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Abstract: The interaction between sertraline hydrochloride (SRT) and randomly methylated
β-cyclodextrin (RMβCD) molecules have been investigated at 298.15 K under atmospheric pres-
sure. The method used—Isothermal Titration Calorimetry (ITC) enabled to determine values of
the thermodynamic functions like the enthalpy (∆H), the entropy (∆S) and the Gibbs free energy
(∆G) of binding for the examined system. Moreover, the stoichiometry coefficient of binding (n)
and binding/association constant (K) value have been calculated from the experimental results.
The obtained outcome was compared with the data from the literature for other non-ionic βCD
derivatives interacting with SRT and the enthalpy-entropy compensation were observed and inter-
preted. Furthermore, the connection of RMβCD with SRT was characterized by circular dichroism
spectroscopy (CD) and complexes of βCD derivatives with SRT were characterized through the
computational studies with the use of molecular docking (MD).

Keywords: sertraline hydrochloride; β-cyclodextrin; methylated β-cyclodextrin; isothermal titration
calorimetry; circular dichroism; molecular docking

1. Introduction

Cyclodextrins are water-soluble cyclic oligo-saccharides with a truncated cone-structure
possessed a hydrophobic cavity and hydrophilic outer surface border [1]. Recently, the guest-
host cyclodextrin complex formations were examined for many and different ligands like for
example: remdesivir [2], water-soluble betulin derivatives [3], thiabendazole [4], ethinyloestra-
diol [5], bis(1,10-phenanthroline) silver (I) salicylate [6], oncocalyxone A [7], or β-cyclodextrin-
enhanced Eu3+ luminescence aggregates with bright red fluorescence of Eu3+ convenient for
environmental detection system [8] and many others [9–12]. Reactions involving cyclodex-
trins are still important to the separation [13,14] and food industry [15–17] or other kinds of
industries [18,19], but mostly to drug delivery systems for various applications in the field of
medical biomaterials for example in the technology of polymers to get artificial abdominal
wall prosthesis textile with improved biological and antibiotic delivery properties [20]. The
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basis for advanced tests of the cyclodextrins application are still information about inclusion
complexation by natural and modified cyclodextrins, as well as the factors involved in control-
ling the supramolecular interactions [21]. Lately, the interactions between antidepressant drugs
and cyclodextrins were examined [22–26], mostly in order to gain the better water solubility of
the drug [27–29], or to decrease its toxicity [30,31] or even for taste-masking [32]. One of the
antidepressants, sertraline hydrochloride, belonging to the class of selective serotonin reuptake
inhibitors (SSRIs) [33,34] and also tested as potential anti-Helicobacter pylori compound [35] has
already been tested in the presence of β-cyclodextrin and the derivatives [36–40] inter alia in
our laboratory [31,41,42].

The aim of presented work was to obtain information about interactions of sertraline
hydrochloride (SRT) (Figure 1a) with randomly methylated β-cyclodextrin (RMβCD)
(Figure 1b) in water solutions at 298.15 K under atmospheric pressure. The binding
process of guest molecule with cyclodextrin was examined with the use of an isothermal
titration calorimetry (ITC) [43–45] and molecular docking studies (MD) [10,43,45]. The
outcome was compared with the set of data for other complexes of SRT with non-ionic
β-cyclodextrin derivatives (Figure 1b) received from the literature [31,41,42]. For the
thermodynamic results the enthalpy-entropy compensation has been observed. In the near
future, we are going to check, if similar compensation is observed for interactions of SRT
with ionic β-cyclodextrin derivatives. We have also decided to use the circular dichroism
spectroscopy (CD) experimental method to thorough examinations of the SRT:RMβCD
complex formation and to confirm the stoichiometry coefficient (n) and binding/association
constant (K) value calculated from ITC experimental data.
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Figure 1. (a) Sertraline hydrochloride structural formula (on the left) and the models made based 
on crystal structure of sertraline hydrochloride (on the right) with refcode CAVVUQ [46] from the 
Cambridge Structural Database (CSD) [47] and (b) a general structural formula of some β-cyclodex-
trins (on the left) and crystal structure of RMβCD (on the right) with refcode JOSWOD [48] from 
the CSD [47]. 
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An isothermal titration calorimetry method has been chosen in order to get a full 
package of thermodynamic functions values. An enthalpic (ΔH) and an entropic (TΔS) 
contribution into the Gibbs free energy value (ΔG), together with stoichiometry coefficient 
(n) and binding constant (K) could be determined by recording a heat change during di-
rect chemical interaction between the sertraline hydrochloride and the randomly methyl-
ated-β-cyclodextrin molecules in water solution. An example of a typical experimental 
result has been placed in Figure 2. 

