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Summary 
Many ligands of adhesion molecules mediate costimulation of T cell activation. The generality 
of this emerging concept is best determined by using model systems which exploit physiologically 
relevant ligands. We developed such an "antigen-specific" model system for stimulation of resting 
CD4 + human T cells using the following purified ligands: (a) major histocompatibility complex 
class II plus the superantigen Staphylococcus enterotoxin A, to engage the T cell receptor (TCR); 
(b) adhesion proteins vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 
1 (ICAM-1), and endothelial leukocyte adhesion molecule 1 (ELAM-1), to provide potential cell 
surface costimulatory signals; and (c) recombinant interleukin 13 (rlL-13)/rlL-6 as costimulatory 
cytokines. In this biochemically defined system, we find that resting CD4 + T cells require 
costimulation in order to respond to TCR engagement. This costimulation can be provided 
by VCAM-1 or ICAM-1; however adhesion alone is not sufficient since ELAM-1 mediates adhesion 
but not costimulation. The cytokines IL-13 and IL-6 by themselves cannot mediate costimulation, 
but augment the adhesion ligand-mediated costimulation. Direct comparison with the model 
of TCR/CD3 engagement by CD3 monodonal antibody demonstrated comparable costimulatory 
requirements in both systems, thereby authenticating the commonly used CD3 model. The 
costimulation mediated by the activation-dependent interaction of the VLA-4 and LFA-1 integrins 
with their respective ligands VCAM-1 and ICAM-1 leads to increased IL-2Rot (CD25) expression 
and proliferation in both CD45RA + CD4 + and CD45RO + CD4 + T cells. The integrins also 
regulate the secretion of IL-2, IL-4, and granulocyte/macrophage colony-stimulating factor. In 
contrast the activation-independent adhesion of CD4 + T cell to ELAM-1 molecules does not 
lead to T cell stimulation as measured by proliferation, IL-2Rot expression, or cytokine release. 
These findings imply that adhesion per se is not sufficient for costimulation, but rather that 
the costimulation conferred by the VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions reflects 
specialized accessory functions of these integrin pathways. The new finding that VLA-4/VCAM- 
1 mediates costimulation adds significance to observations that VCAM-1 is expressed on a unique 
set of potential antigen-presenting cells in vivo. 

T cell stimulation mediated by antigen requires specific 
engagement of the TCR/CD3 complex with antigenic 

peptides presented by MHC molecules. In general these in- 
teractions alone are not sufficient to stimulate T cells, but 

require additional costimulatory signals provided by the APC 
to achieve T cell activation and differentiation (see for review 
references 1 and 2). mAb blocking studies in APC-depen- 
dent T cell proliferation models have been instrumental in 
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defining accessory molecules mediating these costimulatory 
signals (see reference 1 for review). These types of studies 
are, however, limited by the fact that multiple costimulatory 
interactions between T cell/APC may occur simultaneously. 
To reduce the complexity, model systems have been explored 
where T cell proliferation is induced by combinations of CD3 
or TCR mAb (to provide TCI~ crosslinking) and individual 
putative costimulatory ligands co-immobilized on a solid sub- 
strate. The model in which the OKT3 mAb is immobilized 
has been a de facto standard because it reproduces the require- 
ment for additional costimulation. However, this requirement 
is not an obligate requirement for all CD3 mAb (3-5). We 
designed an alternate model of"antigen-specific" stimulation 
using purified ligands. We utilized the intrinsically higher 
precursor frequency of T cells responsive to well-defined su- 
perantigens, such as Staphylococcus enterotoxin A (SEA) ~ 
(see reference 6 for review), to elicit an antigen-specific re- 
sponse from unprimed resting T cells that is sufficiently strong 
to be measured in a primary in vitro culture. By using the 
capacity of purified HLA DR1 molecules to bind SEA in 
vitro (7), albeit probably outside the conventional peptide- 
binding groove (8), we generated a specific antigen-presenting 
MHC molecule that enabled in vitro engagement of 
TCR/CD3 complex. This new DR1~ SEA model system 
can be viewed as a closer physiological correlate of antigen- 
specific T cell stimulation than CD3 mAb-mediated systems. 

Many molecules that have been shown to provide costimu- 
lation are adhesion molecules (1, 9). This may suggest a 
common molecular mechanism in which T cell adhesion alone 
might be sufficient for costimulation. To investigate this pos- 
sibility we studied a group of adhesion molecules that are 
all members of well-established adhesion pathways used by 
T cells for interacting with other cells. We chose to inves- 
tigate in detail T cell interactions with three different ligands, 
vascular cell adhesion molecule-1 (VCAM-1), intercellular 
adhesion molecule-1 (ICAM-1), and endothelial leukocyte 
adhesion molecule-1 (ELAM-1), each of which is expressed 
on activated endothelium and involved in T cell adhesion to 
endothelium (10-13). T cell interactions with endothelial cells 
are critical for migration o fT  cells into normal tissue, inflam- 
matory sites, and secondary lymphoid organs (14, 15). More 
important for the present analysis, endothelial cells can act 
as APCs and may play an important role in activating T cells 
as they migrate through (16-18). 

