thousand samples. However, the establishment of centralized databases such as the database of

Genotypes and Phenotypes (dbGaP) at the National Center for Biotechnology Information

(NCBI) and the European Genome-phenome Archive (EGA) at European Bioinformatics Insti-

tute has made it possible for researchers to access genotypic data from millions of individuals.

Two novel aspects arise with large controlled access databases. First, users will obtain per-

mission to access only subsets of the data. Second, different users will have access to different

subsets. Therefore, it is desirable for the database owners to precompute all possible relation-

ships among all datasets. Then, each user can be provided with the precomputed relationships

among only those datasets retrieved. The duplicates and close relationships should be deter-

mined even when the individual datasets have genotypes obtained from different genotyping

platforms.

Two types of methods are commonly used to determine genetic relationships between indi-

viduals based on molecular markers: maximum-likelihood estimation (MLE) [18–20] and

method-of-moment estimation (MM) [8,13,21,22]. Both MLE and MM methods use the

observed numbers of alleles shared identity by state (IBS) to estimate the IBD sharing probabil-

ities or kinship coefficients. Milligan [23] compared the statistical performance of these two

types of methods. The maximum-likelihood estimators always generate biologically meaning-

ful probabilities and are usually more accurate than the method-of-moment estimators. How-

ever, maximum-likelihood approaches are usually slower and sometimes more biased than the

method-of-moment ones. Method-of-moment methods usually use the observed numbers of

IBS sharing loci instead of the predicted numbers when calculating IBD sharing probabilities,

and hence may yield estimates that cannot be interpreted as probabilities, in which case,

researchers truncate the estimates into the meaningful range [0, 1]. The truncation of the

results introduces artificial effects and biases.

Besides the computational complexity, another limitation of the existing algorithms is that

they can be applied only to genotype datasets obtained using the same genotyping method (i.e.

various SNP arrays or sequencing assays). For a genotype repository, such as dbGaP, the sub-

mitted genotype datasets have been obtained using many different genotyping methods.

We have developed algorithms to extract genotypes of common SNPs from genotype data-

sets obtained using different methods, and developed these algorithms into a software package

called GRAF (Genetic Relationship and Fingerprinting) to determine quickly the relationships

between subjects originally genotyped in disparate studies. The algorithms and software

described in this article were developed as quality control tools for dbGaP curators to check all

studies prior to release, and find subject overlaps across dbGaP studies. GRAF can also be used

by dbGaP submitters and users to find errors in the genotype datasets and pedigree files.

Quickly identifying closely related subjects using genotype data
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The GRAF algorithms and software were briefly presented at the 22nd Annual Interna-

tional Conference on Intelligent Systems for Molecular Biology [24] and the 64th Annual

Meeting of the American Society of Human Genetics [25] in 2014. Later, the KING software

[11] was upgraded to version 2.0 to handle more than a million samples [26]. Since KING is

most similar to our methods and can handle large data sets, we focus our comparisons on

KING 2.0, using real genotype data with very large sample sizes.

Results

dbGaP and genotype fingerprinting

NCBI’s dbGaP database is a repository charged to archive, curate, and distribute information

produced by genome scale studies investigating the interaction of genotypes and phenotypes

[27]. As of August 15, 2016, the genotype and/or phenotype data of 1,430,765 samples collected

from 1,091,830 research participants (referred to as subjects in this article) across 671 studies

have been released to researchers by dbGaP.

Samples from a single subject or from closely related subjects are often submitted to differ-

ent studies without being reported by dbGaP submitters, who may not know if the subjects

participated in previously submitted studies. The dbGaP processing pipeline identifies samples

that originate from the same subject and assigns a unique resource-wide subject ID (a.k.a.,

dbGaP Subject ID) for any genotyped subject. Theoretically, a few dozen genotypes from

informative and independent SNPs can be used as “fingerprints” to distinguish subjects from

each other in a database with millions of samples [28,29]. However, the genotypes submitted

to dbGaP are obtained with different methods (i.e., various arrays or sequencing) and there

are no SNPs that are covered by all the genotyping methods.

To support the dbGaP processing pipeline, we curated a large collection of markers that

could be used for identity and relationship testing, which we refer to as the dbGaP Fingerprint-
ing Collection. This collection was chosen to increase the chance that each sample has enough

genotype information to identify it, while keeping the number of markers bounded. We se-

lected 10,000 autosomal SNPs, where each had the following properties: (1) appears on at least

80% of the genotyping platforms thus far submitted to dbGaP; (2) is bi-allelic; (3) has minor

allele frequency (MAF) > 0.17 as reported by the 1000 Genomes Project [30]; (4) is separated

from other selected SNPs by at least 50,000 bps; and (5) contains no complementary alleles,

i.e., no A/T or G/C alleles. The non-complementary rule was imposed to avoid the DNA

strand orientation problem. For example, if the two alleles of a fingerprinting SNP are A and

G, then we know that the genotype AA in one dataset is the same as genotype TT in another

dataset obtained with different genotyping methods, eliminating the need to know the DNA

strand orientation used. If instead the alleles were A and T, then the meaning of genotypes AA

and TT could not be disambiguated without knowing the DNA strand orientations.

We extracted the genotypes of 10,000 fingerprinting SNPs from binary PLINK.bed files

[31] for 860,211 samples from 286 dbGaP studies and built the dbGaP Fingerprinting Collec-

tion. Each sample had at least 1,000 fingerprinting SNPs genotyped (Supporting Information,

S1 Table). The average genotype missing rate resulting from SNPs not being on the chips or

platforms is 9.1%, and the average rate of missing genotypes not called by genotyping methods

is 2.9%.

Finding identical samples: IBS, IBD and subject relationships

The genetic relatedness between two subjects can be estimated from SNP genotypes as a kin-

ship coefficient—the probability that two alleles at the same locus are identical by descent

(IBD). Some high values of the kinship coefficient are associated with specific relationships

Quickly identifying closely related subjects using genotype data
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(e.g., second degree relatives). An important exception is that parent-offspring and full siblings

have the same kinship coefficient of 0.25. The probability distributions of IBD cardinality P
(Z = 0,1,2), where Z is the number of alleles IBD, are more informative than kinship coeffi-

cients. Here, we restrict our analysis to relationships no more distant than third degree

relatives.

Suppose a homogeneous, random mating population in Hardy-Weinberg equilibrium, hav-

ing a bi-allelic SNP at location i with allele frequencies pi and qi. Any two subjects in the popu-

lation can be observed to share 0, 1, or 2 alleles identical by state (IBS). Some of the IBS alleles

shared by two subjects might be inherited from the same recent ancestor, or identical by de-

cent (IBD). If we denote the number of IBD alleles as Z and the number of IBS alleles as I, as

used by Purcell et al[13], the probability of each IBS state given an IBD state, P(I|Z) can be cal-

culated by using the formulas in Table 1. Fig 1 shows how the equations in Table 1 are derived.

For a pair of subjects, the kinship coefficient f can be calculated using the P(Z) values: f = P
(Z = 2)/2 + P(Z = 1)/4.

Statistical metrics to determine subject relationships

Assuming there is no inbreeding, the probabilities of different IBD states for common types of

relationships are shown in the left columns in Table 2. The results in Table 2 indicate that we

can use P(Z = 2) to distinguish identical pairs (including samples from the same subject and

those from monozygotic twins) from other types of relationships. We can also use P(Z = 0) to

distinguish other types of close relationships.