Figure 1. (a) Sertraline hydrochloride structural formula (on the left) and the models made based
on crystal structure of sertraline hydrochloride (on the right) with refcode CAVVUQ [46] from
the Cambridge Structural Database (CSD) [47] and (b) a general structural formula of some β-
cyclodextrins (on the left) and crystal structure of RMβCD (on the right) with refcode JOSWOD [48]
from the CSD [47].
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2. Results and Discussion
2.1. Isothermal Titration Calorimetry (ITC)

An isothermal titration calorimetry method has been chosen in order to get a full
package of thermodynamic functions values. An enthalpic (∆H) and an entropic (T∆S)
contribution into the Gibbs free energy value (∆G), together with stoichiometry coefficient
(n) and binding constant (K) could be determined by recording a heat change during direct
chemical interaction between the sertraline hydrochloride and the randomly methylated-β-
cyclodextrin molecules in water solution. An example of a typical experimental result has
been placed in Figure 2.
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Figure 2. The integrated thermal effects corresponding to the binding interaction during titration of 
a 0.45 mM sertraline hydrochloride solution (in a cell) with a 15 mM solution of randomly methyl-
ated-β-cyclodextrin (in a syringe) (■ navy blue) for aqueous solutions with pH ≈ 6.8 at 298.15 K 
under atmospheric pressure p = 101,800 Pa together with the effects of SRT (●gray) and RMβCD (■ 
cyan) dilution by pure water. 

The “One-set of independent sites model” [49,50] was selected among available in 
the ORIGIN 7 program options [51,52] to get the thermodynamical parameters (Table 1). 
This selection was justified inter alia in the least errors of the fitted parameters [53] in 
comparison to results obtained from the other models like e.g., “Two-sets of sites” [53,54]. 
Moreover, the first point (Figure 2) from first injection during the fitting sessions was dis-
carded considering the circumstances described previously [26]. 

  

Figure 2. The integrated thermal effects corresponding to the binding interaction during titration of a
0.45 mM sertraline hydrochloride solution (in a cell) with a 15 mM solution of randomly methylated-
β-cyclodextrin (in a syringe) (� navy blue) for aqueous solutions with pH ≈ 6.8 at 298.15 K under
atmospheric pressure p = 101,800 Pa together with the effects of SRT (•gray) and RMβCD (� cyan)
dilution by pure water.

The “One-set of independent sites model” [49,50] was selected among available in
the ORIGIN 7 program options [51,52] to get the thermodynamical parameters (Table 1).
This selection was justified inter alia in the least errors of the fitted parameters [53] in
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comparison to results obtained from the other models like e.g., “Two-sets of sites” [53,54].
Moreover, the first point (Figure 2) from first injection during the fitting sessions was
discarded considering the circumstances described previously [26].

Table 1. Stoichiometry coefficients of binding (n), binding constants (K), enthalpic (∆H), and entropic
(T∆S) contributions into the Gibbs free energies values (∆G) during the complex formation of
sertraline hydrochloride molecules with some β-cyclodextrin derivatives at T = 298.15 K under
atmospheric pressure p = 101,800 Pa obtained by ITC.

n K/M−1 ∆H/kJ·mol−1 T∆S/kJ·mol−1 ∆G/kJ·mol−1

β-CD a,b 1.20 a

1.31 b
5820 a

4999.3
−20.44 a

−15.6 b
1.06 a

5.5 b
−21.53 a

−21.1 b

HPβCD c 1.23 6530 −16.72 5.05 −21.77

DMβCD a 1.60 7960 −14.20 7.96 −22.19

RMβCD * 1.26 ± 0.05 4520 ± 74 −8.37 ± 0.07 12.49 ± 0.04 −20.86 ± 0.11
a Reference [41]. b Reference [36] with Corrigendum [36]. c Reference [42]. * This work. The uncertainties are
standard deviation of an average value from five independent measurements.

The complex formation between SRT and RMβCD molecules represents a rather
strong interaction since the association constant value (K) is greater than 1000 M−1 [49],
but in comparison with analogous interactions obtained for SRT and other βCDs (Table 1),
the K value for RMβCD is the smallest. Furthermore, the energetic effects of interaction
between RMβCD and SRT molecules are exothermic like for the rest compared SRT:βCDs
systems, for which the enthalpy ∆H values are all less than zero (Table 1, Figure 3). It
is worth to mention, that only for RMβCD and SRT molecules the enthalpic effects of
binding have been dominated by the entropic effects (|∆H| < |T∆S|) occurring during
the drug-cyclodextrin complex formation (Figure 3).
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Figure 3. Binding free Gibbs energy (∆G), enthalpy (∆H), and entropy factor (T∆S) of inclusion
complex formation between SRT and: βCD [41], DMβCD [41], HPβCD [42], RMβCD (this work).

