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COVID-19, caused by SARS-CoV-2, has caused considerable morbidity and mortality across the world and
caused incalculable damage to global economies [1,2]. Randomized controlled trials (RCTs) are the prerequisite
for identifying efficacious and safe treatments and have already contributed valuable evidence relating to potential
treatments for COVID-19. Real-world data (RWD) studies can complement RCTs by offering opportunities to
identify priorities for subsequent RCTs, including treatments that address the host response and to confirm prior
RCT findings in groups that are more heterogeneous and with longer follow-up periods.

However, due to their observational nature, RWD studies are susceptible to confounding by indication and
immortal time biases [3]. While these methodological considerations are not unique to COVID-19 studies, these
limitations have been apparent in a number of recently published COVID-19 comparative effectiveness research
(CER) and have also been highlighted in a recent methodological review [4]. Rigorous and transparent methods are
required in the conduct of CER in general, but especially during a global public health crises.

Unique features of the pandemic have further complicated the conduct of CER to examine COVID-19 treat-
ments. CER studies are usually undertaken to understand the effectiveness of treatments for conditions that we
have a detailed understanding about, in terms of key confounding factors and practice patterns for its management
and treatment. During the pandemic, knowledge of natural history, epidemiology and treatment options related
to COVID-19 has evolved rapidly. This has led to considerable temporal and regional variations in COVID-19
treatment protocols. Patient case mix and risk of adverse outcomes have also changed over time and vary by region.

This article aims to describe key considerations and potential solutions to challenges faced in conducting CER
on newly emerged diseases, specifically focusing on studies among ambulatory or hospitalized COVID-19 patients.
Understanding these considerations can facilitate the design, analysis and interpretation of robust CER studies that
contribute meaningful evidence for COVID-19 treatments.

Considerations in the presence of temporal variations in the management of COVID-19
The aforementioned temporal variations in our understanding of COVID-19 (which have changed over a time
horizon of a few weeks to a few months) have important implications for the design of CER by influencing
the relevance of study findings, introducing calendar time biases and complicating the methods for reducing
confounding. How these features influence the definition of the study observation window, choice of comparators
and analysis of CER are outlined in the following sections.
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Defining the study observation window
The definition of the study observation window of CER in the COVID-19 era can affect the relevance, robustness
and generalizability of the study findings. Pharmacological and non-pharmacological treatment practices have
changed rapidly during the pandemic, with trends suggesting more selective use of treatments over time as new
evidence on treatment effectiveness, or lack thereof has emerged. For example, data from the United States
(US) have shown that hydroxychloroquine and azithromycin prescription increased dramatically in March 2020
following a single group non-randomized study [5] and the US Food and Drug Administration’s (FDA) subsequent
emergency use authorization for hydroxychloroquine [6,7]. Thereafter, prescriptions declined following growing
evidence of limited effectiveness and increased risk of harm associated with these treatments and the withdrawal
of the emergency use authorization in June 2020. Utilization of remdesivir and dexamethasone increased after
May 2020 with the publication of the results from the ACTT-1 and RECOVERY trials [8,9]. Non-pharmacological
treatment practices such as proning and use of oxygen therapy have also changed during the pandemic and have
contributed to improvements in case fatality rates over time [10].

Such rapid changes in treatment practices have implications for real-world CER since lags in administrative
data availability could potentially render some findings meaningless by the time they are published. For example,
a study may identify a new treatment regimen that may have been better than the management practices in
place during the study period; however, currently available treatments may have evolved to supersede those that
were originally studied. This was exemplified by the identification of remdesivir and dexamethasone as effective
COVID-19 treatments and the likely subsequent improved management practices of COVID-19 thereafter. As
a result, many CER studies using data from the initial phase of the pandemic will already lack external validity.
Understanding trends in treatments and case fatality rates over time is therefore important to understand whether
analyses need to account for temporal variations [11]. For example, patients administered the treatment of interest
may be matched to comparison group patients hospitalized during the same calendar month. The definition of the
allowable matching time-period should be carefully explored given the speed at which the pandemic has progressed.
Reporting study outcomes overall and stratified by calendar month will also allow for a determination of whether
the observed treatment effect is homogeneous over time, and whether reporting a single overall estimate of the
treatment effect is valid. Similarly, restriction of study periods to phases of the pandemic when treatment practices
are uniform and most likely to reflect current practices may also help to ensure findings are relevant at time of
publication.

Identifying appropriate comparators
The rapid evolution of treatment protocols creates additional challenges in identifying appropriate comparison
groups. In ideal settings, patients will be identical across comparator groups in all ways apart from the treatment
of interest to reduce confounding by indication [3]. Examples of confounding by indication are abundant in
observational research generally and the body of COVID-19 observational research has not been immune to
this shortcoming. For example, an increased risk of COVID-19-related death associated with the use of inhaled
corticosteroids identified among people with chronic obstructive pulmonary disorder or asthma in the UK could, as
described by the authors, be plausibly explained by differences in asthma or chronic obstructive pulmonary disorder
severity between users and nonusers of inhaled corticosteroids following the conduct of sensitivity analyses [12].
This highlights the need for careful selection of comparison groups to mitigate possible confounding by indication.
This example also highlights good practice in the publication of such findings, with the authors openly describing
that the findings were likely due to bias; therefore, ensuring that decision makers are not misled.