We compare the SNP genotypes of every two samples and use two statistical metrics to find

their relationships. The first one is the genotype discordance rate when all SNPs with geno-

types are counted, which we call All Genotype Mismatch Rate (AGMR), equivalent to the per-

centage of SNPs with IBS state I< 2. The second one is the genotype mismatch rate when only

the SNPs with both samples being homozygous are counted, which we call Homozygous

Genotype Mismatch Rate (HGMR). Assuming a homogenous, random mating population,

with allele frequencies uniformly distributed in the range between 0.1 and 0.9, the expected

AGMR values are the same as the P(I<2) values in Table 2, and the expected HGMR values

and standard deviations are shown in Table 3.

Identical pairs within and between dbGaP studies

To find identical pairs within and across studies, we have developed three different algorithms

—the naïve, quadratic and sub-quadratic—with computational complexities O(n2S), O(n2), and

O(n log n), respectively (see Methods). The naïve algorithm and the quadratic algorithm tolerate

high genotype missing rates in the genotype datasets, but the sub-quadratic algorithm requires

low genotype missing rates.

The naïve and the quadratic algorithms were implemented as multithreaded programs. We

tested the naïve algorithm, the quadratic algorithm, and the duplicate sample detection func-

tion of KING 2.0 using the genotype dataset extract from all dbGaP studies on August 15,

Table 1. Calculation of P(I|Z) value for each marker.

IBD state

IBS state Z = 0 Z = 1 Z = 2

I = 0 2p2
i q

2
i 0 0

I = 1 4p3
i qi þ 4piq

3
i 2p2

i qi þ 2piq
2
i 0

I = 2 p4
i þ q

4
i þ 4p2

i q
2
i p3

i þ q
3
i þ p

2
i qi þ piq

2
i 1

https://doi.org/10.1371/journal.pone.0179106.t001
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2016, with minimum 1000 fingerprint SNPs having genotypes, on an Intel Xeon machine with

16 2.67 GHz CPUs. This dataset contains 884,794 samples, with average genotype missing rate

11.7%.

It took the naïve algorithm 65 hr 42 min to check all the samples. The running time of qua-

dratic algorithm was 1 hr 34 min. KING 2.0, when being run with option “-duplicate” to only

find duplicate samples, took 1 hr 48 min.

Since the native algorithm exhaustively checks all pairs of samples over all SNPs, we can use

the identical pairs found by the naïve algorithm to evaluate the accuracies of the other two

Fig 1. Probabilities of shared alleles in pairwise sample comparisons for autosomal bi-allelic markers

are derived from the list of genotype outcomes. When no alleles are shared by descent (Z) (panel A,

Z = 0), then the chance of seeing any specific combination of alleles is the product of the respective allele

frequencies. When one (panel B, Z = 1) or both alleles (panel C, Z = 2) are shared by descent, then the

possible number of genotype outcomes are reduced. The number of alleles identical by state (I) can be zero

(panel A, lavender), one (all panels, no highlight), or two (all panels, green).

https://doi.org/10.1371/journal.pone.0179106.g001
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programs. Also since both the quadratic algorithm and KING 2.0 check genotypes of all SNPs

at the last step, the specificities of both algorithms are 100%. Assuming all sample pairs with

AGMR less than 10% are real identical pairs, Table 4 compares the sensitivities of these two

algorithms for finding identical pairs with different AGMR ranges.

Table 4 shows that GRAF quadratic algorithm has a much lower false negative rate than

KING 2.0, especially when the genotype discordance rates are high. We also grouped the iden-

tical pairs by number of SNPs with genotypes and compared the performances of the two algo-

rithms. Table 5 shows the results. All identical pairs had at least 287 SNPs with genotypes for

each samples. GRAF and KING both worked well when more than 4000 SNPs were genotyped

for both samples in each pair. When fewer SNPs had genotypes, GRAF could still find almost

all of the identical pairs, but KING failed to detect many identical pairs.

We also compared the sub-quadratic algorithm and the quadratic algorithm using all the

samples in dbGaP. As mentioned above, comparing to the other two algorithms, the sub-qua-

dratic algorithm is more sensitive to the missing genotype rate than the quadratic algorithm.

To evaluate the performance of the sub-quadratic algorithm, we created several datasets from

all of dbGaP studies by extracting genotypes of samples with maximum numbers of missing

genotypes below seven thresholds: 10, 100, 1000, 2000, 3000, 5000 and 9000. Table 6 shows the

results. The sub-quadratic algorithm was single-threaded. The running time against the dataset

with 884,787 samples was 15 min. When the quadratic algorithm was run using one CPU core,

it took 15 hr 39 min to check all of sample pairs.

Table 6 confirms that the sub-quadratic algorithm performs better when the genotype miss-

ing rate is not too high. When the maximum number of missing genotypes per sample is 2000

or fewer (average 185 or fewer missing genotypes), the sub-quadratic algorithm could detect

99.9% or more identical pairs. However, for the dataset with maximum 9000 missing geno-

types per sample, it was able to find only 85% of the identical pairs.

The measured performances for the sub-quadratic algorithm were achieved when the two

parameters m (number of markers checked) and c (number of rounds for convergence) were

set to 20 and 10, respectively (see Methods for more details on the meanings of m and c).

Increasing c can increase the sensitivity, at the cost of longer running time. Another way to

Table 2. Probabilities of different IBD and IBS states for different relationships.

Relationship Abbrev. P(Z = 0) P(Z = 1) P(Z = 2) P(I<2)

Identical pair ID 0 0 1 0.00

Parent-offspring PO 0 1 0 0.39

Full sibling FS ¼ ½ ¼ 0.33

Second degree D2 ½ ½ 0 0.47

Third degree D3 ¾ ¼ 0 0.50

Unrelated UN 1 0 0 0.54

https://doi.org/10.1371/journal.pone.0179106.t002

Table 3. Predicted HGMR values and standard deviations for different types of relationships assum-

ing allele frequencies are evenly distributed between 0.1 and 0.9.

Relationship Expected HGMR SD

Parent-offspring 0.0000 0.0000

Full sibling 0.0454 0.0031

Second degree 0.1040 0.0050

Third degree 0.1594 0.0062

Unrelated 0.2172 0.0073

https://doi.org/10.1371/journal.pone.0179106.t003
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increase the sensitivity is to run the sub-quadratic algorithm multiple times and take a union

of the identical pairs obtained in different runs.

Since the quadratic algorithm is both fast and robust, tolerating high genotyping errors and

systematic genotype gaps resulted from different genotyping methods, it is routinely used by

dbGaP curators to find identical pairs within and across studies. We set the AGMR cutoff

value to 20% when actually reporting putative identical pairs. For 884,797 samples in the data-

base with maximum 9000 missing genotypes per sample, excluding those sample pairs that are

proved to be incorrect by checking the genotypes, there are 42,402 identical sample pairs

(24,127 within study and 18,275 across studies) reported by submitters; all 42,402 identical

pairs were detected by the quadratic algorithm. In addition, the quadratic algorithm was able

Table 4. Comparison of the performances of the GRAF quadratic algorithm and KING 2.0 on finding identical pairs with different AGMR ranges.

GRAF KING

AGMR (%) #ID pairs #Missed FN (%) #Missed FN (%) Mean AGMR (%) Exp. FN (%)

[0, 1) 87500 0 0.00 1102 1.26 0.08 4.1E-13

[1, 2) 1446 0 0.00 237 16.39 1.37 2.7E-04

[2, 3) 276 0 0.00 29 10.51 2.38 0.014

[3, 4) 72 1 1.39 10 13.89 3.45 0.159

[4, 5) 38 0 0.00 9 23.68 4.36 0.656

[5, 6) 15 0 0.00 3 20.00 5.48 2.337

[6, 7) 20 1 5.00 1 5.00 6.44 5.263

[7, 8) 11 1 9.09 2 18.18 7.49 10.450

[8, 9) 8 1 12.50 6 75.00 8.64 18.563

[9, 10) 6 4 66.67 6 100.00 9.40 25.121

[0, 10) 89392 8 0.01 1405 1.57 0.12 1.8E-12

All of the identical pairs found by the naïve algorithm are grouped by AGMR values. #Missed: number of identical pairs missed by the algorithm; FN: false

negative rate; Mean AGMR: average AGMR of the identical pairs in this group; Exp. FN: expected false negative rate of the quadratic algorithm calculated

using Eq 5 (see Methods) supposing all sample pairs have the mean AGMR within the interval on that row of the table.

https://doi.org/10.1371/journal.pone.0179106.t004

Table 5. Comparison of the performances of the GRAF quadratic algorithm and KING 2.0 on finding identical pairs with different numbers of SNPs

with genotypes.

