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In this work we propose a mathematical model to simulate Chikungunya spread; the
spread model is implemented in a Cþþ cellular automata code defined on unstructured
triangular grids and space visualizations are performed with Python. In order to simulate
the time space spread of the Chikungunya diseases we include assumptions such as:
heterogeneous human and vector densities, population mobility, geographically localized
points of infection using geographical information systems, changes in the probabilities of
infection, extrinsic incubation and mosquito death rate due to environmental variables.
Numerical experiments reproduce the qualitative behavior of diseases spread and provide
an insight to develop strategies to prevent the diseases spread.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The word chikungunya comes from the African Makonde language and means “bent over in pain” (since the sick bend or
bow for joint pain). It is a recent disease in the Americas, transmitted by infected female mosquitos. Chikungunya virus is
transmitted to people through mosquito bites. Mosquitos become infected when they feed on a person already infected with
the virus, infected mosquitos can then spread the virus to other people through bites. Chikungunya virus is most often spread
to people by Aedes aegypti and Aedes albopictus mosquitos. These are the same mosquitos that transmit dengue, zika and
mayaro virus. Symptoms usually begin 3e7 days after being bitten by an infected mosquito. The most common symptoms are
fever and joint pain, other symptoms may include headache, muscle pain, joint swelling, or rash. Even though most patients
feel better within a week, in some cases the joint pain may persist for months.

The disease was first detected in 1952 in Africa following an outbreak on the Makonde Plateau. This is a border area
between Mozambique and Tanzania. Since its discovery in Africa, chikungunya virus outbreaks have occurred occasionally,
but recent outbreaks have spread the disease to other parts of the world. Numerous chikungunya re-emergences have been
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documented in Africa, Asia (India), and Europe, with irregular intervals of 2e20 years between outbreaks. Currently, chi-
kungunya fever has been identified in nearly 40 countries. In 2008, chikungunya was listed as a US National Institute of
Allergy and Infectious Diseases (NIAID) category C priority pathogen.

Mathematical models can be used to trace the progress of an infectious disease; having a probable result allows the health
authorities to make interventions to reduce or avoid the spread. The models use basic assumptions and mathematics to find
parameters related to various infectious diseases, these parameters can be used to calculate the effect of possible in-
terventions such as: quarantine isolation, control vector by mechanical or chemical methods, etc. The foundations of
mathematical epidemiology date back to the beginning of the 20th century and are supported by the works of public health
doctors and biologists. W.H. Hamer applied the law of mass action to explain the epidemic behavior, R. A. Ross showed that
mosquitos were responsible for the transmission of malaria and built a model to study its spread; McKendrick and Kermack
propose models of compartments, where the population is located in groups that share relevant characteristics with respect
to the transmission of a disease (Susceptible, Infectious, Recovered). Compartmental models make assumptions about the
nature and rate of the transferring time from one compartment to another. The transfer rates between compartments are
expressed as the derivatives of the sizes of the compartments with respect to time, thus the models are initially represented
by differential equations. Brauer et al. (Brauer, Castillo-Chavez, Mubayi, & Towers, 2016) formulated and analyzed two ode
epidemic models for vector-transmitted diseases, one appropriate for dengue and chikungunya fever outbreaks and one that
includes direct transmission appropriate for Zika virus outbreaks. They assumed them as SEIR/SEI epidemic models and
obtained expressions for the reproduction number and ways of estimating the initial exponential growth rate, so that the
reproduction number may be calculated from parameters that can be estimated.

Ordinary differential equations models have some drawbacks since they do not include the local characteristics of the
propagation process. In particular, they fail to properly simulate the processes of individual contact, the effects of individual
behavior, the spatial aspects of the propagation process as well as the effects of mixing and population densities. Some
approaches to deal with spatial spread include: system of reaction-diffusion partial differential equations, agent based
models, and cellular automata. Ortigoza et al. (Ortigoza, Lorandi, & Brauer, 2019) made a review of the main mathematical
approaches used to model chikungunya spread, also Ortigoza et al. (2019) reviewed and classified cellular automata models
proposed to simulate mosquito diseases spread. In this work we defined a specific cellular automata model to simulate the
spread of Chikungunya.The work is organized as follows: section 2 presents the main assumptions of the proposed chi-
kungunya spread model defined on an unstructured triangular grid. Those include: boundary and initial conditions, states,
neighborhoods, stochastic transition function (based on infection and recovery probabilities); in this section we also intro-
duce the definition of host mobility and modifications due to environmental variables. Section 3 shows some numerical
simulations. Finally in section 4 we include some conclusions of this work.

2. Chikungunya spread model implemented on a unstructured triangular cellular automata

Cellular automata’s popularity is due to their simplicity and to the remarkable potential to model complex systems ((Sloot
&Hoekstra, 2001, pp. 518e527), (Batty, 2005), (Deutsch&Dormann, 2005)). A cellular automaton A is a tuple ðd; S;N; f Þwhere
d is the dimension of space, S is a finite set of states, N a finite subset of Zd is the neighborhood and f: SN/S is the local rule, or
transition function, of the automaton. A configuration of a cellular automaton is a coloring of the space by S, an element of SZ

d
.