For COVID-19 studies, there are two main options for choice of comparison groups: active comparators and best
available care designs. Active comparator groups comprise of patients who are administered a different treatment
for the same indication and; therefore, should have similar sociodemographic and clinical characteristics to patients
receiving the treatment of interest. Options for active comparators in COVID-19 CER have been limited due to the
rapidly evolving patterns of use of many treatment candidates over short periods of time [6,7]. For example, in May
2020, remdesivir received emergency use authorization from US FDA for patients with severe COVID-19 and this
authorization was subsequently expanded to all hospitalized patients in August 2020. As a result, the indication for
remdesivir use changed over time according to disease severity, highlighting the difficulty in selecting appropriate
comparator groups.

An alternative to using an active comparator is to use a best available care comparator group, defined as a group
of patients who do not receive the treatment of interest; thereby, receiving best available care only. Due to the
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absence of active comparator candidates and despite a higher risk of confounding by indication, best available care
designs have been widely adopted in COVID-19 CER [13,14]. Patients receiving treatments are likely to be different
to those who do not receive treatments and these differences are likely to have changed throughout the pandemic,
as exemplified by remdesivir use during the pandemic.

Likewise, the definition of best available care has changed significantly during the pandemic and as such, efforts
to account for this should be considered in the study design, such as time-stratified analyses as described earlier. A
detailed definition of best available care during the study period should also be provided so that study findings can
be placed into context.

Statistical analysis considerations: minimizing confounding with propensity scores
Propensity score (PS) methods are a key analytic tool for addressing systematic differences in measured baseline
characteristics between exposed and unexposed groups [15]. PS can be used to balance groups using four approaches:
matching, inverse probability weighting, stratification and adjustment. To ensure balance between groups, it is
important that the logistic regression model used to estimate the PS is correctly specified and includes all relevant
baseline variables, particularly variables that are associated with treatment allocation or are associated with both the
outcome and treatment allocation [16]. Typically, established understanding and published literature can inform
which variables should be included within the model, but this knowledge has not yet been fully established for
COVID-19. In the early phase of the pandemic, case series were the dominant source of information but we now
know that the risk of adverse COVID-19 outcomes such as hospital admissions, mechanical ventilation and death
varies by demographic characteristics and specific comorbidities including obesity, hypertension and asthma [17].
This lack of understanding of key variables influencing outcomes created a substantial challenge for developing
well-specified PS models. Despite many unknowns, RWD are often rich sources of information, providing robust
details on patients relating to comorbidities, treatments received and demographic characteristics enabling the
consideration of an exhaustive list variables for exploration and ultimate inclusion in PS models.

Another important consideration in PS model specification is to account for the temporal variations in treatment
allocation, case mix and case fatality, each of which can lead to bias [19,20]. For example, according to England’s
Hospital Episode Statistics administrative dataset, proportions of older, frail, female and white patients admitted to
hospital increased steadily between March and May 2020 as the outbreak moved out of larger cities with younger
populations [18]. Potential options for minimizing the influence of these temporal variations during statistical
analyses is the inclusion of calendar time of hospitalization within PS models or generation of calendar time-
specific PS. In the latter approach, separate PS models are derived for each calendar time period to estimate time
specific propensity of treatment receipt. The generated PS can then be used to match patient pairs within each
time period to create a full study cohort.

As with any observational study, consideration must be given to the conduct of extensive sensitivity analyses to
explore the robustness of the findings when different approaches to specifying and using the PS are applied [21]. For
example, in a study of hydroxychloroquine in hospitalized patients with COVID-19, inverse probability weighting
was used in the primary analysis but sensitivity analyses using PS matching and PS adjusted models were undertaken
to confirm the robustness of the findings [22]. In stark contrast, in a study investigating a multi-drug therapy for
the treatment of COVID-19 in Mexico, no methods were employed to balance the characteristics of treatment and
comparison groups, despite the comparison group being older and having more comorbidities than the treatment
group [23]. In this example, the multi-drug therapy was found to be more effective at reducing hospitalization and
death than standard care. Given the high likelihood of confounding by indication in this study, the potential for
these findings to mislead decision makers is considerable.