Thus, the entropy factor is quite significant for SRT:RMβCD complex formation and
seems to be connected with the release of water molecules that were originally installed in
the cavity of the cyclodextrin and the desolvation of peripheral hydroxyl or substituted
hydroxyl groups as well as the guest molecules [55]. Once again, the SRT:RMβCD com-
plexation is driven both by the enthalpy and the entropy factors, but the entropic term
controls the complex’s ultimate stability.
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Moreover, the absolute value of Gibbs free energy of binding (Table 1) for SRT:RMβCD
system turned out to be the smallest one. In addition, the complexation processes for all
interactions of SRT with chosen β-cyclodextrins are spontaneous—the values of the Gibbs
free energies of binding are all less than zero (Table 1, Figure 3). The maximum Gibbs free
energy value change (∆∆G) equals 1.33 kJ mol−1 and can be observed between ∆G values
for SRT:DMβCD and SRT:TMβCD complexes. These rather small differences in ∆G values
(less than or close to 1 kJ mol−1, Table 1, Figure 3) observed for interactions of SRT with
chosen non-ionic β-cyclodextrins are qualitatively the source of the ∆H-∆S compensation
effect. Leffler stated [56], that in a series of related processes involving moderate changes
in structure or solvent, the enthalpies and entropies vary, but usually not independently.
Moreover, in the cited work [56] the author observed that the correlation of enthalpy with
the entropy factor may approach almost linear relationship for the series of interactions
studied. In the work presented, such a regularity has been observed for the non-ionic
series of β-cyclodextrin derivatives interacted with sertraline hydrochloride molecules,
which can be seen on Figure 4. The observed empirical dependence of the compensating
enthalpy-entropy effects can be described by Equation (1) [21], where α is a slope of the
T∆S-vs-∆H plot and T∆S0 is an intercept of the plot (Figure 4)

T∆S = α∆H + T∆S0 (1)
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Figure 4. The enthalpy-entropy compensation plot for inclusion complexes of sertraline hydrochlo-
ride molecules with chosen β-cyclodextrin molecules: βCD [41], DMβCD [41], HPβCD [42], RMβCD
(this work). The determined coefficients of the linear equation T∆S = α·∆H + T∆S0 [21] with R2 = 0.99
are: α = (0.946 ± 0.068) kJ·mol−1 and T∆S0 = (20.8 ± 1.1) kJ·mol−1.

The slope (α) of the graph indicates to what extent the enthalpy factor caused by
changes in the structure of the host, guest and/or solvent is eliminated by the accompany-
ing entropy effects [21]. Mostly, the literature data for the α slope of cyclodextrins extend
over the range from 0.79 to 0.88 [21] or closer to unity, when modified cyclodextrins possess
greater ring flexibility and/or flexible side chains [57], but there are also known examples
of incomplete enthalpy-entropy compensation effect, when the slope is even 0.53 [58]. In
the presented study, the obtained value is α = (0.946 ± 0.068) kJ·mol−1 (Figure 4).

It is believed that the large slope, as shown in Figure 4, is caused by the rearrangement
of the peripheral network of hydrogen bonds with the accompanying conformational
changes in the skeleton [59]. It means, that only a fraction of the enthalpy effect, equal to
the difference (1 − α), contributes to increasing the stability of the complex. In the studied
case, it is ca. 5% of the enthalpic factor induced by system modifications, which have a
share of the ∆G change (∆∆G) [55]. Such a value is expected due to the relatively high



Int. J. Mol. Sci. 2021, 22, 12357 6 of 19

rigidity of the cyclic cyclodextrin structure [21]. On the other hand, the intercept T∆S0
represents the intrinsic stability of the complex obtained for ∆H = 0. For the relationship
presented on Figure 4, the T∆S0 is positive and indicates that the complex will be stabilized
even in the absence of the favorable enthalpy effects [21,60]. The literature intercept values
(T∆S0) obtained for cyclodextrins are mostly within the range 8–17 kJ mol−1 [21], but
for those with flexible hydrophilic substituents, the value is 21 kJ mol−1 [21] and that
calculated from our experimental data, 20.8 ± 1.1 kJ·mol−1, is almost the same or the
same in the range of experimental error. Consequently, the resulting slope and intersection
point obtained for selected non-ionic βCD interacting with SRT can be attributed to greater
conformational changes and increased desolvation compared to the interaction of native
β-cyclodextrin with the SRT molecule [55].