The global rule G : SZ
d
/SZ

d
of a cellular automaton maps a configuration c2SZ

d
to the configuration GðcÞ obtained by

applying f uniformly in each cell: for all position z2SZ
d
;GðcÞðzÞ ¼ f ðcðzþv1Þ;…; cðzþvkÞÞwhereN ¼ fv1;…;vkg. We beginwith

the basic epidemic ode model for mosquito-borne disease due to Brauer et al. (Brauer et al., 2016). The main assumptions are
that mosquitos do not recover from infection so vectors satisfy a sei model, the number of mosquitos nv is divided into sv
susceptibles, ev exposed members and iv infected members. Because a mosquito lifetime is much shorter than that of the
human host we include demographics in the vector population, assuming short period times for the disease spread simu-
lation (few months) we neglect birth and natural death rates of humans. We consider a constant total population size N of
hosts (humans) divided into S susceptibles, E exposed members, I infectives, and R recovered members. We assume an
average mosquito makes a bites in a unit time. Thus the total number of mosquito bites in unit time is anv and the number of
bites received by an average host in unit time is anv=N. A host makes an average of b contacts sufficient to receive infection in
unit time from vectors. The contact rate b is a product of two factors, namely the number of bites received in unit time by an
average human and the probability pvh that a bite transmits infection from vector to human.

b¼ apvh
nv
N

: (1)
Exposed hosts proceed to the infectious class at rate k (inverse of the latent period of infection), and infected host recover
at rate g. The number of vectors (mosquitos) nv is divided into sv susceptibles, ev exposed members and iv infectives. Each
vector makes bv contacts sufficient to receive infection from human host in unit time. The contact rate bv is a product of two
factors, namely the biting rate a and the probability phv that a bite transmits infection from human to vector,

bv ¼ aphv (2)
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There is a constant birth rate m of vector in unit time and a proportional death rate in each class, so that the total vector
population size nv is constant. Exposed vectors move to the infected class at rate h and do not recover from infection.
Elimination of a from equations (1) and (2) give us

phvbN¼pvhbvnv (3)
The ordinary differential equation model is

S’ ¼ �bS
iv
nv

E’ ¼ bS
iv
nv

� kE

I’ ¼ kE � gI

R’ ¼ gI

s’v ¼ mnv � bvsv
I
N
� msv

e’v ¼ bvsv
I
N
� hev � mev

i’v ¼ hev � miv

where the basic reproduction number is
R 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bbvh

mgðmþ hÞ

s
(4)
Based on the ordinary differential equations model, our unstructured triangular cellular automata for chikungunya spread
is defined by the following assumptions.

1. Using a geographical information system (GIS) the spatial domain is defined by a polygonal curve, the domain is dis-
cretized using an unstructured triangular grid where each cell is a triangle populated by humans andmosquitos (Ortigoza,
2015).

2. Neumann neighborhoods are assumed (a cell and its three neighbors).
3. At each time, each cell contains the number of Susceptible, Exposed, Infectious, Recovered humans and susceptible,

exposed and infectious mosquitos.
4. Two probabilities are assigned to each cell: pvh a bite transmits infection from vector to human and phv a bite transmits

infection from human to vector.
5. The state of a cell (number of S,E,I,R,s,e,i) at time t þ 1 is updated using the values of the neighboring cells (neighborhood)

at time t and the following probability transitions rules:

S/E In a cell with S susceptible hosts (S>0) the fraction S Nvi
Nv

becomes exposed with probability 1� ð1� pvhÞNvi , here Nvi
and Nv are respectively the total numbers of infected vectors and the total of vectors in the neighborhood of the cell.

E/I In a cell with E exposed hosts (E>0) the fraction kE becomes infected with probability k.
I/R In a cell with I infected hosts (I>0) the fraction gI becomes recovered with probability g.
sv/ev In a cell with sv susceptible vectors (sv >0) the fraction svNi

Nh
becomes exposed with probability 1� ð1� phvÞNh , here

Ni and Nh are respectively the total numbers of infected humans and the total of humans in the neighborhood of the cell. Also
with probability m, sv increases mNv due to births and decreases msv due to deaths.

ev/iv In a cell with ev exposed vectors (ev >0) the fraction hev becomes infected with probability h. Also both ev and iv
decrease mev and miv with probability m due to deaths.

mobility For the host mobility a Eulerian approach is adopted. If I>0, a portion l of the infected hosts move with prob-
ability pmob to a randomly chosen cell in which it settle. The mosquitos that transmit Chikungunya typically move over much
smaller spatial scales that their human hosts. Thus we assume that mosquitos do not travel from cell to cell, no advection-
diffusion.

6. Time step assumed: one day.
7. Initial condition: cells are initialized using densities populations for humans and mosquitos and an infected human is

localized in a chosen cell.
8. Closed boundary conditions: no flow across the boundaries, cells at the boundary could have only one or two neighbors.
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3. Numerical simulations

We estimate pvh by using equation (3),

pvh ¼
b

bv

N
nv
phv: (5)
Here we employ the values of b ¼ 0:14 and bv ¼ 0:4 reported by Yakob et al. (Yakob& Clements, 2013), and the quotient N
nv

is obtained from the initial conditions. Table 1 summarizes the parameters and values for the numerical simulations. We
consider the Chikungunya outbreak at Reunion Island (population z 770,000). Between March 1, 2005, and April 30, 2006,
approximately 255,000 cases were reported in this French territory in the Indian Ocean, Renault et al. (Renault et al., 2007).
Fig. 1 shows the domain obtained by using a geographical information system and a generated unstructured triangular mesh
in utm units.