Although the ligands studied are of particular relevance 
to endothelial cells, VCAM-1 and ICAM-1 are selectively ex- 
pressed on other tissues and thus have additional relevance 
to T cell activation. The three adhesion pathways examined 
consisted of T cell adhesion via: (a) an undefined ligand on 
T cells binding to ELAM-1 (19-22); (b) very late antigen 4 
(VLA-4 or CD49d/CD29) binding to VCAM-1 (see refer- 
ence 23 for review); and (c) lymphocyte function-associated 

Abbreviations used in this paper: ELAM-1, endothelial leukocyte adhesion 
molecule 1; GM-CSF, granulocyte/macrophage colony-stimulating factor; 
ICAM-1, intercellular adhesion molecule 1; LFA-1, leukocyte function- 
associated antigen 1; SEA, Staphylococcus enterotoxin A; VCAM-1, vascular 
cell adhesion molecule 1; VLA-4, very late antigen 4. 

antigen-1 (LFA-1 or CDlla/CD18) binding to ICAM-1 
(CD54) (see reference 23 for review). The costimulatory ca- 
pacity of two of these ligands, ELAM-1 and VCAM-1 has 
not been previously studied. However, ELAM-1 can activate 
integrin binding on neutrophils (63) and VLA-4 can mediate 
costimulation via binding through a distinct site on the VLA-4 
molecule to the extracellular matrix molecule fibronectin (11, 
24-26). In contrast, LFA-1/ICAM-1 interactions have been 
inferred to mediate costimulation by various approaches in- 
cluding costimulation by ligand immobilized with CD3 mAb 
(27). 

We investigated and compared in detail (a) adhesion of 
CD4 + T cells to the molecules ICAM-1, VCAM-1 and 
ELAM-1; and (b) the role of these molecules in two T cell 
activation models; (a) a CD3 mAb system, and (b) a new 
antigen-specific activation system with DR1 and SEA. We 
also examined the role of ICAM-1, VCAM-1 and ELAM-1 
in regulation of the cell-surface expression of the ot chain of 
the Ib2 receptor (CD25) and in the regulation of release of 
the cytokines II.-2, 1L-4, and granulocyte macrophage colony- 
stimulating factor (GM-CSF) by CD4 + T cells. A com- 
plementary role in costimulation for the recombinant cytokines 
rlI~13 and r ib6 in these model systems was also investigated. 

Materials and Methods 

Cells. Human PBMCs from normal donors were separated by 
FicoU-Hypaque density-gradient centrifugation. Resting T lym- 
phocytes were subsequently obtained by rigorous immunomagnetic 
negative selection with Advanced Magnetic Particles (Advanced 
Magnetic, Cambridge, MA) or Dynabeads (Dynal Inc., Fort Lee, 
NJ) both bound to goat anti-mouse IgG. Negative selection was 
performed as described (28) using a cocktail of mAbs consisting 
of anti-HLA class II mAb (IVA12), CD20 mAb (1F5), CD16 mAb 
(3G8) CDllb mAb (NIHllb-1), CD14 mAb (MMA), CD8 mAb 
(B9.8), and mAb against glycophorin (10F7). For isolation of the 
reciprocal subsets of CD45RO + and CD45RJk § CD4 + T cells 
the CD45RA mAb (Gl-15) and CD45RO mAb (UCHL-1) respec- 
tively were added to the cocktail of mAbs. Purity of the isolated 
cells was more then 98%. The selected CD4 + T cells were free 
of monocytes based on the criterion that there be no proliferative 
response to optimal concentrations (1/200 dilution) of PHA (M 
form) (Gibco Laboratories, Grand Island, NY) (29). 

Adhesion Assays. Binding assays were performed as previously 
described (21, 24, 30). Briefly, 96-well fiat-bottomed microtiter plates 
(for ELAM-1 Nunc Immunoplate MaxiSorp F96 #439454; PGC 
Scientific, Gaithersburg, MD; for ICAM-1 and VCAM-1 Costar 
#3596; Costar, Cambridge, MA) were precoated with the indicated 
amounts of adhesion ligand in a total volume of 50 #1 of PBS and 
incubated overnight at 4~ Plates were subsequently washed twice 
with PBS, 50/~1 ofPBS/2.5% BSA was added to each well to block 
nonspecific binding sites, and plates were incubated for an addi- 
tional 2-3 h at 37~ Unbound BSA was removed by washing three 
times with PBS, and 50,000 SlCr-labeled CD4 § T cells were added 
in a final volume of 0.1 ml PBS/0.5% HSA; for PMA activation, 
T cells were added to wells containing 10 ng/ml PMA (Sigma Chem- 
ical Co., St. Louis, MO). After 1 h settling at 4~ plates were 
rapidly warmed to 37~ for 10 min, nonadherent cells removed 
by washing plates five times with PBS, and the percentage of bound 
cells determined by lysing the well contents with detergent and 

902 Analysis of T Cell Stimulation by Superantigen 



counting gamma emissions. Blocking by mAb was assessed in the 
continuous presence of the indicated mAbs. 

Proliferation Assays. Proliferation assays are performed using stan- 
dard techniques. Briefly 40,000 purified CD4 + T cells/microtiter 
well are cultured in 96-well tissue culture clusters with flat bottom 
wells (Costar) for 3 d in culture medium (RPMI 1640 [Hazleton 
Biologics Inc., Lenexa, KS] supplemented with 20 mM glutamine 
[Hazleton Biologics, Inc.], 10% heat inactivated FCS [Biofluids, 
Rockville, MD] and 100 IU/ml of penicillin, 100 #g/ml strep- 
tomycin) under various conditions as mentioned in the experiment 
description and pulsed (25 #l/well) with a [3H]thymidine solution 
(5 mCi/ml, 2 mCi/mmol specific activity; New England Nuclear, 
Boston, MA) during the last 8 h before being harvested on glass 
fiber filters. Incorporation of radioactive label is measured by liquid 
scintillation counting. Results are expressed as the arithmetic mean 
cpm of triplicate cultures. Due to the low precursor frequency of 
SEA-reactive CD4 + T cells, the cell number in the superantigen 
experiments was increased to 80,000/well, and cells from DR1- 
positive healthy donors were used to avoid any possible alloresponse. 
For studying ELAM-l-induced proliferation, we used 96-well Nunc- 
Immunoplate MaxiSorp F96 flat-bottomed wells Nunc #439454; 
(PGC Scientific, Gaithersburg, MD) pretreated with ethanol for 
sterility, these plates allow optimal immobilization of ELAM-1 pro- 
tein. Monocyte-independent CD4 § T cell proliferation was ob- 
tained by the combination of PMA (10 ng/ml) and PHA (1/200 
dilution) (Gibco Laboratories). 