Once again, the binding constant of SRT inclusion inside the RMβCD cavity is lower
than for other βCDs (Table 1) even for DMβCD, which molecule has the same methyl
groups as substituents in the βCD molecule, but for the RMβCD they are placed randomly.
Probably, this uneven distribution of methyl groups around the wider and narrower cy-
clodextrin edges has a certain destabilizing effect during the guest-host complex formation.
Presumably, it is connected with the less enthalpy gain in the free Gibbs energy. The van
der Waals interactions between the SRT and RMβCD molecules are most likely limited
by the less suitable fitting of the SRT molecule inside the RMβCD cavity, since van der
Waals forces are critically dependent on the distance of separation [21]. Moreover, the
possible hydrogen bonds between the SRT and the hydroxyl groups of RMβCD cannot
form, because the random substitution has blocked them. However, the change in the
constant K value due to these perturbations is generally much smaller than might be
expected from the change in the enthalpy effects themselves, since the effects have been
largely compensated by a significant proportion of the changing entropy effects.

The stoichiometry coefficient n (Table 1) of the complex formation between randomly
methylated-β-cyclodextrin and the sertraline hydrochloride molecules in water solution
indicates the ratio for RMβCD:SRT above 1, even if some humidity degree of the macro-
molecule was taken into account in the concentration calculations [61,62]. The coefficient
values (n) for the remaining complexes are similar to the stoichiometry of RMβCD:SRT
adduct and slightly higher for the DMβCD:SRT complex. These results suggest that 1:1
connection co-existing in the water solution with adducts of more than one molecule of
βCD (or its derivative) with one SRT molecule. In order to confirm the suggestion, the
circular dichroism examinations and molecular docking simulations of βCDs interacting
with SRT molecules were conducted and the results are presented below.

2.2. Circular Dichroism Spectroscopy (CD)

The water solution of sertraline hydrochloride presents an optical activity as a spec-
trum with characteristic circular dichroism bands (Figure 5, red line)—they are: a shoulder
at 258 nm, two positive peaks (positive Cotton effects) at 263 nm and 270 nm, two negative
peaks (negative Cotton effects) at 274 nm and 280 nm. Most of the peaks decrease in the
intensity in the presence of randomly methylated β-cyclodextrin (Figure 5, from the black
to the light gray line), which itself does not show any significant circular dichroism bands
(Figure 5, cyan line). Only the peak intensity at the 270 nm wavelength increases and shifts
towards longer wavelengths values with increasing concentration of the cyclodextrin.

The changes in the CD spectra of SRT + RMβCD mixtures in comparison to pure
SRT spectrum indicate that the sertraline hydrochloride molecules interact with the cy-
clodextrin [63]. These effects may be induced by the entrance of the guest molecule into
the optically active RMβCD cavity [64]. The parallel orientation of the electric transition
dipole moment of the drug molecule towards the molecular z-axis of the cyclodextrin
molecule induced the positive circular dichroism [65] like the observed growing band for
SRT:RMβCD mixture at 270 nm (Figure 5).
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Figure 5. The circular dichroism spectrum of 0.3 mM sertraline hydrochloride aqueous solution (red
line) together with spectrum of the 0.3 mM randomly methylated-β-cyclodextrin aqueous solution
(cyan line) and the spectra of drug-cyclodextrin mixtures (from black with ratio of 1:0.5 thru the
ratio 1:1, 1:2 to light gray with ratio of 1:3 for SRT:RMβCD) with constant concentration of SRT and
growing content of RMβCD to the maximum concentration of 10 mM (blue line with ratio of 1:33).

Moreover, negative peak at 280 nm becomes flatter and transform into a positive
shoulder and a new positive peak at 281 nm in the presence of RMβCD at the maximum
concentration (Figure 5). The positive peak at 281 nm becomes noticeable already for the
2:1 ratio of RMβCD:SRT, which might suggest that the A (together with B) and the C ring
of SRT molecule (Figure 1a) enter separately into the cavities of two different RMβCD
molecules [63]. In other words, the registered transformation of the negative band at
281 nm into a positive one, along with an increase in the excess of the cyclodextrin in
relation to the drug, may indicate the formation of complexes with a stoichiometry greater
than 1:1.

To check the stoichiometry of RMβCD:SRT complexes (n) as well as to determine the
value of the association constant (K) based on the circular dichroism results, one can use
the equation proposed originally for NMR results by Fielding [66] given below:

∆CD =
∆CDmax

2

(1 +
[RMβCD]

n[SRT]
+

1
Kn[SRT]

)
−
((

1 +
[RMβCD]

n[SRT]
+

1
Kn[SRT]

)2
− 4[RMβCD]

n[SRT]

)0.5
 (2)

where: ∆CD is the change in circular dichroism intensity, [RMβCD] and [SRT] are the
appropriate molar concentrations and ∆CDmax, n and K are the parameters obtained from
non-linear regression analysis (Figure 6). From the results calculated based on Equation (2)
and the circular dichroism intensities bands (Figure 5), the best fit has been selected, which
was at 274 nm, and placed in Table 2.