3.1. Mobility

Human mobility, especially the infected individuals, can create multiple disease waves resulting in substantial deviation
from mean field results. In general, human mobility makes the infection spread faster and eventually produces an apparent
early suppression due to secondary waves creating recovered regions which block the spread of the primary epidemic wave.
Figs. 2 and 3 show 20 days spatial spread simulations, no host mobility and host mobility (pmob ¼ 0:5, l ¼ 0:5 ) respectively.
Here susceptible cells are colored in green, exposed in magenta, infectious in red and recovered in cyan; initially 765,000
humans were homogeneously distributed (same number per cell) withm ¼ 5 vectors per host (literature reports uses ofm in
the range 1 � m � 10) and closed boundary conditions. An initial seed of 4 infected humans were located at 4 central cells. In
the simulation that includes mobility, we can appreciate secondary epicenters at large distances from the original seed as a
direct consequence of the mobility effects. Numerical results reported by Santos et al. (Santos et al., 2009) agree with this
observation.

Figs. 4 and 5 show time evolution of the diseases among human andmosquito populations. A remarkable difference in the
peak size and duration of the number of infected humans (an early suppression of the disease) is observed whenwe compare
simulations with mobility and no mobility of humans.

Fig. 6 shows a comparison of the time evolution of the infection among humans between the ode model and the cellular
automata model where mosquitos and humans are assumed homogeneously distributed over the whole domain.

Fig. 7 shows the time to get the peak and the peak (maximum number of infected humans) as function of the mobility
probability. Mobility increases the peak and decreases the time to get it. This suggests that mobility makes the infection
spread faster and eventually produces an apparent early suppression, which agrees with the numerical results observed by de
Castro et al. (De CastroMedeiros et al., 2011), Enduri and Jolad (Enduri& Jolad, 2014). Here a 120 days simulationwas runwith
homogeneous distribution of host and vectors (the main outbreak of Chikungunya for Reunion Island occurred over a period
of 18 weeks thus we assumed a 120 days as a simulation time), 5 vectors per human and an initial seed of 4 infected humans
was located at a mosquito populated cell.

3.2. Heterogeneity

The heterogeneity of mosquito bites to humans during the spread of Chikungunya virus is an important factor that should
be considered when modeling the dynamics of mosquito borne diseases spread. Traditional models generally assume ho-
mogeneous mixing between humans and vectors, which is not quite consistent with reality. Uneven distribution of blood-
meal hosts and larval habitat creates a spatial mosaic of demographic sources and sinks. In addition, mosquito populations
fluctuate temporally, forced by weather variables such as rainfall, temperature and humidity. These sources of spatial and
temporal heterogeneity in the distribution of mosquito populations generate variability in the human biting rate, the pro-
portion of mosquitos that are infectious and in the risk of human infection. It is clear that in order to run a simulation, an
initial seed of infection either of humans or mosquitos must be assumed, but it is also important to state the initial spatial
distribution of hosts and vectors. This can be achieved in different ways, assuming constant average number of either host or
Table 1
Parameters of the Chikungunya spread model.

Parameter Value Description

b 0.14 mosquito to human transmission
bv 0.4 human to mosquito transmission
k 0.5 reciprocal of host latent period
h 0.5 reciprocal of mosquito latent period
g 0.25 host recovery rate per day
m 0.05 reciprocal of mosquito life span in days



Fig. 1. Area of study.
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vectors in the whole domain or in a reduced number of localized cells. The reduced number of localized cells can be fill with
either host or humans using evenly (same number of hosts and vectors per cell), randomly uniform or Poisson distributed.
Setting appropriate initial conditions is relevant because spatially heterogeneous transmission may arise due to spatial
variation in vector habitat and human population density.To show the influence of the initial population distributions, we
defined four space initial distributions: two patches, several patches, random clustered patches and random patches. All these
Fig. 1. (continued).



Fig. 2. 20 days simulation no host mobility, an infection wave moving outward.
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spatial distributions are assumed to be composed by 150 cells which is approximately a 15% coverage of the total number of
cells. Figs. 8 and 9 present these domains.

For the following numerical simulations we consider different ways to distribute host and vectors on the two patches
spatial distribution, these are labelled by cases 1 to 5. The humanpopulation is assumed 766000with 5mosquitos per human,
Fig. 3. 20 days simulation host mobility pmob ¼ 0:5, l ¼ 0:5.



Fig. 4. 120 days simulation no host mobility.
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an initial condition of Ið0Þ ¼ 4 in amosquito populated cell is taken and the humanmobility probability is pmob ¼ 0:5with l ¼
0:5.

Case 1. We start by assuming humans localized in these cells and mosquitos evenly distributed in the whole domain, as in
the case of homogeneous distribution (the main assumption of the ode model) a human population of 766000 and 5
mosquitos per human are considered. A probability of 0.5 for humans mobility produced a high peak for the homogeneous
case, however no epidemic occurs for this spatial distribution. This show us that not only is the humanmobility important but
also the initial spatial distribution of hosts and vectors. Caraco et al. (Caracoa, Duryea, Glavanakov, Maniatty, & Szymanski,
2001) noticed that clumping (clustering) can increase the chance that the pathogen and vector become physically sepa-
rated during the initial phase of the epidemic process. Spatial aggregation of hosts can increase the fraction of vector attacks
directed to already infested hosts. Clumping also generates gaps in the host population which slow down the global advance
of the diseases, and the requirement for clump-to-clump dispersal can inhibit diffusive spread of the vector.