Antibody Reagents and Other Reagents. Monoclonal antibodies 
are used as purified immunoglobulin derived from ascites fluid un- 
less indicated otherwise in the following listing. CD11a mAb: 
MHM24 (IgG1); CD18 mAb: MHM23 (IgG1) (both Dr. J.E. Hil- 
dreth, Johns Hopkins University, Baltimore, MD) (31); CD54 mAb: 
84H10 (IgG1) (Dr. P. Mannoni, INSERM unit 119, Marseille, 
France) (32); CD58 mAb: TS2/9 (IgG1) (American Type Culture 
Collection) (33); CD2 mAb: 95-5-49 (IgG1) (Dr. R.R. Quinones, 
George Washington University, Washington, DC) (34); CD3 mAb: 
OKT3 (IgG2a) (ATCC) (35); anti-HLA class II mAb: IVA12 (IgG1) 
(Dr. J.D. Capra, South-Western School, Dallas, TX); CD20 mAb: 
1F5 (used as dilutions ofascites fluid) (Dr. J.A. Ledbetter, Oncogen, 
Seattle, WA); CD16 mAb: 3G8 (IgG1) (used as dilutions of ascites 
fluid) (Dr. D.M. Segal, National Cancer Institute, Bethesda, MD); 
CD14 mAb: MMA (used as dilutions of ascites fluid) (ATCC); 
glycophorin mAb: 10F7 (used as dilutions of ascites fluid) (ATCC); 
CD8 mAb B9.8 (used as dilutions of ascites fluid) (B. Malissen, 
Marseilles, France); VCAM-1 mAb: 2G7 (19); ELAM-1 mAb: 7A9 
(19); CD49d mAb: L25 (36, 37); CD29 mAb: 4B4 (Coulter Elec- 
tronics, Hialeah, FL); CD45RA mAb: G1-15 (used as dilutions 
of ascites fluid) (J.A. Ledbetter) (38); CD45RO mAb: UCHbl  
(used as dilutions of ascites fluid) (P. Beverly, London, UK) (39); 
CD44 mAb: NIH44-1 (IgG1) (40). 

Recombinant IblB was generously supplied by Dr. J. Oppen- 
helm (National Cancer Institute, Frederick, MD) and recombinant 
I1.-6 (sp. act. 106 U/mg) (Genetics Institute, Cambridge, MA) was 
a gift from Dr. J. Mule (National Cancer Institute, Bethesda, MD). 
The super-antigen SEA was a gift from S. Burger (National Cancer 
Institute, Bethesda, MD) and was used as indicated in the figure 
legends. 

HLA class II DR1 molecules were afffinity-purified from an EBV- 
transformed B cell line, LG-2, as described (41). Affinity-purified 
ICAM-1 was isolated from a Hodgkin's lymphoma cell line, L428, 
as described (27). A truncated version of ELAM-1 containing 420 
amino acids (ELAM-1-420, but referred to in text as ELAM-1) of 

the amino-terminal end of the mature form, along with the signal 
sequence, was constructed by the PCR using appropriate oligonu- 
cleotide primers. ELAM-1-420 contains the lectin and EGF domains 
and a portion of the complement regulatory domain. An ELAM- 
1-420 containing plasmid was transfected into the DHFR- CHO 
cell line, and methotrexate-resistant (600 riM) transfectants were 
isolated. Details of construction and isolation of the ELAM-1-420 
plasmid will be described (W. Newman, L. D. Beall, C. W. Carson, 
G. G. Hunder, N. Graber, Z. I. Randhawa, T. Poke, and T. V. 
Gopal, manuscript submitted for publication). The ELAM-1-420 
molecule was purified from the culture supernatants of transfected 
cells by sequential affinity chromatography on Con A-Sepharose 
and ELAM-1 mAb 7Ag-coupled Affigel. As a final purification step, 
the material was ehted as a homogeneous peak from C-18 reversed 
phase chromatography. Protein concentration was established from 
amino acid analysis. Amino acid sequencing showed tryprophan 
as the NH2 terminus in accord with the published sequence (20); 
purity was estimated as at least 90%. 

For isolation of VCAM-1 a truncated form of the full-length 
VCAM-1 cDNA was constructed making amino acid 698 the 
carboxy-terminus, thus deleting the transmembrane and cytoplasmic 
domains (42). CHO cells producing sVCAM-1 were grown in the 
presence of 50 mM methotrexate and 48 h conditioned medium 
from confluent cells was collected. Protein was isolated by a com- 
bination of Con-A-Sepharose and VCAM-1 mAb 2G7 affinity chro- 
matographies, followed by a C-18 reversed phase separation. The 
final material was shown by sequencing of the NH2-terminal five 
amino acids to contain the predicted sequence (43) and to be 34% 
pure. 