The stoichiometry coefficient of RMβCD:SRT complex formation determined on the
basis of the CD data (n = 1.57 ± 0.11) reaffirms the stoichiometry coefficient estimated
by the ITC method (n = 1.26 ± 0.05). The convergence of these data once more suggests
that in the resulting complex there is more than one molecule of the cyclodextrin per one
drug molecule. Furthermore, the obtained value of the constant K (Table 2) differs by only
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800 units in relation to that determined from the ITC research (Table 1), which can be con-
sidered as a slight difference bearing in mind the accuracy of both experimental methods.
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Table 2. Stoichiometry coefficient of binding (n), binding constant (K) and maximum change in
circular dichroism intensity (∆CDmax) together with reduced χ2 and R2 values for complex formation
of sertraline hydrochloride with randomly methylated β-cyclodextrin molecules obtained from CD
results at 274 nm.

n K/M−1 ∆CDmax/mdeg Reduced χ2 R2

1.57 ± 0.11 5315 ± 500 6.14 ± 0.05 0.00197 0.99976

reduced χ2—a deviation coefficient of the predicted values from the actual values in relation to the number of
degrees of freedom—a small number of that coefficient indicates a good match of data and model, and R2—the
coefficient of determination, the proportion of the variation in the dependent variable that is predictable from the
independent variable—the value closer to 1 indicates that the regression predictions fit the data.

2.3. Molecular Docking (MD)

The molecular docking studies have been carried out for more in-depth analysis of
the interactions between the test sertraline hydrochloride and the randomly methylated
β-cyclodextrin as well as the other selected non-ionic cyclodextrins. The simulations
were carried out on the basis of the available crystal structures, hence no molecular dock-
ing studies for (2-hydroxy)propyl-β-cyclodextrin were carried out, because there is no
crystallographic data for this cyclodextrin in the Cambridge Structural Database (CSD) [47].

As well, the results for sertraline hydrochloride docking inside the heptakis(2,6-di-
O-methyl)-β-cyclodextrin molecule will be carried out and published separately in the
future work. It should also be emphasized that crystal structures for β-cyclodextrin and
permethylated-β-cyclodextrin have more than one cyclodextrin molecule in an independent
cell and there are three for βCD [67] and two for TMβCD [68]. Such a three-molecule
structure of βCD (or two-molecule of TMβCD) can be used to check what the free energy of
binding has the resulting complex with 1:3 SRT:βCD (or 1:2 for SRT:TMβCD) stoichiometry
and whether this energy is the optimal value for possible complexes [69]. Unfortunately, it



Int. J. Mol. Sci. 2021, 22, 12357 9 of 19

was not possible to check the energy of RMβCD with SRT complexes with a stoichiometry
greater than 1:1, because the available crystal structure of this cyclodextrin has only one
molecule in its independent cell [48]. To obtain results comparable to those for SRT
docking in RMβCD, the remaining 1:1 type complex was obtained by stepwise removal
of successive βCD (or TMβCD) molecules from the structure and re-optimization of the
resulting complex was performed [26] and the results of all molecular docking studies are
presented in Table 3 and Figures 7–12.

Table 3. The values of binding energies for SRT and chosen βCD molecules obtained from molecular
docking results.

Representative Geometry Crystal Structure Name
(Refcode from CSD)

Free Energy of Binding
kcal·mol−1 (kJ·mol−1)

Figure 7 648855 −9.2 (−38)(three molecules of βCD I-II-III)

A 648855 −8.6 (−36)Figure 8 (two molecules of βCD I-II)

B 648855 −8.0 (−33)Figure 8 (two molecules of βCD II-III)

A 648855 −5.7 (−24)Figure 9 (one molecule of βCD I)

B 648855 −5.7 (−24)Figure 9 (one molecule of βCD II)

C 648855 −6.0 (−25)Figure 9 (one molecule of βCD III)

ALIGAE −7.4 (−31)Figure 10 (two molecules of TMβCD I-II)

A ALIGAE −6.5 (−27)Figure 11 (one molecule of TMβCD I)

B ALIGAE −5.8 (−24)Figure 11 (one molecule of TMβCD II)