Statistical analysis considerations: avoiding immortal time biases
Immortal time bias is a common methodological challenge in CER and a noted challenge in studies of COVID-19
treatments [4,24]. Immortal time relates to the follow-up time during which, the outcome of interest could not occur
and it typically arises through improper or imbalanced definition of the index date for each comparison group. If
time between index date and treatment initiation is incorrectly classified as exposed person-time, this will result
in biased estimates. Furthermore, if an event had occurred in this window (such as a death), this would preclude
treatment and the event would not be counted toward the treatment group. As a result, by definition, time from
index date to treatment initiation becomes immortal time for the treatment group as an event may not occur
during this time. However, when treatment initiation is used as the index date for the exposed group (to eliminate
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immortal time), while some other time point, such as date of hospitalization is used for the unexposed group, bias
is also introduced. Several COVID-19 CER have been found to be at high risk of immortal time biases, including
a study assessing the effectiveness of tocilizumab in the treatment of patients hospitalized with COVID-19 [25]. In
this study, the index date for both groups was set to date of hospitalization and; therefore, time between date of
hospitalization and tocilizumab initiation was immortal time in the exposed group.

To prevent immortal time biases, exposed and unexposed groups can be matched on index date. For example, in
a study assessing the effectiveness of remdesivir for COVID-19 treatment, patients hospitalized with COVID-19
and who subsequently initiated remdesivir were matched to other patients hospitalized with COVID-19 who did
not initiate remdesivir at the same time point [26]. Time-dependent PS were also used to derive matched sets that
were similar in terms of disease severity and other potential factors influencing treatment allocation.

Considerations in the presence of regional variations in treatments
The presence of regional variations in treatment protocols is another factor that must be taken into consideration in
the design and analysis of COVID-19 CER studies. These regional variations were likely caused by a lack of
or differences in guideline recommendations, at least in the early phase of the pandemic, which meant that
hospitals often employed their own treatment protocols. Other contributors to such regional variations include
drug shortages, which meant lottery systems and first come-first-serve systems may have been put in place. Similarly,
some experimental drugs may have only been available at select institutions that were participating in clinical trials.
Evidence also supports the presence of regional variations in COVID-19 patient outcomes. COVID-19 mortality
rates were found to vary considerably across hospitals in the US and were particularly high in hospitals with
higher community incidence [27]. The latter finding may relate to a stressed healthcare system operating under the
condition of a pandemic. Differences in patient outcomes across regions may also reflect differences in the age
distribution and prevalence of comorbidities within the regions [28]. Despite the potential biases stemming from
these regional variations, few multi-center COVID-19 studies have utilized methods to address this issue.

Design & statistical analysis considerations
These regional variations have important implications for the design of CER. With regard to the choice of study
population, consideration should be given to the exclusion of hospitals in which clinical trials are underway since trial
participants may be difficult to identify using administrative healthcare databases and these participants are unlikely
to be comparable with patients who were not trial participants. Where sample size allows, consideration should be
given to conducting studies within specific regions or hospitals to ensure homogeneity in treatment protocols and
patient outcomes. Alternatively, adjustment for region in regression models or various matching approaches may
be utilized to ensure regional variations in treatments and outcomes do not bias estimates of associations between
treatments and outcomes [29]. Most simply, in addition to matching of treatment and comparison groups being
based on the PS with a pre-specified difference, comparison groups may be force matched within the same hospital
or region to mitigate confounding by region. However, this within-cluster matching strategy may lead to large
numbers of patients being excluded where matches cannot be identified. To overcome this limitation, a preferential
within-cluster matching may be utilized, which is a two-step matching approach. The first step identifies matches
within the same ‘cluster’, which can be specified to be the same hospital or geographic region. For those unmatched
at this first step, the next step goes beyond the ‘cluster’ definition to find matches. Thereby, this approach combines
the advantages of a pure within- and between-cluster matching in terms of bias reduction and reducing the number
of unmatched patients. Regional disparities may also be addressed in PS estimations through multilevel models
with the inclusion of hospital-level or region-level covariates as fixed effects or random effects [30,31]. To account for
heterogeneity in outcomes across the US, a study which used a national claims database to assess the effectiveness of
metformin in reducing COVID-19-related death, geographic location of hospital was a covariate in the PS logistic
regression model. Mixed effects logistic regression with state-level random effects were additionally used to account
for regional differences [13].

Conclusion
During public health crises, it is essential that evidence from CER is of sufficient quality to enable decision-making
that facilitates the best policy and treatment models to improve both individual and public health. Hastily conducted
studies have the potential to lead researchers to flawed conclusions, with significant consequences for patients and
health care delivery. However, RWD studies continue to emerge as an important source of evidence (i.e., effectiveness
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and safety) on a treatment’s use in clinical practice that can complement data from RCTs. When used correctly and
with consideration of the potential pitfalls, CER utilizing RWD can help answer questions quickly to guide and/or
reinforce treatment decisions contemporaneously. The limitations of CER are well documented and there are
many nuances of conducting CER to evaluate treatments for a new condition. Best practices for conducting CER
during a pandemic include a thorough exploration of the likely temporal and regional effects that may influence
research findings by, for example, reporting analyses overall and stratified by calendar time and region to check the
homogeneity of the findings. Rigorous methods, such as matching or inverse probability weighting should be used
to address the most common source of bias in CER. Given the many unknowns of a pandemic, extensive sensitivity
analyses to explore the robustness of findings are an essential component of the CER toolkit.
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