The purified proteins DR1, ICAM-1, VCAM-1, ELAM-1, and 
the CD3 mAb OKT3 were immobilized on the plastic well bottom 
by dilution in PBS and overnight incubation at 4~ where after 
wells were washed with PBS. The amount of purified protein ap- 
plied to each well is indicated in the figures. 

Cytokine Analysis. To obtain culture supernatant for cytokine 
analysis CD4 + T cells were cultured in culture medium (see above) 
(106/ml, final volume 2 ml) in 24-well flat bottom tissue culture 
plates (#3524; Costar). The proteins were Preimmobilized in the 
wells as described for 96-well plates, but added at 10-fold higher 
amounts to adjust for the increased well-surface of 24-well plates. 
The culture supernatants were harvested after 24 h and 48 h of 
culture. Proliferation was measured in parallel cultures with 40,000 
cell/well in 96-well plates as described before. Ib2 activity was 
defined in a bioassay using the CTLL-2 indicator cell line (Amer- 
ican Type Culture Collection) modified after Gillis et al. (44) 
(minimum detection level was 0.05 U of IIz2/ml). II.,4 and GM- 
CSF levels were determined in ELISA assays as described (45) (sen- 
sitivity of the assays were >24 pg/ml for II.,4 and >0.4 ng/ml for 
GM-CSF). 

Flow Microfluorometry (FMF). Cells were cultured in 24-well 
tissue culture cluster plates (#3524; Costar) as described above for 
detection of cytokine production. After 24 h of culture cells were 
harvested (0.5 x 106/sample). Cells were incubated with Sulfo- 
NHS-Biotinylated (Pierce Chemical Co., Rockford, IL) CD25 mAb 
TAC, a gift from Dr. T.A. Waldmann (National Cancer Institute, 
Bethesda, MD), at saturating concentrations for 30 min at 4~ 
washed twice with HBSS (Hazleton Biologics, Inc.) containing 
0.2% HSA and 0.2% sodium azide, and stained with Streptavidin- 
FITC conjugate (SA1001; Caltag, San Francisco, CA) for another 
30 min at 4~ Finally, the cells were washed twice and analyzed 
on a FACScan | (Becton Dickinson & Co., Mountain View, CA). 
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Results 
CD4 + T Cells Can Specifically Adhere to Immobilized 

ICAM-I, VCAM-I, and ELAM-1. The three afhnity-purified 
adhesion molecules ICAM-1, VCAM-1, and ELAM-1 can all 
mediate binding of CD4 + T ceils, but they show different 
activation requirements for efhcient adhesion (Fig. 1, A-F). 
Binding by the T call integrins LFA-1 and VLA-4 to their 
respective ligands ICAM-1 and VCAM-1 is dependent on ac- 
tivation of the T cell (Fig. 1, A and B) (30, 46), and can 
be specifically inhibited by mAbs (Fig. 1, D-E). The specific 
binding of CD4 + T cells to immobilized ELAM-1 is, in 
contrast, not dependent on activation of the T cell and is 
not increased by T cell activation (Fig. 1, C and F) (21). 

Both ICAM-1 and VCAM-1, but not ELAM-1 Can Provide 
Costimulation for Superantigen-specific HLA Class II-dependent 
Activation of Resting CD4 § T Cells. We analyzed the roles 
of the adhesion molecules ICAM-1, VCAM-1, and ELAM-1 
in a T cell activation model that uses the superantigen and 
a purified HLA class II molecule DR1, which is known to 
bind and present SEA (7). Fig. 2 A shows results of system- 
atic analysis of the requirements for induction of prolifera- 
tion. A range of SEA concentrations up to 1,000 ng/ml was 
investigated since that concentration gives maximal response 
in the presence of monocytes (data not shown). No response 
is observed to the combined stimuli (SEA, DR1, rlL-13/ 
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Figure 1. Binding of stCr-labeled CD4 + T cells to (A) ICAM-1, (B) VCAM-1, and (C) ELAM-1 immobilized on plastic was assessed as described 
in Materials and Methods..AAhesion of resting CD4 + T cells ( - n - )  and CD4 + T cells activated for 10 min at 37 ~ C with PMA (-O-) to the indi- 
cated concentrations of ligand is shown. Background binding of resting and PMA-activated CD4 + T cells in the absence of adhesion ligand was deter- 
mined with a control protein (bovine serum albumin) shown on the left of the interrupted line in each figure and has not been subtracted from the 
data. Binding of PMA-activated CD4 + T cells to (D) ICAM-1, (E) VCAM-1, and binding of resting CD4 + T cells to (F) ELAM-1 was assessed in 
the continuous presence of the following mAbs: the anti-VLA-4 mAb L25, the anti-VCAM-1 mAb 2G7, the anti-LFA-1 r chain mAb MHM24, 
the anti-LFA-1 B chain mAb MHM23, the anti-ICAM-1 mAb 84H10, the anti-ELAM-1 mAb 7A9, the anti-LFA-3 mAb TS2/9, and the anti-CD44 
mAb NIH44-1. All mAbs were used as purified Ig at 10/~g/ml. Binding of CD4 + T cells to a negative control protein (type IV collagen) was <3% 
and has not been subtracted from the values shown. Data are expressed as the mean per cent of cells binding from three replicate wells with bars 
representing standard error of the mean. Results presented are representative of three independent experiments using CD4 + T cells isolated from different 
donors. 
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Proliferation with various amounts of immobilized ICAM-1 (as indicated) 
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immobilized DR1 (500 ng/well) present in the various conditions. (B) 
Proliferation with various amounts of immobilized DR1 (as indicated) 
in combination with a fixed amount of coimmobilized ICAM-1 (3 ng/well) 
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the presence or absence of the cytokine combination rlbl/~ and rlL-6 (each 
10 U/ml). Left of the interrupted line only immobilized ICAM-1 (3 ng/well) 
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rlL-6) in the absence of ICAM-1. Coimmobilized ICAM-1 
however provide potent costimulation with DR1/SEA, which 
is augmented by the cytokines rlL-1B and rlL-6 (Fig. 2, A 
and B). 