JOSWOD −6.3 (−26)Figure 12 (one molecule of RMβCD)
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The significant difference in the magnitude of the binding energies can be noticed for
the 1:3 SRT:βCD complex in comparison to other energy of binding values (Table 3). On the
Figure 7 have been placed example of the SRT-βCD complex geometry with stoichiometry
1:3 obtained by MD simulations with the use of βCD crystal structure and as it seen,
the guest molecule of sertraline freely penetrates at least two host molecules with some
probability to reach the third one. This is noticeable as well as in the binding energy
absolute value reduction (with difference of 2 kJ·mol−1) of the four-molecule complex
(SRT + 3βCD with the position of βCD molecules named I-II-III or “head-to-head-to-tail”
as in [69,70]) after removal one of the βCD molecules and re-optimization of the binding
energy for SRT + 2βCD aggregate (Table 3). Adducts of SRT with two βCD host molecules
represent still rather stable systems with some differences in the binding energies for
different host molecules configurations (Figure 8, Table 3 for A represented I-II or “head-
to-head” and B represented II-III or “head-to-tail” structure) and this is also the case of
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two TMβCD molecules interacting with SRT molecule (Figure 10, Table 3). For all other 1:1
SRT:CD structures, regardless of the type of the cyclodextrin, the binding free energy values
are the lowest and differ from each other by a maximum of 0.8 kcal·mol−1 (3 kJ·mol−1)
(Table 3 and Figure 9 for structures A–C and Figure 11 for A and B and Figure 12).
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When interpreting molecular docking studies, it should be borne in mind that they are
very approximate and serve as preliminary research. In order to obtain more reliable results
in this respect, they should be repeated using semi-empirical methods, such as i.a. GFN2-
xTB [71] and clarified with DFT research [25,71]. The mentioned examinations are in our
plans for the next part of our work focusing more on quantum-chemical calculations, which
we have already conducted before with very good results in the mianserin hydrochloride +
β-cyclodextrin system [25].

3. Materials and Methods
3.1. Materials

Sertraline hydrochloride (1S,4S)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-N-methyl-1-
naphthalenamine hydrochloride, SRT, 342.69 g·mol−1, 0.98 mass fraction purity) and ran-
domly methylated β-cyclodextrin with Average Degree of Substitution DS ~12.5 (RMβCD)
(~1310 g·mol−1, 0.98 mass fraction purity) were purchased from Sigma-Aldrich (USA) or
CycloLab (Hungary). The substances were used without any additional purifications. The
solid substances were dried at 298 K for 72 h under reduced pressure. The water content
in the cyclodextrin under investigation was determined as described previously [72]. Wa-
ter used in the isothermal titration calorimetry and the circular dichroism spectroscopy
measurements was distilled three times and degassed prior to experiments.

3.2. Methods
3.2.1. Isothermal Titration Calorimetry (ITC)

The isothermal titration calorimeter VP-ITC from MicroCal (Northampton, MA, USA)
was used to carried out the calorimetric measurements in order to determine the thermo-
dynamic parameters of interaction between sertraline hydrochloride and randomly methy-
lated β-cyclodextrin molecules. The solubility of sertraline in water, even as hydrochloride
salt is equal only to 3.8 mg mL−1 [36]. Such a low maximum possible concentration of SRT
forces the drug solution to become a titrand placed in a measuring cell and RMβCD to get
a titrant position in an injecting syringe [36,73]. Although cyclodextrin is a macromolecule
it is used as a ligand and the drug plays a role of a macromolecule in the measuring cell,
it is a very common situation and a more detailed justification for this is provided in the
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previous article [26]. Into a measuring cell (volume of 1.4275 mL) filled with an aqueous
solution of SRT with concentration of 0.45 mM, a solution of RMβCD (15 mM) [74] was
added by injection 55 portions of 5 µL titrant solution. Knowing from the literature, that
methylated β-cyclodextrins could content from 4% to 6% w/w of water [61,62], the RMβCD
has been dried under reduced pressure for 72 h in a Binder dryer till the moisture content
were ≤1% w/w [72,75]. Prior to the ITC measurements, the solutions of the drug and
the cyclodextrin were prepared separately by weighing with the use of a Mettler AE240
analytical balance [41] and degassed by ultrasounds during process of the real solutions
preparation at 318 K and then cooled to the room temperature.

The RMβCD concentration has been chosen as 15 mM inter alia in order to maintain
similar measuring conditions as that for the ITC tests of SRT with the other non-ionic
β-cyclodextrins [41,42]. Moreover, the concentration of RMβCD should not be greater than
15 mM for biological reasons (disruption of phospholipid membranes may be minimized
if the concentration of RMβCD is kept below 15 mM [74]). Furthermore, when the con-
centration is higher there is a possibility of an aggregation process to occur [73,74,76]. In
the presented case, the possible aggregation is slightly marked as a disaggregation during
the cyclodextrin dilution (which can be seen in Figure 2 as the heat of RMβCD dilution
equal to c.a. 5% of the whole enthalpic effect) and does not affect the course of the main
interaction between the drug and the cyclodextrin.