GRAF KING 2.0

#SNPs with genotypes Total pairs #Missed FN (%) #Missed FN (%)

287–1000 282 0 0.00 282 100.00

1001–2000 975 1 0.10 953 97.74

2001–3000 158 0 0.00 42 26.58

3001–4000 929 2 0.22 111 11.95

4001–5000 3743 0 0.00 0 0.00

5001–6000 39 0 0.00 0 0.00

6001–7000 4604 1 0.02 2 0.04

7001–8000 12030 2 0.02 1 0.01

8001–9000 3984 0 0.00 0 0.00

9001–10000 62648 2 0.00 14 0.02

287–10000 89392 8 0.01 1405 1.57

#SNPs with genotypes: Ranges of numbers of SNPs with genotypes for both of the samples in each identical pair

#Non-null SNPs: For each identical pair, non-null SNPs are the SNPs at which both samples have genotypes. This column shows the ranges of counts of

non-null SNPs.

https://doi.org/10.1371/journal.pone.0179106.t005
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to find 47,433 identical pairs not reported by the submitters. Of these, most (46,124) are across

studies and hence, would be unrecognizable to the submitters of single studies (Fig 2A).

Fig 2 shows the distribution of the genotype mismatch rates of all the identical pairs

detected by the quadratic algorithm, as well as those reported by the submitters. When the

same graph is scaled to show the details (Fig 2B), we can see that there is a peak with average

AGMR about 33%. Most of the pairs under this peak are reported by submitter as monozygotic

twins. However, Table 2 shows that 33% is the expected AGMR value of full sibling pairs. So, it

is likely that most of these pairs are non-identical twins reported as identical twins by mistake.

Fig 2A also shows a small peak with average AGMR about 54%, corresponding to the

expected AGMR for unrelated pairs, indicating these pairs of samples are actually from unre-

lated or remotely related subjects, but reported incorrectly by submitters as either from the

same subject or identical twins. The sample pairs with low AGMR values, e.g., less than 20%,

are most likely collected from same subjects or identical twins. The genotype mismatches are

caused by errors in genotyping, data processing, or sample mixups.

Using HGMR to determine non-identical, closely related pairs of subjects

Table 3 shows that HGMR can be used to distinguish subject pairs with different relationships

in a homogeneous, random mating population. Actual human populations are much more

complicated than this simple model. We selected some dbGaP studies and tested how HGMR

values can be used to determine the subject relationships with real data.

As of August 15, 2016, there were four dbGaP studies with at least 500 pairs of related sub-

jects reported by submitters for each relationship type of full sibling, second degree relatives

(including grandparent-grandchild, avuncular, and half sibling pairs) and third-degree rela-

tives (including first cousin and half-avuncular pairs), and with fingerprinting genotype miss-

ing rate less than 10% (Table 7). We compared the genotypes of all the fingerprinting SNPs for

all the sample pairs within each study using the naïve algorithm (see Methods). For all the

studies, the distributions of HGMR values are close to the normal distributions predicted by

assuming the populations are homogeneous, random mating (Fig 3). The matches are espe-

cially good for studies phs000763 (Fig 3A) and phs000397 (Fig 3C). Fig 4 shows HGMR distri-

butions of the subject pairs of the same studies, scaled and color-coded to display the closely

related pairs. The mean HGMR values of full sibling, second degree relative, and third degree

Table 6. Running times and prediction accuracies of the sub-quadratic algorithm tested with datasets of different sample sizes and genotype

missing rates.

Dataset Performance of sub-quadratic algorithm

Max geno miss Mean geno miss #Samples Total ID pairs #Rounds Time (min) #FN FN (%)

10 5.7 68868 6975 12 0.6 0 0.0

100 32.9 407713 44820 45 3.8 0 0.0

1000 153.7 669927 62931 70 6.7 2 0.0

2000 184.5 688125 66766 88 7.2 44 0.1

3000 415.4 755156 81380 112 9.0 9127 11.2

5000 500.8 774255 83379 113 9.4 11240 13.5

9000 1166.5 884794 89392 135 15.3 13432 15.0

The sub-quadratic algorithm was run five times for each input and the results were averaged and shown on this table. Max geno miss: maximum number of

SNPs without genotypes for each sample; Mean geno miss: average number of SNPs per sample without genotypes; Total ID pairs: total number of

identical pairs in each dataset found by the naïve algorithm; #Rounds: number of rounds ran by the sub-quadratic algorithm before it converged.

https://doi.org/10.1371/journal.pone.0179106.t006
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relative are close to the predicted values, but the standard deviations are much larger than the

values predicted using the simple homogeneous, random mating model. For parent-offspring

pairs, the predicted HGMR value is 0, and the actual values are also close to 0.

Fig 2. Distribution of all genotype mismatch rates of identical pairs detected by the quadratic

algorithm and those reported by submitters. All samples in the dbGaP Fingerprint Collection are

compared. Types of submitter-reported relationships are color coded. Coral red: samples are reported to be

from the same subjects; Purple: samples are from monozygotic twins; Gray: no relationship reported by

submitters. Panel A shows the whole graph. Panel B shows the same graph, stretched on y-axis to show

details of the bottom part of the graph.

https://doi.org/10.1371/journal.pone.0179106.g002

Table 7. Genotype missing rates and numbers of pairs of related samples reported in submitted pedigree files for four dbGaP studies.

Pairs of related samples reported in pedigree files

Study Samples Geno MR(%) Parent-offspring Full sibling Second degree Third degree

phs000763 2058 0.59 1947 2028 5607 3535

phs000462 1035 0.81 1079 1228 3211 3500

phs000397 5013 0.17 2332 3119 6027 7878

phs000168 5220 0.12 852 3984 3136 2315

https://doi.org/10.1371/journal.pone.0179106.t007
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Using both HGMR and AGMR to determine subject relationships for

dbGaP studies

We have shown that AGMR can be used to distinguish identical pairs from other types of rela-

tionships, and the latter can be separated from each other by using HGMR. Table 2 also shows

that the expected AGMR values are different among different types of relationships, and hence

can also be used to separate these relationships, especially to separate full siblings from second

degree relatives. To obtain greater discrimination power, we use joint HGMR and AGMR val-

ues to determine subject relationships.

If HGMR and AGMR values both follow normal distributions, then the joint values follow

a bivariate normal distribution. We estimate some parameters using the genotype data in

dbGaP Fingerprinting Collection of subjects with known to be closely related (Table 8), and

use the probability density function of the bivariate normal distribution to calculate the prior

probabilities to obtain different AGMR and HGMR values for each type of relationship. After

excluding the identical pairs and more remotely related subject pairs, we can calculate the pos-

terior probability of any pair of subjects being PO, FS, D2, or D3 given AGMR and HGMR

Fig 3. Distribution of homozygous genotype mismatch rates of sample pairs in four dbGaP studies.

Cyan curves show the distribution of HGMR values predicted with the assumption that the populations are

homogeneous and random mating.

https://doi.org/10.1371/journal.pone.0179106.g003
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values, using Bayes theorem (see Methods). Using this method, we are able to directly deter-

mine subject relationships using SNP genotypes without estimating P(Z) values or kinship

coefficients.