The experiments depicted in Fig. 3 show a comparison 
between the OKT3 mAb-mediated and DR1/SEA-mediated 
activation systems in which ICAM-1, VCAM-1, and ELAM-1 
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were analyzed for their costimulatory capacities. ICAM-1 and 
VCAM-1 can both provide concentration-dependent costimu- 
lation in either system (Fig. 3, A and D, and B and E, respec- 
tively), that is augmented by the combination of cytokines, 
rIL-l~ and rib6. Coimmobilized ELAM-1, however, fails to 
provide costimulation capable of inducing CD4 + T cell 
proliferation. 

The specificity of the costimulation by ICAM-1 and 
VCAM-1 in both the OKT3 (data not shown) and DR1/SEA 
(Fig. 4) was established with mAb blocking experiments. The 
ICAM-1 mediated costimulation was dependent on the in- 
teraction between T ceU LFA-1 and the immobilized ICAM-1 
(Fig. 4) while the costimulation by VCAM-1 is dependent 
on the interaction ofT cell VLA-4 with the purified VCAM-1 
(Fig. 4). Costimulation by both ICAM-1 and VCAM-1 is 
dependent on TCR/CD3 interaction with the HLA class II 
DR1 molecules as suggested by the complete inhibition of 
both systems with anti-HLA class II mAb or CD3 mAb (Fig. 
4). 

The combined resuhs suggest a similar requirement for 
the costimulatory signals provided by ICAM-1 or VCAM-1 
in both CD3 mAb- and DR1/SEA-mediated activation of 
resting CD4 + T calls. In contrast, T cells do adhere to 
ELAM-1 (Fig. 1), but ELAM-1 does not provide costimu- 
lation. 

Resting CD45RA + ("Naive")and CD45RO + ('Memory') 
CD4 § T Cells Can both Be Stimulated by Coimmobilized 
OKT3 mAb and ICAM-I or VCAM-1, but not ELAM-I. 
Since CD4 + T ceils do adhere to ELAM-1, the lack of 
costimulation by ELAM-1 demonstrates that adhesion alone 
is not sufficient for costimulation. The negative results how- 
ever could be due to the fact that in contrast to LFA-1 and 
VLA-4 mediated adhesion, only cells in the CD45RO + 
"memory" subset of CD4 + T cells can bind to ELAM-1 
(21, 22). Thus, the memory cell subpopulation in some donors 
might be too small to cause detectable proliferation in the 
system tested. We therefore investigated the costimulatory 
capacities of adhesion ligands using purified populations of 
CD45RA + "naive" and CD45RO + "memory" CD4 + T 
ceils. To avoid the possibility of subset-specific expression of 
SEA-reactive TCR, we used the OKT3 mAb activation model 
As shown in Fig. 5 C ELAM-1 still failed to provide costimu- 
lation, even for memory CD4 + T cells. In contrast, ICAM- 
1 (Fig. 5 A) and VCAM-1 (Fig. 5 B) costimulated both naive 
and memory cells. The level of costimulation of memory and 
naive cells by ICAM-1 or VCAM-1 varied between donors, 
and was not always directly correlated with the levels of 
receptor expression (i.e., LFA-1 and VLA-4) on these subsets 
(30) (data not shown). 

Coimmobilized OKT3 mAb and ICAM-1 or VCAM-1, but 
not ELAM-1 Can Induce IL 2R o~ (CD25) Expression on Resting 
CD4 § T Cells. Proliferation is the result of a complete set 
of activation signals which, when combined, lead to cell di- 
vision. Coimmobilized ELAM-1 and OKT3 mAb may re- 
sult in partial activation which is not adequate for T cell 
proliferation. Since expression of the high affinity ID2 receptor 
expression is one of the required steps leading to T cell pro- 
liferation, we measured expression of IL-2Rc~ (CD25) after 
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Figure  3. (A-C) Proliferation of 40,000 CD4 + T cells/well is measured as described in Materials and Methods. Culture conditions are with titra- 
tions of immobilized (.4) ICAM-1, (B) VCAM-1, or (C) EL�9 in combination with a fixed amount of coimmobilized OKT3 mAb (50 ng/well), 
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on the plastic of the well as described in Materials and Methods. 

24 h of culture as an indicator of partial T cell activation. 
The results show that culture with only immobilized OKT3 
mAb led to a small increase in IL-2Rot expression on a 
subpopulation of CD4 + T cells (mainly CD45RO + cells, 
data not shown), which is not accompanied by proliferation 
(Table 1). Costimulation with ICAM-1 or VCAM-1 induces 
II_,2R.cx expression on most cells (both on CD45RA + and 
C D 4 5 R O  § CD4 § T cells, data not shown), which is com- 
parable with that generated by the mitogenic combination 
of PHA and PMA (Table 1). These latter three culture con- 
ditions all result in significant proliferative responses (Table 
1). In contrast, coimmobilized ELAM-1 and OKT3 mAb, 
does not result in increased Ib2ILcx expression over that in- 
duced by OKT3 mAb alone (Table 1). 