The titration of SRT solution by RMβCD solution was carried out with 380 s intervals
between each injection, which took place within 10 s with a stirrer rotational speed of
264 rpm. The measurements were conducted at 298.15 K and pH 6.8. For getting the
effects of direct interactions between SRT with RMβCD molecules in aqueous solution,
the complementary to the main experiment measurements were carried out consisting of
two stages:

1. the aqueous solution of the cyclodextrin was added into the pure water placed in the
measurement cell and

2. the aqueous solution of sertraline hydrochloride was diluted with water injected from
the syringe and the heat of the dilution for both stages were registered.

The subsidiary measurements were carried out with the use of the same procedure
and the same concentration of the reagents as in the case of the main experiment. The
obtained heats of dilutions were subtracted from the main titration data prior to the further
proceedings and the example results of the main and the two subsidiary titrations are
placed on Figure 2. After substruction, the proper value of the RMβCD:SRT interaction
heat was analyzed as a function of the RMβCD/SRT ratio, and the data were fitted by a
non-linear least squares method using the ORIGIN v.7.0 (USA) software [51] supplied with
the calorimeter. Moreover, the first point (Figure 2) from first injection (3.0 µL) during the
fitting sessions was discarded considering the circumstances described previously [26].
The calculated parameters were obtained as the average values from the five independent
experiments, and the results were gathered in Table 1.

3.2.2. Circular Dichroism (CD) Spectroscopy

For circular dichroism spectroscopy measurements, the RMβCD and SRT were dried
under reduced pressure for 72 h in a Binder dryer and dissolved in three times distilled and
degassed water. The prepared aqueous mixtures of SRT and RMβCD by weighing with the
use of a Mettler AE240 analytical balance [41] were placed in an ultrasonic washer until the
solutions became clear and the stock solutions were stirred together for 15 min to obtain
the mixtures with molar ratios from 1:0 to 1:33 of SRT:RMβCD for constant concentration
of 0.3 mM for sertraline hydrochloride. A Jasco J-815 CD spectropolarimeter (Japan) has
been used in order to measure the CD signals of the prepared solutions. The experiments
were carried out at 298.15 K and the spectra were registered from 240 nm to 300 nm in
10-mm path length Helma quartz cuvettes. A wavelength step of 1 nm and a response
time of 4 s have been chosen together with the scan rate of 50 nm/min. The final result
was presented as an average calculated from three acquisitions. During the measurement
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the nitrogen was passed to cool and remove oxygen in order to avert ozone production
inside the CD spectropolarimeter. Moreover, in order to compensate for baseline drift in
CD spectra, a water blank sample was recorded.

3.2.3. Computational Studies
Ligands and Macromolecules Preparation for Molecular Docking

The X-ray structure with refcode: CAVVUQ01 [46] from Cambridge Structural Database
(CSD) [47] were used in order to prepare the three-dimensional structure of SRT and
protonated form of the drug was utilized for docking calculations. Likewise, crystal
structures of used cyclodextrins for molecular modeling examinations were taken from the
CSD with refcode: 648855 [67] for entries from Figures 7–9, ALIGAE [68] for entries from
Figures 10 and 11 and JOSWOD [48] for entry from Figure 12. After removal of water and
other ligands molecules, addition hydrogen atoms and Gasteiger charges to atoms [77,78]
the docking procedure was carried out for cyclodextrin units [26].

Molecular Docking

Docking examinations were carried out using Autodock Vina 1.1.2 software (The
Molecular Graphic Laboratory, The Scripps Research Institute, La Jolla, CA, USA) [79]. For
the docking studies the corresponding grid box parameters were used:

- entry from Figure 7 (three molecules of βCD I-II-III): a grid box size of 20 Å × 20 Å ×
20 Å centered on the C47 atom (x = −5.017, y = 1.413, z = 0.074);

- entry A from Figure 8 (two molecules of βCD I-II): a grid box size of 20 Å × 20 Å ×
20 Å centered on the C45 atom (x = 5.849, y = 3.007, z = −5.646);

- entry B from Figure 8 (two molecules of βCD II-III): a grid box size of 20 Å × 20 Å ×
20 Å centered on the C23 atom (x = 4.807, y = 1.076, z = 7.878);

- entry A from Figure 9 (one molecule of βCD I): a grid box size of 20 Å × 20 Å × 20 Å
centered on the C45 atom (x = 5.849, y = 3.007, z = −5.646);

- entry B from Figure 9 (one molecule of βCD II): a grid box size of 20 Å × 20 Å × 20 Å
centered on the C43 atom (x = 5.243, y = 0.841, z = 1.262);