Substituting equations (1) and (2) in (4) provides
Fig. 5. 120 days simulation host mobility pmob ¼ 0:5, l ¼ 0:5.



Fig. 6. Left ode model, right cellular automata model simulation,I(0) ¼ 1, m ¼ 5 mosquitos per human, 766000 total human population, human mobility
probability pmob ¼ 0:5, l ¼ 0:5.
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R 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2phvphv

nv
N

h

mgðmþ hÞ
r

; (6)

a relation between the basic reproduction number andm ¼ nv the ratio of the number of mosquitos to the number of humans.
N
In the homogeneous case this ratio is assumed constant over the whole domain, in the particular case of humans evenly
distributed over a reduced number of localized cells and mosquitos evenly distributed over the whole domain, the clustering
of humans makes this ratio

m ¼ number of mosquitos per cell
number of humans per cell

¼
nmph*Pob

TNC
Pob
RNLC

¼ nmph
RNLC
TNC

to be reduced, making the number of no human-populated cells an important factor for spatial spread, here nmph is the

original number of mosquitos per human and it is assumed to be equal to 5 at the homogeneous case, TNC and RNLC stand for
Fig. 7. Time to get the peak and peak size as a function of mobility probability pmob.
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total number of cells and reduced number of localized cells respectively. In order to start an outbreak for this particular spatial
human clustered distribution, nmph was increased up to the value of 85.

Case 2. We assume that mosquitos are clustered over the reduced number of localized cells and humans are evenly
distributed over the whole domain. In this case we notice that in the vast majority of cells m ¼ 0 (no mosquitos), while at
mosquito populated cells m has increased,
Fig. 8. Initial distributions Patches.



Fig. 9. Initial Conditions randomly distributed.
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m ¼ number of mosquitos per cell
number of humans per cell

¼
nmph*Pob

RNLC
Pob
TNC

¼ nmph*
total number of cells

reduced number of localized cells

¼ nmph*
TNC
RNLC
Fig. 10 shows the time spread of the disease for a 120 days simulation with this initial condition. A remarkable difference
shows up when we compare this case of localized mosquitos and evenly distributed hosts over the whole domain with the
case of humans and vectors homogeneously distributed over the whole domain shown in Fig. 5. Peak is reduced when
mosquitos are localized. This reduction in prevalence due to vector clustering was also observed in the numerical simulations
performed by Dias and Monteiro (Dias & Monteiro, 2018). The fact that mosquitos are concentrated in a localized area and
humans are evenly distributed in the whole domain makes the contacts reduced due to the existence of non mosquito
populated areas, reducing the number of bitten humans (exposed) and the number of infected humans. The number of
infected mosquitos was also reduced.

Case 3. Here we assume an initial condition with both humans and mosquitos evenly distributed over the reduced number
of cells. In comparison with Fig. 10 where humans were evenly distributed over the whole domain and mosquitos were
clustered over a reduced number of localized cells, we observe that the peak of the number of infected humans is increased,
clustering back both mosquitos and humans in the localized area increases the contacts, increases the number of bitten
humans (exposed) and the number of infected humans. But we also notice that the number of infected humans in this case is
lower (peak reduces and time to peak increases) that the case of humans and mosquitos evenly distributed over the whole
domain shown at Fig. 5. Inside each patch the disease is mainly spread by local contacts inside the neighborhoods while the
disease moves from patch to patch by means of the human mobility. The mobility probability assumed for humans cause
them to move into non mosquito populated areas where humans will not be bitten, thus the disease will not spread in these
areas. In Fig.11 we show the time spread of the disease for this case of mosquitos and human localized over a reduced number
of cells. At each localized cell we have

m¼number of mosquitos per cell
number of humans per cell

¼
nmph*Pob

RNLC
Pob
RNLC

¼ nmph
Case 4. We consider again localized both humans andmosquitos over a reduced number of cells, this timewhile the humans
are evenly distributed, the mosquitos are assumed to be Poisson distributed over the reduced number of cells (Galton board
implementation). All the cells have the same amount of humans but some cells are highly, while some others are poorly
Fig. 10. Humans evenly distributed over the whole domain, localized mosquitos evenly distributed over two patches pmob ¼ 0:5.



Fig. 11. Localized human and mosquitos evenly distributed over a reduced number of cells pmob ¼ 0:5.
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populated with mosquitos. This reduces the number of infected people and the number of infected mosquitos. Even though
more mosquitos are infected in high mosquito populated cells after biting an infected human, few humans in the cell will
receive more infectious bites of competing infectious mosquitos.

Case 5. We consider localized humans andmosquitos over a reduced number of cells, with both humans and vectors Poisson
distributed, Fig. 13 shows the time evolution of host and vectors. As compared with Fig. 12, the number of infected humans
and the number of infected mosquitos decreases due to the clustering of hosts and vectors. With both mosquitos and humans
localized and clustered by a Poisson distribution, cells where the rate m is high more humans are bitten by mosquitos but
fewer mosquitos get infected due to the competing biting, when infected humans move to low m rate cells the disease
transmission decreases, this uneven biting rate due to m produces heterogeneity in the transmission intensity.