Cosfimulation by ICAM-1 or VCAM-1, but not ELAM-1 Regu- 
lates 11_,2, II_r4, and GM-CSF Release of Resting CD4 + T 
Cells. Cytokine release by T cells is also a consequence of 
specific stimulation. Therefore we studied the three adhesion 
molecules for their capability to regulate levels of the cytokines 
IL-2, IL-4, and GM-CSF. The partial activation induced by 
immobilized OKT3 mAb in presence of rI/.,1 and rlI.-6 leads 
to minimal levels of  II.-2 and low levels of  GM-CSF, but not 
IL-4 (Table 2). This costimulation with ICAM-1 or VCAM-1, 
in the absence or presence of rlL-1 and r ib6 ,  regulates release 
of significant amounts of Ib2,  IL-4 and GM-CSF (Table 2). 
The levels of I1.-4 produced under these conditions are sig- 
nificantly higher than that with the culture condition of 
P H A / P M A  (Table 2). ICAM-1 and VCAM-1 have no effect 
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Figure 4. (Left) mAb blocking of proliferation induced by coimmobilized DR1 (0.5/~g/well) and ICAM-1 (3 ng/well), with SEA (1,000 ng/ml) 
and the cytokines rib13 and rlb6 (each 10 U/ml) added to the well. (Right) mAb blocking of proliferation induced by coimmobilized DR1 (0.5 
#g/well) and VCAM-1 (15 ng/well), with SEA (1,000 ng/ml) and the cytokines rlI:13 and rib6 (each 10 U/ml) added to the well. In both panels 
is the proliferation of 80,000 cells CD4 + T cells/well measured as described in Materials and Methods. Purified DR1, ICAM-1, and VCAM-1 were 
immobilized on the plastic of the well as described in Materials and Methods. mAbs were added as purified lg at a final concentration of 10/zg/ml. 

when applied in the absence of CD3 mAb. Again coimmobi- 
lized OKT3 mAb and ELAM-1 do not alter the cytokine 
release induced by OKT3 mAb in isolation (Table 2). 

Discussion 

Various T cell adhesion pathways also function as signal 
transducing pathways regulating T cell activation (see refer- 
ences I and 9 for review). We have compared the T cell adhe- 
sion pathways mediated by the molecules ICAM-1, VCAM-1 
and ELAM-1 for their ability to costimulate antigen-specific 
responses of resting human CD4 § T cells. To examine the 
costimulatory potential of these molecules we developed a 
biochemically-defined system that can be viewed as a closer 
correlate of a primary antigen-specific response than the com- 
monly used CD3 mAb-mediated T cell response. This new 
in vitro T cell activation model utilizes purified immobilized 
HLA DR1 and the superantigen SEA. We show that similar 
to CD3 mAb-mediated activation models, this DR1/SEA 
system is critically dependent on certain adhesion-ligand- 
mediated costimulatory signals which are distinct from the 
recombinant cytokines rlL-13 and rlU6. We further demon- 
strate that specific adherence of CD4 § T cells alone is not 
su~cient to provide such costimulation. While CD4 § T 
cells can bind to various adhesion molecules through either 
activation-independent (ELAM-1) or activation dependent 
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pathways (ICAM-1 and VCAM-1), only the integrin-mediated 
pathways (LFA-1/ICAM-1 and VLA-4/VCAM-1) can pro- 
vide the costimulation required in both the CD3 mAb- 
mediated and the antigen-specific DR1/SEA-mediated 
CD4 § T cell activation models (Figs. 2, 3, and 4). The 
specific interaction of LFA-1/ICAM-1 and VLA-4/VCAM-1 
(Fig. 4) not only leads to T cell proliferation, but also regu- 
lates the production of IL-2 and II.-4, and augments the levels 
of secreted GM-CSF (Table 1). 

T cell adhesion to ELAM-1 is strikingly different from adhe- 
sion mediated through the integrin pathways LFA-1/ICAM-1 
and VLAo4/VCAM-1 in at least three fundamental aspects. 
First, ELAM-l-mediated adhesion occurs without prior ac- 
tivation of the T cell and activation does not alter the degree 
of binding (Fig. 1) (21). Second, CD4§  + 
"memory" T cells but not CD4 + CD45RA + "naive" T cells 
bind to ELAM-1 (21, 22). Third, as demonstrated in this 
study, T cell binding to ELAM-1 does not generate the same 
type of costimulatory signals as induced by T cell adhesion 
via LFA-1/ICAM-1 and VLA-4/VCAM-1 (Figs. 3 and 5, 
Tables i and 2). In fact, we have failed to observe costimula- 
tory signals mediated by ELAM-1, even when the response 
was tested with memory T cells, in which the ELAM-1 ad- 
herent population is present in a higher frequency (Fig. 5). 
Furthermore, changes which reflect partial activation, such 
as increased IL-2Ra expression (Table 1), were not evident 
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with purified ELAM-1. This negative result is particularly 
striking, given the large number of adhesive interactions, medi- 
ated either by natural ligand or mAb specific for a T cell sur- 
face molecule, that have been shown to facilitate T cell prolifer- 
ation in similar in vitro systems (see references 1 and 9 for 
review). Our results with ELAM-1 suggest that the molec- 
ular mechanisms mediating these various costimulatory signals 
may not be triggered by adhesion alone. Furthermore this 
suggests that adhesion pathways can be divided into two major 
classes: (a) those that provide adhesion, and (b) those that 
provide both adhesion and costimulation. 