- entry C from Figure 9 (one molecule of βCD III): a grid box size of 20 Å × 20 Å × 20
Å centered on the C43 atom (x = 4.602, y = −1.221, z = 8.714);

- entry from Figure 10 (two molecules of TMβCD I-II): a grid box size of 20 Å × 20 Å ×
20 Å centered on the C11 atom (x = 3.352, y = 6.710, z = 2.402);

- entry A from Figure 11 (two molecules of TMβCD I): a grid box size of 20 Å × 20 Å ×
20 Å centered on the C11 atom (x = 3.352, y = 6.710, z = 2.402);

- entry B from Figure 11 (one molecule of TMβCD II): a grid box size of 20 Å × 20 Å ×
20 Å centered on the C10 atom (x = 6.775, y = 12.684, z = 10.278);

- entry from Figure 12 (one molecule of RMβCD): a grid box size of 20 Å × 20 Å × 20
Å centered on the C45 atom (x = 2.967, y = 2.155, z = −4.366);

Graphic visualizations of the 3D model were generated using VMD 1.9 software
(University of Illinois at Urbana—Champaign, Urbana, IL, USA).

4. Conclusions

The energetic effects of interaction between RMβCD and SRT molecules are exothermic—
the enthalpy ∆H values are all less than zero and the enthalpic effects of binding have been
dominated by the entropic effects (|∆H| < |T∆S|) occurring during the drug-cyclodextrin
complex formation. Moreover, the complexation process is spontaneous because the value
of the Gibbs free energy of SRT binding with RMβCD is less than zero.

In the work presented, the enthalpy-entropy compensation effect has been observed
for the non-ionic series of β-cyclodextrin derivatives interacted with sertraline hydrochlo-
ride molecules. From the results presented in the paper, one can conclude, that the different
substituents in the studied β-cyclodextrins have an impact on the thermodynamical sta-
bility of the examined complexes. The intrinsic stability of the complex obtained will
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favored the complex formation even in the absence of the favorable enthalpy effects. The
relationship between enthalpy and entropy factors confirms, that all considered SRT:βCDs
complexes were not formed as a result of the covalent interactions. The binding constant
for SRT included inside the RMβCD cavity is the lowest in comparison with the other
non-ionic βCDs. Presumably, it is connected with the less enthalpy gain in the free Gibbs
energy for that connection. The uneven distribution of methyl groups around the wider
and narrower β-cyclodextrin edges has destabilizing effect during the guest-host complex
formation. That could mean, the van der Waals interactions between SRT and RMβCD
molecules are restricted by the less suitable fitting of SRT molecule inside the cyclodextrin
cavity, since van der Waals forces are critically dependent on the distance of separation.
The obtained complexation parameters of SRT interacting with βCD derivatives indicated
that the thermodynamic parameters are sensitive functions of the amount, the position and
type of the substituents introduced in the host molecule.

The significant difference in the magnitude of the free energies of binding for the
1:3 SRT:βCD complex obtained from molecular docking confirms that the connection of
SRT:βCD gives the most stable complexes. Moreover, the free energies of binding for
the 1:2 SRT:TMβCD complex are also more favorable than that obtained for 1:1 complex.
Probably because of the possibility, which the cyclodextrin molecules possess to form the
aggregates consisted of two and more molecules, in aqueous environment or the solid
state. The possibility of the inclusion complexes formation between SRT and RMβCD
with stoichiometry greater than 1:1 was also confirmed by the results obtained from the
circular dichroism studies. Registered changes of CD signal, along with the increased
concentration of RMβCD in relation to the constant SRT content, indicated the formation of
the complexes with the stoichiometry 1:1.57 SRT:RMβCD, which reaffirms the stoichiometry
coefficient estimated by ITC method (n = 1.26). The convergence of these data once more
suggests that in the resulting complexes are more than one molecule of cyclodextrin per
one drug molecule.

The value of the constant K obtained by the CD method is slightly higher than that
determined from the ITC experiments (K = 4520), and both methods showed that the
formed complexes are stable at 298 K in aqueous solution.

To get a more complete picture of the interactions between sertraline hydrochloride
and randomly methylated β-cyclodextrin, they may be investigated in the near future
to see if the drug has better solubility in the presence of cyclodextrin or if it reduces the
drug toxicity. Moreover, to make the conclusions about complexation thermodynamics
more solid, the re-optimization of the free energy of the complexes with semi-empirical
together with full density functional theory (DFT) optimization methods are in plans, as
we did before for mianserin hydrochloride and β-cyclodextrin [25]. Knowing the constant
interactions of SRT with various non-ionic β-cyclodextrins, it can be assumed to what
extent and in what order the drug could be released from the complexes formed, which in
the next step of the planned tests can be checked by means of the drug release examinations.
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