Oftentimes a coefficient of variation CV of the ratio of mosquitos to humans is used in landscape ecology to characterize
heterogeneity.
Fig. 12. Localized humans and mosquitos, humans evenly and mosquitos Poisson distributed pmob ¼ 0:5 over a reduced number of cells grouped as two patches.



Fig. 13. Localized humans and mosquitos, both Poisson distributed pmob ¼ 0:5.
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CV ¼ sm
m

here m is the average ratio of mosquitos to humans and sm is the standard deviation associated to this value. Notice that m
only makes sense on human populated cells. For the case of homogeneous distributions of both host and vectors over the
whole domain, CV ¼ 0. For Case 1 of localized humans over a reduced number of cells and mosquitos evenly distributed over
the whole domain, all the localized cells have the same ratio

m¼nmph
RNLC
TNC
thus CV ¼ 0 . In Case 2 of localized mosquitos over a reduced number of cells and humans evenly distributed over the whole
domain, CV can be explicitly calculated. Let us denote r ¼ nmph, N ¼ TNC and k ¼ RNLC

mi ¼
rN
k
; i ¼ 1;/; k; m ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �2
vuu
sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP N

i¼1ðmi �mÞ2
N � 1

s
¼

P k
i¼1 r N

k � r þP N
i¼kþ1ð0� rÞ2

N � 1

ut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �2

vu ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �2
vu
sm ¼ r
k N

k � 1 þ N � k

N � 1

uut
; CV ¼ sm

m
¼

k N
k � 1 þ N � k

N � 1

uut
which for N ¼ 1013, k ¼ 150 gives CV ¼ 2:39. For Case 3 (both mosquitos and humans evenly distributed over a reduced
number of cells) again the reduced number of localized cells have the same ratio m ¼ nmph ¼ 5 and CV ¼ 0. Finally the
calculated coefficients of variation for cases 4 and 5 are respectively CV ¼ 1:384 and CV ¼ 2:39. A remarkable reduction in
peak is observed when the CV is large, this seems to imply that a high CV (associated with high heterogeneity) produces a
reduction in the peak (prevalence). This peak reduction was observed by Kong et al. (Kong et al., 2018), they used negative
binomial distribution transmission terms in their numerical simulations tomodel heterogeneity at the population level. Using
simulations with a lattice model Caraco et al. (Caracoa et al., 2001) noticed that increasing heterogeneity in host abundance
reduces pathogen prevalence. Ciss�e et al. (Ciss�e, Yacoubi, & Gourbi�ere, 2016) also observed this reduction when considering
heterogeneity in a landscape composed of cells referred as good or bad habitats. The peak reduction due to high heterogeneity
contrasts with the fact that high human mobility increases the peak by reducing the heterogeneity when humans are spread
over the entire domain.

Fig. 14 shows the uneven distribution of m for the cases 4 and 5.



Fig. 14. Uneven distribution of m over the reduced number of localized cells, Case 4 y red and Case 5 in blue.
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This first series of numerical experiments shows the spatial effects of m (the ratio of the number of mosquitos to the
number of humans) into the diseases spread. The more unevenly distributed is m (heterogeneous) the smaller the peak and
thus diseases prevalence.

Table 2 shows that, to a high heterogeneous spatial distributions corresponds a peak reduction. For Case 3 CV ¼ 0, m is
constant over the reduced number of localized cells, here the heterogeneity is due to the fact that in a vast majority of cells
m ¼ 0, this remarks the importance of the number of non mosquito populated areas, thus this type of heterogeneity must be
characterized by the mosquito coverage of the domain.

Cases 3, 4 and 5 assume that both mosquitos and humans are initially restricted to a reduced number of cells (the whole
domain has a vast number of non mosquitos and no human populated cells) but with different spatial distributions over the
cells. We define the quantity

INum∞ ¼ I
�
tfinal

�.
Sð0Þ
Table 2
Comparison of contact distributions m.

Case CV Normalized peak time to peak

homogeneous 0 1 92
2 2.39 0.14 88
3 0 0.71 97
4 1.384 0.39 103
5 2.39 0.29 96



Table 3
Persistence affected by heterogeneity.

Case CV Normalized peak time to peak INum∞

3 0 1 93 0.0174
4 1.384 0.51 115 0.0406
5 2.39 0.34 132 0.0704
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and compute it in order to estimate the persistence. The simulation time was enlarged to 180 days and a human mobility of
p ¼ 0:5 was assumed.

Table 3 shows that besides reducing the peak, heterogeneity due to uneven biting delays the diseases (time to peak in-
creases) and increases persistence. This observation agrees with the theoretical result of Hasibeder and Dye (Hasibeder&Dye,
1988), they established that heterogeneous biting and poor mixing lead to increases in the basic reproduction rates (which
measures the persistence of infection), this makes pathogen invasion more likely and elimination more difficult. In their
numerical calculations by using a multi-patch analysis Acevedo et al. (Acevedo et al., 2015) also noticed an increase in long-
term persistence of infection (R0) due to the spatial heterogeneity in transmission intensity.

Clustering together hosts and vectors evenly distributed over a reduced number of localized cells produced higher peak
compared with cases of a reduced number of localized cells with hosts and vectors unevenly distributed. Let us consider this
case label as 3 to compare numerical experiments over the different spatial configurations: two patches, multipatches,
random clustered and random cells distributed. Fig. 15 show the time evolution of infected, exposed humans and mosquitos
for the multipatches configuration. To estimate the fragmentation of these spatial configurations and following Hiebeler
(Hiebeler, 2000), we calculate the degree of clustering q00 defined as the probability that a random chosen neighboring cell to
a vector and host populated cell is also vector and host populated. Table 4 reports the degree of clustering for the spatial
configurations.