Fig 4. Distribution homozygous genotype mismatch rates of sample pairs in the same four dbGaP

studies as in Fig 2. Graph is zoomed in to show the related pairs. Cyan curves show the distribution of

HGMR values predicted with the assumption that the populations are homogeneous and random mating.

Types of relationships reported by submitters in pedigree files are color coded. Red: parent/offspring; Blue:

full sibling; Green: second degree relative; Yellow: third degree relative; Gray: no relationship reported by

submitters.

https://doi.org/10.1371/journal.pone.0179106.g004

Table 8. Mean HGMR and AGMR values and correlation coefficients between HGMR and AGMR of all related subjects reported in the data files

submitted to dbGaP.

HGMR (%) AGMR (%)

Relationship Number of pairs Mean SD Mean SD Correlation coefficient

Identical 21099 0.00 0.00 0.08 0.38 0.317

Parent-offspring 45184 0.04 0.07 39.48 1.47 0.104

Full sibling 28447 4.86 1.02 33.59 2.32 0.784

Second degree 18492 11.16 1.35 47.30 1.10 0.803

Third degree 10841 17.32 1.35 51.07 0.96 0.830

https://doi.org/10.1371/journal.pone.0179106.t008

Quickly identifying closely related subjects using genotype data

PLOS ONE | https://doi.org/10.1371/journal.pone.0179106 June 13, 2017 11 / 28

https://doi.org/10.1371/journal.pone.0179106.g004
https://doi.org/10.1371/journal.pone.0179106.t008
https://doi.org/10.1371/journal.pone.0179106


Fig 5 shows the distribution of HGMR and AGMR values of all pairs of subjects in dbGaP

Fingerprinting Collection reported by submitters as closely related. The contour lines show the

positions with the same predicted probability densities, and the areas within each contour line

are expected to contain 95% of the subject pairs with each relationship type, excluding MZ twins.

Comparison of GRAF and KING on determination of other types of

relationships

We also compared GRAF and KING 2.0 on determining other types of closely related subjects.

The same four studies with sufficiently large numbers of different relationships (see Table 6) were

used to compare the performances of GRAF and KING 2.0. Fig 6 shows the results of GRAF and

KING in scatter plots. For the GRAF results, it plots the AGMR values against HGMR values. For

KING results, it plots kinship coefficient estimations against percentages of IBS0 SNPs.

The cyan lines in Fig 6 shows the cutoff lines used by the programs to separate different

types of relationships. KING only uses kinship coefficient to separate different relationships,

and hence the cutoff lines in the graph are straight lines. The cutoff values shown in Fig 6 are

suggested by the authors. However, both PO and FS are first degree relatives, and are expected

to have the same kinship coefficients. After first degree relatives are separated from other rela-

tionships, KING uses percentage of SNPs with IBS0 to distinguish PO from FS. GRAF uses

both HGMR and AGMR to determine the relationships. The cyan cutoff lines in Fig 6 show

the show the positions where the probabilities of the two types of relationships, calculated

using either Eq 13 or Eq 15, are equal (see Methods).

Fig 6 shows that when distinguishing full siblings from second degree relatives, the HGMR/

AGMR combination is better than the combination of IBS0 and kinship coefficient estimation.

If only one statistical metric is used to separate full sibling pairs from second degree relatives,

HGMR is better than IBS0 and AGMR is better than kinship coefficient estimation.

The above conclusions might not be evident if we only check the plots with visual inspec-

tion. We can determine how well the values of two values are separated from each other by

using receiver operating character (ROC) curves. The area under a ROC curve (AUC) reflects

the discriminatory accuracy of a method. However, ROC curves are useful only when there are

some overlaps between the two variables. In the case of these four dbGaP studies, full siblings

are very well separated from second degree relatives using any of the four metrics, with no or

very little overlaps. It is hard to use ROC curves to evaluate the discriminatory accuracies,

since the AUC values will be 1 or very close to 1.

For two independent normal random variables with mean and variances mx, s2
x and my, s2

y ,

AUC can be calculated using the following equation:

AUC ¼ FðdÞ; d ¼
mx � my
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x � s2
y

q

where Ф is the standard normal cumulative distribution function[32,33].

The value of δ can be estimated using the mean and standard deviations of the HGMR,

AGMR, IBS0 and kinship coefficient estimations calculated from the samples being checked.

The estimated δ values reflect how well two variables are separated. The larger the δ values, the

better the two variables are separated. Table 9 shows the δ values when different metrics are

used to distinguish full siblings from second degree relatives, and second degree relatives from

third degree relatives, for the four studies.

Table 9 shows that when distinguishing full sibling pairs from first degree relatives, HGMR

is better than IBS0, and AGMR is better than kinship coefficient estimation. When separating
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Fig 5. Distribution of both HGMR and AGMR values of all pairs of samples reported by submitters as

closely related. Each dot represents one pair of samples. Types of relationships reported by submitters are

color coded. Purple: same subject or monozygotic twins; Red: parent/offspring; Blue: full sibling; Green:
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first degree relatives from second degree relatives, HGMR is similar to IBS0, but kinships coef-

ficient estimation is better than AGMR.

The GRAF software package

We have developed a software package called GRAF (Genetic Relationship And Fingerprint-

ing) to extract the genotypes of the 10,000 dbGaP fingerprinting SNPs from datasets and to

find identical pairs and other closely related subjects. GRAF takes the input for one or more

datasets in byte-encoded (a.k.a., binary) PLINK format, along with some auxiliary information

that makes it possible to recognize markers by position, dbSNP rs identifier, or dbSNP ss iden-

tifier. GRAF also compares the self-reported relationships in the pedigree file with relation-

ships predicted using the genotypes. If multiple datasets are input, then GRAF compares all

samples within and across all datasets in a pairwise manner. GRAF implements the quadratic

algorithm to find the identical pairs and uses the aforementioned Bayes theorem method to

determine subject relationships.

The main program of GRAF is implemented in C++. An auxiliary program for visualizing

results is implemented in Perl. Genotypes of every 64 SNPs are encoded and stored in two

64-bit integers, and compared using bitwise operations and multithreading technique to

improve the speed (Supplemental Material).

The executable files for GRAF and some documentation can be downloaded from a link at

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/Software.cgi. The main program is pre-

compiled to run on 64-bit Linux computers.

Using GRAF as a QC tool to find errors in data submitted to dbGaP

It is common that the data submitted to dbGaP contain errors, such as misreported subject

relationships. For each study submitted to dbGaP, we use GRAF to validate the pedigree file

second degree relative; Brown: third degree relative. Each contour line shows the area that is predicted to

include 95% of the sample pairs for each type of relationship.

https://doi.org/10.1371/journal.pone.0179106.g005

Fig 6. Comparison of GRAF and KING on determining subject relationships for four dbGaP studies.

Relationships self-reported in the pedigree files are color coded: red = parent-offspring; blue = full sibling;

green = second degree; deep yellow = third degree. Cyan lines show the cutoff values to separate different

types of relationships from one another.

https://doi.org/10.1371/journal.pone.0179106.g006
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and subject-sample mapping file against the submitted genotype data, and find closely related

pairs of subjects that are not reported. The results are made available to the submitters with

histograms and scatter plots as well as text tables so that dbGaP curators and data submitters

can easily find the potential errors in the submitted datasets. Fig 7 shows the genotype QC

results of one dbGaP study with different types of errors. Fig 7A shows that three pairs of sub-

jects that are reported in the pedigree as related but not MZ twins are actually genetically iden-

tical, one pair of MZ twins in the pedigree are probably DZ twins, and six pairs of subjects

with identical genotypes are not reported in the pedigree and subject-sample mapping file.