The fact that ELAM-1, ICAM-1, and VCAM-1 expres- 
sion on endothelium is augmented with inflammation (47, 
48) has implications both for adhesion and for costimula- 
tion. The implications for adhesion are more efficient cap- 

ture of T cells by endothelium at sites of inflammation. 
ELAM-1 is unique in its activation-independent binding, 
which would be expected to be critical in capture of resting 
T cells from the circulation (21); for reasons not yet fully 
defined this mechanism may predominate in migration of T 
cells into skin (22). Although resting T cells do not adhere 
particularly e~ciently via their VLA-4/VCAM-1 or LFA- 
1/ICAM-1 pathways, these pathways are presumably impor- 
tant either: because the low level is enough for capture, or 
because other molecular interactions trigger their function 
during the process of T/endothelial cell capture. Not only 
do T cells have to contact endothelial cells during entry into 
tissue, but also the cufl~ng of lymphocytes around vessels in 
inflammatory infiltrates suggests sustained contact. 

A variety of lines of evidence suggest that endothelial cells 
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Table 1. Coiraraobilized ICAM-1 and VCAM-1, but not 
ELAM-1 Dramatically Upregulates OKT3-induced IL-2R 
Expression on Resting CD4 § T Cells 

% Cell positive* 

IL-2R 
Control (CD25) Proliferation** 

cpra/1,000 
Medium 5.6 6.8 0.1 
Imm. OKT3 7.9 24.6 1.1 
Imm. OKT3/ICAM-1 9.1 [ ~  
Imm. OKT3/VCAM-1 9.1 ~ - ]  [ 1 ~  
Imm. OKT3/ELAM-1 6.7 19.7 0.1 
PHA/PMA 16.1 [ ~  ~ - ~  

* IL-2R (CD25) expression after 24-h culture. 
** Proliferation after 72-h culture. 
IL-2K (CD25) expression and proliferation are measured as described in 
Materials and Methods. mAb OKT3 (applied at 0.5 #g/well), ICAM-1 
(applied at 30 ng/well), VCAM-1 (applied at 150 ng/well) and ELAM-1 
(500 ng/well) were immobilized on the plastic of the 24-well tissue cul- 
ture plate as described in Materials and Methods. As background fluores- 
cence control levels were cells taken that were stained with only 
Streptavidin-FITC conjugate. 

may play important roles in antigen presentation (16). The 
present study demonstrates that two of its activation-induced 
surface molecules, VCAM-1 and ICAM-1 are potent costimu- 
lators of T cell activation. VCAM-1 is only expressed on en- 
dothdial cells which have been stimulated with inflamma- 
tory cytokines such as IL-1 and TNF-ot (48), a condition that 
also further augments ICAM-1 expression. Endothelial cells, 
which normally express HLA class I molecules, are induced 
to express HLA class II by IFN-3' (49), that also enhances 
HLA class I and ICAM-1 expression (50). Furthermore en- 
dothelial cells constitutively release low levels of Ib6 (51) and 
can be induced to produce high levels of both IL-1 (52) and 
IL-6 (51). Foreign antigens will be abundant on endothelium 
in allografts, and potentially in infectious diseases and au- 
toimmune disorders. Thus, endothelial ceils are endowed with 
the necessary components to effectively stimulate T-cells and 
are guaranteed contact with T cells; moreover, in vitro en- 
dothelial cells can function efficiently as APC (16, 53, 54). 
In addition to potential roles for VLA-4/VCAM-1 and 
LFA-1/ICAM-1, other molecules engaged during T/endo- 
thelial interactions may also provided costimulation; Pober 
and coworkers have demonstrated a role for CD2/LFA-3 in 
a model of system of endothelial cell costimulation of T cell 
activation (55). All these processes may have exaggerated im- 
portance in aUogeneic organ transplantation where endothelial 

Table 2. Induction of Cytokine Release 

IL-2* IL-4* GM-CSF* Proliferations 

U/ml pg /ml ng /ml cpm/1,000 
Medium <0.05 <24 <0.4 0.06 
Medium + rlL-1/rlL-6 <0.05 <24 <0.4 0.06 

Imm. OKT3 <0.05 <24 3.1 0.20 
Imm. OKT3 + rlL-1/rlL-6 0.3 <24 5.9 2.40 

Imm. OKT3/ICAM-1 [ ~  ~ [ - ~  
Imm. OKT3/ICAM-1 + rlL-1/rlL-6 [ ~  ~ [ ~  

Imm. ICAM-1 + rlL-1/rlL-6 0.4 <24 2.4 0.06 

Imm. OKT3/VCAM-1 ~ [ ~  ~ 
Imm. OKT3/VCAM-1 + rlL-1/rlL-6 ~ [~OO~ [ - ~  

Imm. VCAM-1 + rlL-1/rlL-6 <0.05 <24 <0.4 0.05 

Imm. OKT3/ELAM-1 <0.05 <24 2.2 0.07 
Imm. OKT3/ELAM-1 + rlL-1/rlL-6 0.3 <24 6.7 0.50 
Imm. ELAM-1 + rlL-1/rlL-6 <0.05 <24 <0.4 0.05 

PHA/PMA 

Cytokine levels and proliferation are measured as described in Materials and Methods. mAb OKT3 (applied at 0.5 #g/well), ICAM-1 (applied at 
30 ng/well), VCAM-1 (applied at 150 ng/well), and ELAM-1 (500 ng/well) were immobilized on the plastic of the 24-well tissue culture plate 
as described in Materials and Methods. Cytokines rlL-1B and rlL-6 were added at a final concentration of 10 U/ml. 
* After 24-h culture. 