Comparing the two patches Fig.11 and themulti patches Fig.15 configurations we notice that, themore fragmented (lower
degree of clustering) the localized patches are, the more the peak is reduced. No outbreak is obtained for the random and
clustered random configurations that have very low degree of clustering.

In the context of cellular automata implementations this can be explained because the fragmentation (separation between
cells) of localized cells makes the transmission harder to take place using local interactions even though human mobility
helps the spread of infectious hosts. Each localized cell has the same number of mosquitos and humans, thus m is constant
and CV ¼ 0. Initially heterogeneity is due to the number of non mosquito and humans populated areas in the two patches
spatial configuration, in the subsequent spatial configurations (multipatches, random and clustered random), heterogeneity
is increased by the spatial fragmentation (separation) of cells. This suggests that fragmentation of mosquito and human
populated areas plays an important roll in the diseases spread that needs to be quantified.

Due to human mobility, some approaches could assume humans and mosquitos randomly distributed over the entire
domain. In order to discuss this case we assume a random selection of cells, at each cell the number of humans is randomly
selected, randðÞ*area*average depending on its area and by using the census data for Reunion Island with and average 330
people per square kilometer, the amount of mosquitos is randomly selected randðÞ*number of humans in the range randðÞ2
f0;1;…10g:The initial condition generated in this way produces Sð0Þ ¼ 763750;svð0Þ ¼ 3727546. An initial seed Ið0Þ ¼ 1 is
assumed. Fig. 16 shows the time domain evolution of the diseases assuming an initial condition with humans and mosquitos
randomly distributed over the entire domain which is quite similar to the case of both humans and mosquitos homoge-
neously distributed, Fig. 17 shows this distribution where CV ¼ 0:59 and 58.5% of the cells are human populated. In real life
mosquitos are not randomly distributed over the entire domain, in fact breeding sites are very localized regions where the
amount of mosquitos changes in time due to weather variables such as temperature and rainfall. This suggests that these
areas should be identified and constantly being monitored.

Fig. 18 presents the time evolution of infected humans and mosquitos for a simulation run over a reduced spatial domain.
The volcanic area localized at the center of the Reunion Island have been removed from the original domain (we assumed that
this area has a very low human population density). For this simulation the initial condition was defined using population
data from the Reunion Census 2007 (according to the French Institution for Statistics). Fig. 19 shows on the left the un-
structured triangular mesh defined for this modified domain; on the right hand side it shows red points (obtained with a
geographical information system) that correspond to cells where annual average temperature resides between 28 and 30
Celsius degrees and annual average precipitation ranges between 250 and 750mm.We assumed that these points correspond
tomosquito breeding sites because they hold appropriate weather conditions for mosquitos reproduction. Five mosquitos per
human were assumed, mosquitos were evenly distributed over the breeding sites and an infected human was localized in a
mosquito/human populated cell.

Table 5 shows the information of the two meshes used in the numerical simulations.



Fig. 15. Multipatches domain of a reduced number of localized cells, Case 3.

Table 4
Peak size affected by domain fragmentation.

Case CV Degree of Normalized Time

clustering peak to peak

two patches 0 0.853 1 99
multipatches 0 0.685 0.20 120
random 0 0.195 e e

random clustered 0 0.070 e e

Fig. 16. Time evolution of the diseases spread with an initial condition of mosquitos and humans randomly distributed over the entire domain.
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Fig. 17. Initial condition with randomly distributed hosts and vectors over the whole domain.
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3.3. Vector control measures

Chikungunya virus is spread to people by Aedes aegypti and Aedes albopictus mosquitos. Aedes aegypti is also responsible
for the transmission of dengue, zika andMayaro. These diseases are transmitted as a side-effect of Aedes’ need to obtain blood
to complete its life cycle (gravid femalemosquitos require blood from a host for their eggs to be viable). Arboviruses, use these
mosquitos as vehicles to develop and travel between human hosts. Unfortunately, to date, there exists no effective vaccine to
block the transmission of any of these pathogens. Several mosquito-control interventions exist to date and every year more
are being developed. Among the traditional Aedes-control interventions, spatial insecticide spraying (also known as fogging)
is one of the oldest. Some others include reduction of breeding sites, use of larvicides, reduction of mosquito hosts contacts
by: use of bednets or spatial and contact repellents. Recently some of the most promising novel interventions have been: the
sterile insect, release ofWolbachia-infected mosquitos and release of insects carrying a dominant lethal gene (RID).To include
vector control measures as Moulay et al. (Moulay, Aziz-Alaoui, & Kwon, 2012) proposed, at the cellular automata imple-
mentation we assume that locally at each cell some important diseases spread variables are modified:
Fig. 18. Time evolution of infected humans and mosquitos, simulation over a reduced computational domain.



Fig. 19. Modified area of study.
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Table 5
Meshes’s information.