Fig 7B and 7C show that some subject pairs reported as related in the pedigree file are either

related with different types of relationships or unrelated, and some closely related subject pairs

are not reported in the pedigree file.

GRAF is used by dbGaP curators and submitters as a quality control tool to check the geno-

type and pedigree files for all studies. The graphs generated by the GRAF auxiliary program

enable users to quickly observe the overall relatedness among subjects, as well as the genotyp-

ing error rates. GRAF is also used to find subject overlaps across dbGaP studies and the results

are reported to the submitters when appropriate. After subject overlaps are confirmed by the

submitters, we assign a single dbGaP ID for multiple samples from the same individual. Users

who download data from multiple dbGaP studies can find subject overlaps across dbGaP stud-

ies by checking dbGaP subject IDs. To find related, but not identical subjects, users need to

rerun GRAF on the datasets downloaded.

For early studies that were released before GRAF was developed, the retrospective checking

was limited to identifying duplicate samples and assigning them a shared identifier. For newer

studies deposited in dbGaP, we have been requiring that all of the identical pairs should be cor-

rectly reported in the subject-sample mapping file and/or pedigree file before the study is

released. In practice, all of the discrepancies between the first degree relatives detected by

GRAF and those reported in the submitted files must be checked by the submitters; errors in

the submitted files should be fixed. If the submitters are not able to fix the errors, we include

the GRAF results in README files available to authorized users. If a study has already been

released, we ask the submitter to fix the errors in new versions.

Discussion

We have developed and tested algorithms to quickly determine the subject relationships using

SNP genotype data. To date, millions of individuals have been genotyped or sequenced on

genome scale using different methods. Before GRAF was developed, there was no computer

software available to find duplicate samples in large datasets with samples size as many as a

million or more. As of today, besides GRAF, KING 2.0 is the only existing software that can

process a dataset with a million samples in a few hours, not days or months. However, KING

cannot be used to find duplicate samples obtained using different methods, especially when

DNA strand orientations of the same SNPs are different. In addition, KING has not be been

Table 9. δ values when different metrics are used to separate different types of relationships. Kinship = kinship coefficient estimated by KING.

δ value for full sibling/second degree δ value for second degree/third degree

Phs HGMR IBS0 AGMR Kinship HGMR IBS0 AGMR Kinship

phs000763 3.64 3.22 5.62 4.88 2.97 2.97 2.46 2.79

phs000462 3.42 3.08 4.71 4.38 2.64 2.70 2.16 2.45

phs000397 2.85 2.60 4.36 3.83 2.57 2.55 2.25 2.43

phs000168 3.22 2.94 5.07 4.56 2.35 2.47 1.79 2.27

https://doi.org/10.1371/journal.pone.0179106.t009
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Fig 7. An example of GRAF results displayed on dbGaP website for curators and data submitters to

find discrepancies between genotypes and pedigree files submitted to dbGaP. The graphs show GRAF

results of one dbGaP study before the errors were corrected by the submitter. Relationships reported by

the submitter are color coded. (A) Distribution of AGMR values. Coral red: Duplicate samples; Purple:

monozygotic twins; Blue: first, second, or third degree relative; Gray: no relationship reported by submitter. (B)
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tested with large and real genotype datasets when many genotypes are missing or incorrect.

We have developed a robust tool to extract genotypes of common SNPs from datasets obtained

using different methods and quickly and robustly find all duplicate samples from very large

datasets.

For finding duplicate samples and monozygotic twins, we check the genotype discordance

rate over all the SNPs (AGMR). When the genotype missing rate is low, one can use the sub-

quadratic algorithm to find all the duplicate samples. Depending on the genotype missing

and error rate, and the desired prediction precisions and computation times, one can set the

parameters accordingly, using equations provided in Methods. GRAF’s quadratic algorithm

was able to find about 99.9% of the identical pairs in a combined dataset with 884,794 samples

and genotype missing rate up to 90% per sample, when all of the identical pairs missed by the

program were those with high genotype discordance rates, and the sensitivities were close to

those predicted using the equations in Methods. Many more identical pairs in the same data-

sets were missed by KING 2.0. KING 2.0 finds identical pairs in several stages. In the first stage

it checks genotypes of few SNPs. Then, at the subsequent stages it checks more and more

SNPs, until at the last stage, all of the SNPs are checked. This algorithm runs in quadratic time,

since usually most of time will be spent on the first stage when the number of SNPs checked is

independent of the total number of SNPs genotyped. However, when genotype missing rate is

high, since not enough SNPs are checked, one would predict that some of the identical pairs

will be missed at the first stage, and will not be found in the subsequent sages. The test results

with the real, combined genotype dataset from different dbGaP studies (Table 5) confirmed

the above hypothesis. When the genotype missing rate is 30% or more, about 60% of the iden-

tical pairs were missed by KING 2.0. So KING 2.0 can only be used to find identical pairs for

datasets with low genotyping missing rates, but GRAF quadratic algorithm can robustly toler-

ate very high genotype missing rate, as long as the total numbers of correctly genotyped SNPs

are enough to determine identical pairs.

The quadratic algorithm can find all identical pairs in a dataset with a million samples in a

few hours, using current multi-CPU machines. However, when the sample size further in-

creases, e.g., to hundreds of millions samples, the computation time will be days or months.

The sub-quadratic algorithm finds identical pairs much faster. However, it does not work for

datasets with high genotype missing rates. The sub-quadratic algorithm will be useful for find-

ing identical pairs in datasets with very large sample sizes, or when computer hardware is lim-

ited or short running time is desired.

For determining subject relationships, we use the homozygous genotype mismatch rate

(HGMR). Since the HGMR is similar to the AGMR, we can use algorithms similar to that

for identical pairs to find non-identical but closely related subjects, by adjusting some parame-

ters and the output specifications. However, since many SNPs are ignored when calculating

HGMR, which is equivalent to high genotype missing rate for the algorithm, the sub-quadratic

algorithm can only be used to find duplicate samples and identical twins.

The ratio of SNPs with IBS state 0 (IBS0) has been used as the basis of published methods to

determine subject relationships [11,13,34,35]. Similar to IBS0, HGMR is also calculated with

the number of SNPs with IBS state 0. However, IBS0 is the ratio to all the genotyped SNPs,

while HGMR is the ratio to the genotyped SNPs with two homozygous genotypes. HGMR is

Distribution of HGMR values. Red: parent/offspring; Blue: full sibling; Green: second degree relative; Yellow:

third degree relative; Grey: no relationship reported by submitter. (C) Distribution of both HGMR and AGMR

values of pairs of related samples, excluding those from same subjects or monozygotic twins. Red: parent/

offspring; Blue: full sibling; Green: second degree relative; Yellow: third degree relative; Gray: no relationship

reported by submitter.

https://doi.org/10.1371/journal.pone.0179106.g007
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simple enough so that a quadratic algorithm can be implemented to find the related subjects,

while it is more sensitive in distinguishing different types of relationships than methods based

on IBS0, especially in separating second degree relatives from full siblings (Figs 4 and 5).

Since different types of related subjects are expected to have different probabilities of IBD

states (Table 2), most of the existing methods determine the subject relationships by calculat-

ing the probabilities of different IBD states[13], or kinship coefficients[11]. The probabilities

of different IBD states can be estimated based on the observed IBS states. There are two types

of methods to estimate the probabilities of different IBD states using IBS states[23], maxi-

mum-likelihood estimation[20] and method-of-moments estimation[22,36]. The practical

problems with these methods were summarized in the Introduction.