After 48-h culture. 
S After 72-h culture. 
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cells are both target cells and APCs, and may mediate antigen- 
specific recruitment of T cells (14-16). 

Many groups have postulated that T cell activation requires 
both a first and second signal (for review see reference 2). 
The first signal is thought to be provided by specific engage- 
ment of the TCR/CD3 complex, and must be accompanied 
by a second signal(s) to allow for full activation. Failure to 
receive the second signal has been correlated with the induc- 
tion of clonal anergy (for review see reference 2). The nature 
of the second signal(s) is poorly defined, but is shown to be: 
(a) dependent on direct cell-cell contact (56, 57); and (b) medi- 
ated by a cell surface molecule(s) expressed on cytokine stimu- 
lated, but not unstimulated APC's (57-59). Both ICAM-1 
and VCAM-1 are not only capable of costimulation, but also 
fulfill many of the other requirements postulated for second 
signal(s). First, in regard to the cell-contact nature of the signal, 
the cell adhesion promoting capacities of ICAM-1 and VCAM-1 
have been studied extensively (see references 23 and 60). 
Second, cell surface expression of both ICAM-1 and VCAM-1 
is regulated by inflammatory cytokines (10, 43, 48, 50, 61, 
62). ICAM-1 is also widely expressed on cell types known 
to be involved in antigen-presentation such as dendritic cells, 
monocytes and B cells. Activation-induced augmentation of 
ICAM-1 expression is correlated with increased APC func- 
tion of fixed monocytes (59). 

We and others have shown previously that activation- 
dependent adhesion of the VLA-4 receptor to its ECM ligand 
FN can provide costimulation in the OKT3 mAb model 
(24-26) (and in the DR1/SEA system, data not shown). While 
a role the VLA-4/FN interaction in extravasation and migra- 
tion through tissue seems likely, the relevance of FN as a 
costimulatory molecule in antigen-specific T cell responses 
remains speculative. However, the identification of VCAM-1 
as a cell surface adhesion ligand for VLA-4 (11) and the present 
data on VCAM-1 costimulation suggest an antigen-specific 
costimulatory role for VLA-4 molecules. The recent finding 
that VCAM-1 is not only expressed on activated endothelial 
cells, but also on lymphoid dendritic cells of tonsil, spleen 
and peripheral lymph node (47, 64), certain macrophages 
present in spleen and thymus (47), and those associated with 
T cells in the skin (W. Sterry, personal communication) may 
prove to he important in finding such a physiological role 
for of VCAM-1 on APCs. 

Recently, it has been demonstrated that the B cell activa- 
tion antigen B7, a ligand for CD28, functions as an adhesion 
molecule (65), and that immobilized purified B7 antigen can 
provide costimulation (66). Consequently, there are multiple 
receptor/ligand interactions (CD2/LFA-3, CD28/B7, LFA- 

1/ICAM-1 and VLA-4/VCAM-1) which fit many of the re- 
quirements for a "second signal". Why then is there such 
a redundancy of molecules capable of providing adhesion- 
mediated costimulation? We favor the concept that the mul- 
tiplicity of molecular interactions between T cell and APC 
determines the specifics of activation and subsequent differen- 
tiation of the T cell and APC (9). Quantitative and qualita- 
tive differences in the expression of adhesion receptors on 
different T cell subsets and their respective ligands on var- 
ious types of APC's may then cause differential responses via 
selective utilization of the various costimulatory pathways. 
Different combinations of costimulatory pathways may in- 
duce different responses from the T cells, for example cytokine 
release. Evidence for such differential cytokine release has re- 
cently been published by Cerdan et al. (67) who showed in- 
duction of II~1ol by T cells by the combinations of CD2/CD28 
mAbs and CD3/CD28 mAbs, but not by any of these mAbs 
in isolation, although they were able to induce T cell prolifer- 
ation and TNF-o~ secretion. We show that costimulation by 
ICAM-1 and VCAM-1 both induce release of the cytokines 
IL-2, IL-4, and GM-CSF (Table 2). This similarity may reflect 
the close structural relation between LFA-1 and VLA-4 as 
members of the same integrin superfamily. Further analysis 
is required to establish whether these cytokines are produced 
by stimulation of one homogeneous population or by a mix- 
ture of subpopulations of CD4 + T cells, analogous to the 
murine Thl  and Th2 subsets of CD4 + T cells (68, 69). 

In conclusion, we have analyzed the costimulatory poten- 
tial of the adhesion molecules ICAM-1, VCAM-1, and ELAM-1 
using a newly described T cell activation system of purified 
HLA-DR1 molecules and the superantigen SEA; this system 
closely mimics the antigen-specific response of resting 
CD4 § T cells. Our results demonstrate that while ICAM-1, 
VCAM-1 and ELAM-1 all mediate efficient T cell adhesion, 
only ICAM-1 and VCAM-1 mediate costimulation and regu- 
late cytokine release. The inability of ELAM-1 to mediate 
even a partial costimulatory signal demonstrates that adhe- 
sion alone is not sufficient to generate costimulation in these 
in vitro systems. Furthermore, our demonstration of the 
costimulatory potential of VCAM-1, coupled with expres- 
sion of VCAM-1 on unique APCs, suggests an important 
role for the VLA-4/VCAM-1 interaction in the regulation 
and modification of specific T cell responses. These results 
show the importance of adhesion molecules in facilitating 
T cell activation and suggest the mediation of specific co- 
stimulatory signals by the LFA-1 and VLA-4 integrins after 
interaction with their natural ligands. 
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