Mesh Nodes Elements boundary edges mean area(m2)

Original 581 1013 147 3.95373eþ06
Modified 766 1259 273 1.99709eþ06
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S’ ¼ �bð1� u4ðtÞÞS
iv
nv

E’ ¼ bð1� u4ðtÞÞS
iv
nv

� kE

I’ ¼ kE � gI

R’ ¼ gI

s’v ¼ mbð1� u1ðtÞÞnv � bvð1� u4ðtÞÞsv
I
N
� mdð1þ u2ðtÞÞsv

e’v ¼ bvð1� u4ðtÞÞsv
I
N
� hð1þ u3ðtÞÞev � mdð1þ u2ðtÞÞev

i’v ¼ hð1þ u3ðtÞÞev � mdð1þ u2ðtÞÞiv
Here mb is the mosquito birth rate, md is the mosquito death rate. We assume that locally (each cell) these quantities are
different. The time dependent function u1ðtÞ is a control that reduces the mosquito birth rate, it models vector control
measures related to reduction of breeding sites or use of larvicides. Function u2ðtÞ is a control that increases the mosquito
death rate, it models vector control strategies directed to kill mosquitos for instance fogging or mosquito traps. Function u3ðtÞ
is a control that increases extrinsic incubation period that we use to simulatewMelWolbachia effects. Finally u4ðtÞ is a control
that represents efforts made for prevention over the time simulation interval. It mainly consists in reducing the number of
vector-host contacts using repellents against adult mosquitos, protecting with mosquito bednets or wearing appropriate
clothing. According to themeteorological analysis for precipitation reported by Boyer et al. (Boyer, Foray,& Dehecq, 2014) and
Garot et al. (Garot, Jo€et, Combes, & Lashermes, 2018), the highest precipitation areas In Reunion Island are on the East coast.
We consider vector control measures localized only over the East (right side of the domain that corresponds to 50% coverage
of the total domain). The numerical experiments are conducted with the randomly generated initial distribution shown at
Fig. 17. We separately consider increasing by four times the mosquito death rate what we call C1 and reducing by four times
the mosquito birth rate that we called C2. We also considered control C3 which refers to both control C1 and C2 but applied
over the cells that satisfym>1 which conforms 30% of coverage of the entire domain. C4 refers to a control measure over the
right hand side domainwhere the extrinsic incubation period is assumed to be enlarged to 14 days (originally it was assumed
a 2 days period) in order to simulate wMel-infected mosquitos when exposed to CHIKV. If we assume all the East region is
populated by wolbachia infected mosquitos no outbreak arises, so we relaxes this assumption allowing that only a 50% of
mosquito population is infected by Wolbachia. As reported by Aliota et al. (Aliota et al., 2016) Wolbachia infection does not
completely ablate transmission of virus, but rather delays the extrinsic incubation period (EIP) of the virus and reduces the
transmission potential of CHIKV-infected mosquitos. Finally we called C5 the control that allows to reduce one fourth of the
original value of vector-hosts contacts, this simulates the use of repellents, bednets and protective clothing. We use the
numerical results to compute the quantity

SNum∞ ¼
S
�
tfinal

�
N

Table 6
Comparison of vector control measures.

Type Time to peak Normalized peak SNum∞

No control 86 1 0.1052
C1 97 0.91 0.1812
C2 97 0.96 0.1421
C1 & C2 98 0.83 0.2118
C3 103 0.83 0.2185
C4 105 0.95 0.1785
C5 106 0.90 0.2136
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the portion of humans that escape the outbreak, tfinal is the final time of the simulation. The greater this quantity is, the better
the control measure. Table 6 summarizes the results for these vector control measures. Direct kill of mosquitos seems to be
not the best control measure; it greatly improves when combined with the use of larvicides over the East side of the domain
approximately 50% coverage. We note that better results can be obtained applying these two controls over a reduced number
of non clustered cells (those that satisfy m>1, approximately a 30% coverage of the domain) which is a good choice provide
this quantity m is being monitored over the study area. For instance, Vanwambeke et al. (Vanwambeke, Bennet, & Kapan,
2011) use land cover and land use data to produce high resolution vector-to-host ratio maps to estimate risk of exposure.
Excellent results (not outbreak) are obtained if all the mosquitos are assumed Wolbachia infected and even in the case that
only 50% of the mosquitos areWolbachia infected, good results are acquired. For this vector control measurewe assumed that
the amount of wolbachia infected mosquitos was not time-space dependent. Some further improvements of our imple-
mentation can include the time-space dispersal of wolbachia infected mosquitos as Schmidt et al. (Schmidt et al., 2017)
proposed it. It drags our attention the good performance of the control related to reducing the number of vector-hosts
contacts by using repellents, bednets or protective clothing. We simulated it over the right hand side of the domain but it
can be broadly implemented over the whole domain. We believe that, public health agencies should encourage this type of
measure by providing free or lowcost repellents, bednets or protective clothing and implementing public media campaigns to
reduce the mosquito host contact rates.