To determine close genetic relationships between subjects in an outbred population, it is

not absolutely necessary to calculate the probabilities of different IBD states, or kinship coeffi-

cients. Since for any two subjects, the observed IBS states are dependent on the probabilities of

different IBD states, and the latter are determined by the genetic relationship, the prior proba-

bility distribution of IBS states can be calculated given a relationship type. The posterior proba-

bilities of subject relationships given certain IBS states can be calculated using the Bayes

theorem. However, when inbreeding exists, some parents are themselves closely related and

the number of relationship types that need to be distinguished grows. In populations with sub-

stantial inbreeding, the relationship types can be much more complex and estimation of kin-

ship coefficient matrix is central to effective genetic analysis[37,38].

The prior probability distributions predicted using homogeneous, random mating popula-

tion models are considerably different from the real distributions (Fig 4). With large databases,

such as dbGaP, one can empirically predict the prior probability distributions, and use these

prior distributions to determine the relationships of any pair of subjects. Since no probabilities

of IBD states need to be calculated in this process, no values are truncated, and results are not

biased.

We use test statistics AGMR and HGMR, derived from IBS states to directly determine sub-

ject relationships. For determination of cryptic relationships and identification of pedigree

errors, it is very important to be able to distinguish full siblings from second degree relatives

since usually it is very easy to separate full siblings from parent-offspring pairs. Fig 6 shows

that in distinguishing full siblings from second degree relatives, HGMR is better than IBS0,

and AGMR is better than the estimation of kinship coefficient. When GRAF combines HGMR

and AGMR together when determining subject relationships, and hence can obtain even

higher discrimination power.

AGMR and HGMR are useful in checking pedigree relationships and genotype datasets for

quality control. At dbGaP, we calculate the AGMR and HGMR values for all the duplicate

samples and closely related subjects, including all the related subjects as reported in the sub-

ject-sample mapping file and pedigree file, and plot the distributions of the AGMR and

HGMR values. For single datasets, users of GRAF can quickly get the following useful informa-

tion by examining the graphs visually.

1. The potential errors in the subject-sample mapping file and pedigree file, or sample swap-

ping in the genotype datasets, as indicated by the outliers at each relationship type.

2. The extent of relatedness among subjects as reflected by the numbers of pairs at each rela-

tionship type.

3. The genotyping error rate as indicated by the tails of the duplicate sample peak at the

AGMR distribution curve and the tails of the parent-offspring curve.
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Our analyses and test results above showed that the AGMR and HGMR values for a pair of

samples can only be either 0 or much greater than 0, if there are no genotyping errors. For any

pairs of samples with AGMR or HGMR slightly greater than 0, all of the genotype mismatches

are most likely the result of genotyping errors. If two samples are not duplicates, then a low

HGMR value (say less than 2%) indicates that the two subjects are parent-offspring. Empiri-

cally, a long tail of the peak near 0 in the AGMR or HGMR distribution curves indicates low

genotyping quality.

GRAF can be used to find duplicate samples and identical twins across datasets, even if the

genotypes are obtained using different methods. When sufficiently many fingerprint SNPs are

covered by the genotyping methods, GRAF can also be used to find the related subjects across

different datasets, and verify the pedigree files against the genotypes.

We have applied our algorithms and methods to the quality control checking of datasets

submitted to dbGaP and helped the submitters to find and correct inconsistencies in the files.

These algorithms and methods can be applied to other datasets. They might also be useful in

forensic science for finding subject relationships.

One limitation of GRAF is that it does not take population stratification into consideration.

It works very well in determining subject relationships and finding errors in pedigree files with

dbGaP studies, where population stratification is not a serious problem. Many computational

methods have been developed to find related subjects in admixed populations, e.g., KING-

robust[11], REAP[35], PC-relate[34]. We have tried to use the genotypes of the fingerprinting

SNPs to predict subject populations. Our preliminary results show that genotypes of the

10,000 fingerprinting SNPs are enough to determine subject populations in sub-continental

levels (data not shown). When the method to determine subject populations using fingerprint-

ing SNPs are ready to be used within GRAF, then GRAF can be improved to deal with datasets

of admixed populations.

Another limitation is that the implementation of our methods in GRAF requires that at

least some of the 10,000 fingerprinting SNPs be genotyped. The more fingerprinting SNPs that

are genotyped, the more accurate the algorithm will be. When no or few fingerprinting SNPs

are genotyped, no related subjects will be correctly identified. To solve this problem, we could

compute the missing genotypes using imputation. In the longer-term, we believe that the

genomic community would be better served if genotyping arrays and assays can be standard-

ized, so that they included a common set of SNPs, for example, some or all of the 10,000 fin-

gerprinting collection used by dbGaP. In addition, we will adjust the fingerprint SNP set in

future, e.g., adding more SNPs covered by new technologies such as whole exome sequencing,

removing some SNPs that were initially determined as bi-allelic but later proved to be multi-

allelic.

Scientists who collect or analyze genotype data for GWAS may find GRAF useful in at least

three scenarios. First, prospective submitters to dbGaP can run GRAF themselves and stream-

line the data submission process. If GRAF reports some predicted relationship that the submit-

ter knows to be false, the submitter will be able to alert dbGaP curators of this discrepancy.

Second, scientists who wish to do combined analysis of datasets at the dbGaP and EGA reposi-

tories may use GRAF to remove duplicate and closely related samples. Third, scientists who

are collecting new samples to study some trait can access previous studies for that trait and use

GRAF to evaluate whether prospective new study participants participated in another study.

The second and third usage scenarios suggest an important area for future development of the

GRAF software. It would be helpful to add to GRAF the capability to do only incremental com-

parisons. As datasets grow, only pairs of individuals in which at least one individual is new,

since the last GRAF test, would be compared.
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Methods

The naïve, quadratic and sub-quadratic algorithms to find identical pairs

Among the relationships in Table 2, it is easiest to distinguish identical pairs from other rela-

tionships. Identical pairs are important because they reveal hidden sample duplicates. Since

identical pairs have IBD states Z = 2 at all sites, the observed IBS states will also be I = 2 at all

sites (Table 1) provided there are no genotyping errors, no mutations and no somatic mosai-

cism. We can use the percentage of SNPs with IBS state I< 2, to determine if two samples are

genetically identical. Assume a pair of subjects with m independent SNPs having the same IBD

state either 0, 1 or 2. If we randomly select a SNP, then the conditional probabilities that the

two subjects have genotype mismatch (i.e., I< 2) can be calculated using the following equa-

tions:

PðI < 2jZ ¼ 2Þ ¼ 0 ð1Þ

PðI < 2jZ ¼ 1Þ ¼ 1 �
1

m
Pm

i¼1
ðp3

i þ q3

i þ p2

i qi þ piq
2

i Þ ð2Þ

PðI < 2jZ ¼ 0Þ ¼ 1 �
1

m
Pm

i¼1
ðp4

i þ q4

i þ 4p2

i q2

i Þ ð3Þ

So, of the expected AGMR value for each type of relationship in Table 2 is:

PðI < 2Þ ¼
P2

k¼0
PðZ ¼ kÞPðI < 2jZ ¼ kÞ ð4Þ

If the frequencies of each allele are uniformly distributed in some interval, and if m is suffi-

ciently large, then the expected genotype mismatch rates can be calculated using the above

equations. The rightmost column of Table 2 shows the predicted mismatch rates. In practice,

the 10,000 SNPs were selected with known allele frequencies and those frequencies are not uni-

form, but we tested and show in the examples below that the approximation works adequately

for our data.

To determine whether two samples are genetically identical, we compare the genotypes of

these two samples over all the SNPs and calculate AGMR. The complexity of this naïve algo-

rithm is O(n2S), where n is number of samples and S is the number of SNPs.

Absent genotyping errors, we could conclude that two samples are non-identical if any

genotype mismatch is found. Unfortunately, genotyping errors are common with current tech-

nologies and mutations do occur rarely. To overcome genotyping errors, we can check more

SNPs until a certain number of genotype mismatches are encountered. Suppose that the geno-

type mismatch rate resulting from genotyping error is ε, and we randomly select m SNPs with

genotypes and set a threshold k, such that two samples are deemed non-identical when there

are k or more genotype mismatches. For that randomized method, the pair-wise identity false

negative rate is expected to be:

FN ¼ PID:mismatches�k ¼ 1 �
Pk� 1

i¼0

m!

ðm � iÞ!i!
εið1 � εÞm� i

ð5Þ

where PID:ismatches�k is the probability that there are k or more genotype mismatches for an

identical pair of samples. In practice, the genotype mismatch rate varies from marker to

marker. If the two samples are from two unrelated subjects, then the probability that there is a

genotype mismatch at any single SNP is given in Eq 3.
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Denote the probability of genotype mismatch for an unrelated pair as η, i.e., η = P(I<2|
Z = 0), and assume all the non-identical pairs are from unrelated subjects, the false positive

rate can be calculated using the following equation:

FP ¼ PUN:mismatches<k �
Pk� 1

i¼0

m!

ðm � iÞ!i!
Zið1 � ZÞ

m� i
ð6Þ

In practice, the sample pairs are not all independent, since each sample is compared against

all other samples. However, for sufficiently large sample size, the above estimates of false nega-

tive and false positive rates should be accurate.

Eqs 5 and 6 show that we can implement an algorithm to check only a subset of the SNPs to

find all the identical pairs (ID in Table 2). Since the number of SNPs that need to be checked

(m) is not dependent on the total number of genotyped samples (n), the complexity of this

algorithm is O(n2). This algorithm is referred to as the “quadratic algorithm”.

The identity false positive rate can be minimized by checking the genotypes of all the S
SNPs for those pairs having fewer than k mismatches out of m SNPs. If the false positive rate

calculated using Eq 6 is low and there are relatively few identical pairs, then checking geno-

types of more SNPs as mentioned above will not dramatically increase the running time.

Since the genotypes of every 64 SNPs are stored in two 64-bit integers, in the GRAF soft-

ware, the quadratic algorithm is implemented by setting m = 64 and k = 8, i.e., the program

stops checking genotypes if 8 or more genotype mismatches are found after 64 SNPs with non-

null genotypes are compared. If the genotype mismatch rate ε resulting from genotyping error

is known, we can predict the sensitivity of the quadratic algorithm using Eq 5. Since the pro-

gram keeps on checking genotypes until enough number of non-null genotypes are compared,

the quadratic algorithm works even if the genotype missing rate is high.

If the genotype missing and error rates are both low, we can use a faster algorithm to find

all the identical pairs. When all SNPs are correctly genotyped for all the samples, we can ran-

domly select an ordered list of SNPs and save the genotypes of each sample in a string or inte-

ger. Then, we sort all samples by their genotypes and walk through the sorted list to find the

identical pairs, which will appear next to each other on the list. The complexity of this sub-qua-

dratic algorithm will be O(n log n), which is the complexity of the sorting step.

However, if some genotypes are missing or incorrect, some of the identical pairs will not be

consecutive on the list, and hence will be missed by this algorithm. For each identical pair, if

we randomly select sets of m SNPs, the numbers of SNPs with missing or mismatched geno-

types should roughly follow a Poisson distribution. Let δ be the rate of SNPs with missing or

mismatched genotypes, the probability that none of the m SNPs have missing or mismatched

SNPs is equivalent to the sensitivity of this method, which can be calculated as:

Sensitivity ¼ Pall matches ¼ e� md ð7Þ

To increase the sensitivity of the sub-quadratic algorithm, we can randomly select another

set of SNPs with replacement and repeat the sorting and comparison of adjacent items.

Assuming the missing or incorrect genotypes are randomly distributed among different sam-

ples and SNPs, if we repeat the process for r rounds, then the false negative rate of this method

will be:

FN ¼ ð1 � e� mdÞ
r

ð8Þ

A more structured description of the sub-quadratic algorithm is as follows:
Sort SNPs by genotypemissingrate, from low to high
PutativeID pair set = {}
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Real ID pair set = {}
Loop untildone
Randomlyselectm SNPs from the top of list
Code the genotypeof each samplewith an integer
Sort the samplesby theseintegers
Checkthe sortedlist to find new putativeID pairs
Add new putativeID pairsto the putativeID pair set
For each pair amongthe new putativeID pairs
Checkall the 10,000SNPs to determineif they are ID

Add new real ID pairs to the real ID pair set
done if no new real ID pair found in c consecutiverounds

The number of SNPs to check each time (m), and number of consecutive rounds without

new ID pairs (c) should be selected based on the requirements of sensitivity and running time,

as well as the quality of the genotype datasets. Eq 7 shows that the sensitivity of each round

decreases when m increases. However, the false positive rate will also increase when m in-

creases, which means more time will be spent on checking more SNPs to exclude these extra

false negatives. Similarly, increasing the c number will decrease the false negative rate, accord-

ing to Eq 8, at the cost of longer running time.

Using HGMR to determine other common relationships as non-identical

related pairs

It is harder to distinguish non-identical relationships from each other than to separate identi-

cal pairs. Table 2 shows that different types of relationships have different P(Z) and P(I) values.

Most of the existing methods determine the relationships by estimating the P(Z) values using

the observed IBS states. For example, Purcell et al[13] use the observed number of SNPs with

IBD state 0, N(I = 0), to estimate P(Z = 0) value. For a pair of subjects, if we check S SNPs, then

the probability to have IBD state I = 0 for any SNP can be calculated using the following equa-

tion:

PðZ ¼ 0Þ ¼
PðI ¼ 0Þ

PðI ¼ 0jZ ¼ 0Þ
ð9Þ

By implementing the method-of-moments approach, some researchers use the observed
number of SNPs with I = 0 in replacement of the expected number, and estimate the probabil-

ity as:

P Z ¼ 0ð Þ �
NðI ¼ 0Þ=S

PðI ¼ 0jZ ¼ 0Þ

However, since the N(I = 0)/S values, i.e., observed rates of I = 0 SNPs, can be greater than

the predicted probabilities, the calculated values can be larger than 1.

If we only need to determine closely related subject pairs, e.g., up to third degree relatives,

we do not have to estimate the P(Z) values. Table 2 and Eq 9 show that different non-identical

relationships have different expected rates of I = 0 SNPs. Therefore, we can use the rate of I = 0
SNPs, without truncating the values, to distinguish these relationships.

A different test statistic, which we call the homozygous genotype mismatch rate (HGMR),

can also be used to separate closely related non-identical pairs, with discrimination power

higher than the rate of I = 0 SNPs, especially in separating full sibling pairs from second degree

relatives. For each pair of samples, we define HGMR as the genotype mismatch rate when only

homozygotes are considered. Let A and B be the two alleles of any one SNP, we count only the

SNPs with the following genotypes: either same homozygotes (SO, equivalent to genotypes
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AA|AA and BB|BB) or different homozygotes (DO, equivalent to genotypes AA|BB and BB|

AA), and calculate HGMR using the following equation:

HGMR ¼
NDO

NDO þ NSO
¼

NAAjBB þ NBBjAA

NAAjBB þ NBBjAA þ NAAjAA þ NBBjBB
ð10Þ

The different homozygotes (DO) state implies the IBS state I = 0, i.e., NDO = N(I = 0), but

the same homozygotes (SO) state does not imply the IBS state I = 2.