3.4. Seasonality

As with any other vector-borne diseases, Chikungunya disease transmission involves host, vector and pathogen and it is
greatly influenced by weather factors such as temperature and rainfall. Rainfall creates breeding habitats for vectors and
temperature has a major role for both mosquitos, virus development and transmission. Parameters such as vector-human
transmission rate, human-vector transmission rate, extrinsic incubation, birth and mortality vector rates are sensitive to
temperature and hence, R0 is also highly sensitive to climate. Zhu et al. (Zhu et al., 2019) and Kakarla et al. (Kakarla et al., 2019)
reported relations for the extrinsic incubation rate, mortality mosquitos rate, human-vector, vector-human transmission
probabilities as functions of temperature

hðTÞ¼ 1
4þ e5:15�0:123T

mðTÞ¼0:8692�0:159T þ0:01116T2 �3:408�10�4T3 þ3:809� 10�6T4

phvðTÞ¼
8<
:

0 T <12:4
0:0729T � 0:9037 12:4 � T � 26:1
1 T >26:1

pvhðTÞ¼
�
1:044� 10�3TðT � 12:286Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32:461� T

p
12:286 � T � 32:461

0 otherwise

where T is the ambient temperature in Celsius.
Assuming a constant temperature over thewhole domain, a 120 days simulationwas run.We observed that the number of

infected humans has a maximum peak at temperature 300C. When temperature increases the time to peak is reduced until
reach 300C, then it starts to increase. Fig. 20 shows the variation of disease peak (prevalence) and time to reach the peak as a
functions of temperature. Constant (in space and time) temperatures were assumed.

Now, let us consider a time series for the temperature, data were obtained from the METEOR meteorological data re-
pository (https://smartis.re/METEOR) and averaged over the entire domain. This five months data series has a mean of 25.55,
variance 0.6718, with 23.3 and 27.1 as minimum and maximum temperatures respectively. Fig. 21 shows the time series for
the temperature. Using this series and just by adding the constant values [-4,-3,-2,-1,0,1,2,3,4] we generated another eight
time series, basically we have the original time series with a translation in the mean.

Fig. 22 shows the effects of the mean temperature over the peak of the number of infected humans and the time to reach
this peak. As mean temperature increases we observed an increase in the peak of the number of infected humans and a
reduction in the time to reach this peak. Huber et al. (Huber, Childs, Caldwell, & Mordecai, 2018) also observed that at both
constant and seasonality varying temperatures, warmer temperatures at the start of the epidemics promote more rapid
epidemics due to faster burnout of the susceptible population.

In order to examine the effects of temperature fluctuations in the peak size and time to peak, we use the mean meanðTÞ
and variance varðTÞ of the temperature time series (weather data fromMeteor) to generate another four times series with the
same mean and approximately k*varðTÞ; k ¼ 2;3;4;5 variances. Fig. 23 shows these series where variance increases from
the top to the bottom.

Fig. 24 shows the effects of the fluctuation in the temperature (variance) over the peak of the number of infected humans
and the time to reach this peak. It seems that when variance increases, both peak and time to reach the peak oscillate.



Fig. 20. Peak and time to peak as functions of temperature.

Fig. 21. Time series for the temperature.

Fig. 22. Peak Size and time to peak as functions of the mean temperature.
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Fig. 23. Generated time series for the temperature.
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3.5. Discussion

Cellular automata formulations allow us to consider local interactions of infected due to neighboring cells and global
interactions due to human mobility probability. The probability that a susceptible host (vector) acquires the pathogen de-
pends on the local density of infectious vectors (hosts), rather than their global density. The numerical experiments showed
the importance of the spatial distribution of hosts and vectors, locally the ratio m of mosquitos to humans produces local
reproduction numbers. Two types of heterogeneities are identified, those due to the uneven bitting (different values of m at
each cell) and spatial heterogeneities (sinks) due to fragmentation. Increasing the human mobility reduces the initial
Fig. 24. Peak size and time to peak as functions of the fluctuations in temperature.
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heterogeneity, it asymptotically increases the peak and reduces the time to the peak. Besides reducing the peak (prevalence),
heterogeneity due to uneven biting delays the diseases (time to peak increases) and increases its persistence. At each cell,
control vector strategies are implemented by assuming increments in the extrinsic incubation period and mosquito death
rates, or reduction of host/vector contact rates and mosquito birth rate. All these quantities are assumed to be time and space
dependent. Space heterogeneities are accounted locally by using population densities for human and mosquitos; seasonality
is easily implemented by assuming that extrinsic incubation rates, mosquito’s birth rate and vector-human/human-vector
transmission probabilities are functions of temperature (time-space dependent). All these features make cellular automata
and attractive method to perform mosquito-borne diseases simulations.

4. Conclusions

We have proposed the use of a cellular automata defined on an unstructured triangular grid to model and simulate the
Chikungunya spread. The cellular automata was obtained from a SEIR sei ode model for chikungunya diseases spread.
Transmission probabilities from human to vector and vector to human were globally defined using a relation between the
transmission rates and the ratio of mosquitos to humans, locally the probabilities were modified by the number of infected
humans andmosquitos inside the neighborhood. The numerical experiments showed that humanmobility increases the peak
size of the number of infected humans and reduces the time to reach this peak. Heterogeneity due to uneven biting reduces
the peak, delays the diseases and increases the diseases persistence. Increases in the mean temperature produce an increase
in peak and reduction in time to peak, on the other hand increasing the variance seems tomake this quantities to oscillate. The
easy implementation of this model has some advantages that allow some future extensions. For instance, models that include
more compartments such as mosquito dynamics stages: egg, larvae, puppa. Dengue models with four strains or coinfection
models as simultaneous outbreaks of dengue, chikungunya and Zika virus. If required, at some spatial scales mosquito
movements can be included in the cellular automata model, locally at each neighborhoodmosquitos can be assumed tomove
to the most human populated cell (mosquitos tend to cluster near humans).
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