Let pi and qi be the frequencies of the two alleles for one SNP. The probabilities to have dif-

ferent homozygotes and same homozygotes can be computed using the following equations:

PiðDOÞ ¼ PðZ ¼ 0ÞPiðDOjZ ¼ 0Þ

PiðSOÞ ¼
P2

k¼0
PðZ ¼ kÞPiðSOjZ ¼ kÞ

where the conditional probabilities can be derived from Fig 1:

PiðDOjZ ¼ 0Þ ¼ 2p2

i q2

i

PiðSOjZ ¼ 0Þ ¼ p4

i þ q4

i

PiðSOjZ ¼ 1Þ ¼ p3

i þ q3

i

PiðSOjZ ¼ 2Þ ¼ p2

i þ q2

i

If we check S SNPs for subject pairs, NDO and NSO values will each roughly follow a bino-

mial distribution, and the expected HGMR value will be:

EðHGMRÞ �
PS

i¼1
PiðDOÞ

PS
i¼1
½PiðDOÞ þ PiðSOÞ�

ð11Þ

The expected value of the quotient of two random variables is not the same as the quotient

of the two expected values. However, in this case, all the values are positive and the coefficient

of the variables in the denominator is small, so the expected quotient is close to the quotient of

the two expected values. In addition, since usually NSO is much greater than NDO, the standard

deviation of HGMR is mostly dependent on the deviation of the numerator NDO, and hence,

can be estimated using the following equation:

SDðHGMRÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PDOð1 � PDOÞS

p

PS
i¼1
½PiðDOÞ þ PiðSOÞ�

ð12Þ

where PDO is the probability that on a random SNP location the two subjects have different

homozygous genotypes:

PDO ¼
PS

i¼1
PiðDOÞ=S

When allele frequencies are available, we can predict the mean HGMR values and standard

deviations for any type of relationships using the above equations. Table 3 shows the predicted

HGMR values and standard deviations for different types of relationships, assuming allele fre-

quencies are uniformly distributed over a range of 0.1 to 0.9, and sufficiently large amount of

independent SNPs are compared.
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Using both HGMR and AGMR to determine subject relationships

As described above, for pairs of samples, the numbers of SNPs with matched and mismatched

genotypes are expected to follow binomial distributions. Therefore, when the number of SNPs

compared is sufficiently large, the HGMR and AGMR values of each relationship type, except

for parent-offspring and identical pairs, should approximately follow normal distributions,

and the combination of both variables should follow a bivariate normal distribution. In gen-

eral, if x and y are two variables following normal distributions

x � Nðmx; s
2

xÞ;

y � Nðmy; s
2

yÞ;

then we have the following probability density function for both x and y:

Pðx; yÞ ¼
1

2psxsy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p exp

� 1

2ð1 � r2Þ

ðx � mxÞ
2

s2
x

�
2rðx � mxÞðy � myÞ

sxsy
þ
ðy � myÞ

2

s2
y

" # !

ð13Þ

where ρ is the correlation coefficient between x and y:

r ¼
covarianceðx; yÞ

sxsy

If we set x = HGMR and y = AGMR and estimate the values of μx, σx, μy, σy, and ρ of the

whole population of each relationship type using the genotype data of a set of subjects sampled

from the population, we can use the above equations to determine the relationship between

any pair of subjects in the population.

Eq 13 can be used to calculate the probability to get a specific pair of HGMR and AGMR

when a subject pair is known to have relationship full sibling (FS), second degree relative (D2),

third degree relative (D3), or unrelated (UN). However, since the HGMR values of parent-off-

spring (PO) pairs are not normally distributed, the above equation is not applicable to PO

pairs.

For PO pairs, if there are no genotyping errors, HGMR values are expected to be 0. The

homozygous genotype mismatches of PO pairs are all caused by genotyping errors or the rare

mutational event. If genotyping errors were random over all the SNPs, then HGMR values

would follow a Poisson distribution. Unfortunately, the actual genotyping errors are not ran-

dom and the HGMR values of PO pairs do not follow a Poisson distribution. For subjects in

dbGaP, the number of PO pairs roughly decreases exponentially when HGMR increases. We

use the following exponential distribution function to estimate the distribution of HGMR val-

ues of PO pairs:

PPOðxÞ ¼ ke� kx ð14Þ

where x� 0.

We have

Z 1

0

ke� kx dx ¼ 1:

The value of k is empirically set based on the actual HGMR values of all the pairs reported

as PO in the files submitted to dbGaP. Since usually, it is easy to distinguish PO pairs from
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other relationships, k can be selected in a wide range without affecting the accuracy of genetic

relationship prediction.

Let us also assume that for PO pairs HGMR and AGMR are independent, i.e., with correla-

tion coefficient 0. Since AGMR values of PO pairs follow a normal distribution, we can use the

following probability density function to estimate the distribution of both HGMR and AGMR

values of PO pairs:

PPOðx; yÞ ¼
k

sy

ffiffiffiffiffiffi
2p
p e

� kx�
ðy� my Þ2

2s2
y ð15Þ

The above simple model can only roughly estimate the probability distribution of HGMR

and AGMR values of PO pairs. Fortunately, since PO pairs can be well separated from other

relationship types using HGMR and AGMR (see analyses above), this simple model can still be

used to distinguish PO pairs from other relationships.

When AGMR and HGMR probability density functions are available for all relationships,

we can use them to determine the relationship of any pair of subjects. Given a set of subjects

with genotypes, sampled from the same homogeneous population, we first calculate the

HGMR and AGMR values for every pair of samples. Second, we use a cutoff AGMR value to

exclude identical pairs, and a cutoff HGMR value to exclude all the remotely related and unre-

lated pairs. Third, suppose all the subject pairs remaining after the second stage have relation-

ships in {PO, FS, D2, D3}, denoted by T. For each pair of subjects, if the HGMR and AGMR

values are x and y, respectively, the probability that this pair has relationship R 2 T can be cal-

culated using the following equation:

PðRjxyÞ ¼
PðRÞPðxyjRÞ
X

t2T

P tð ÞPðxyjtÞ

If we also assume that the P(t) values are the same for all t 2 T, then the above equation

becomes:

PðRjxyÞ ¼
PðxyjRÞ
X

t2T

PðxyjtÞ
ð16Þ

The mean HGMR and AGMR values μx and μy, and the standard deviations σx, σy and cor-

relation coefficient ρ are required when calculating the P(R|xy) values. Within each dbGaP

study, if there are sufficiently many subjects genotyped, we can calculate the allele frequencies

for all of the 10,000 fingerprinting SNPs, and then use Eqs 4 and 11 to compute μx and μy val-

ues. In practice, we calculate the standard deviations and correlation coefficients of HGMR

and AGMR for all subject pairs in dbGaP with known relationships for each relationship R
(Table 7) and use these values to estimate σx, σy and ρ values empirically. When μx, σx, μy, σy,

and ρ values are available for each study, we check every pair of subjects and calculate the P(R|
xy) values for all relationships R 2 {PO, FS, D2, D3}, and determine the relationship as the type

that has the maximum P(R|xy) value.

Algorithms to find non-identical but closely related subjects

Using HGMR values, the subject relationships can be determined with algorithms very

similar to the algorithm described above for finding identical pairs. For determining identical

pairs, the mismatch rates of all genotypes are calculated. When checking for non-identical
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relationships, we ignore the heterozygous SNPs and calculate the genotype mismatch rates.

The quadratic algorithm can be modified to find non-identical related pairs as explained above

and in the Supplementary Material. Actually, when SNPs with heterozygous genotypes are

skipped for each pair of subjects, finding PO pairs is the same as finding identical pairs, since a

PO pair is expected to have no mismatched genotypes, like an identical pair. The only differ-

ence is that fewer SNPs are used when finding PO pairs. If we use m to represent number of

SNPs with valid genotypes, (i.e., those with two homozygous genotypes for one pair of sub-

jects), then the false positive rate can be calculated using Eq 5. Since many SNPs are not valid

for calculating HGMR, more SNPs need to be checked each time, and the cutoff value k also

needs to be adjusted based on the estimation of number of valid SNPs.
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