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Abstract

This report describes an R package, called the Individualized Coherent Absolute Risk Esti-

mator (iCARE) tool, that allows researchers to build and evaluate models for absolute risk

and apply them to estimate an individual’s risk of developing disease during a specified time

interval based on a set of user defined input parameters. An attractive feature of the soft-

ware is that it gives users flexibility to update models rapidly based on new knowledge on

risk factors and tailor models to different populations by specifying three input arguments: a

model for relative risk, an age-specific disease incidence rate and the distribution of risk fac-

tors for the population of interest. The tool can handle missing information on risk factors for

individuals for whom risks are to be predicted using a coherent approach where all estimates

are derived from a single model after appropriate model averaging. The software allows sin-

gle nucleotide polymorphisms (SNPs) to be incorporated into the model using published

odds ratios and allele frequencies. The validation component of the software implements

the methods for evaluation of model calibration, discrimination and risk-stratification based

on independent validation datasets. We provide an illustration of the utility of iCARE for

building, validating and applying absolute risk models using breast cancer as an example.

Introduction

Absolute risk models estimate disease risk in an upcoming time interval based on known risk

factors for healthy individuals in a population, accounting for the presence of competing out-

comes, such as death from other causes [1, 2]. Absolute risk models for cancers and other dis-

eases have important clinical and public health applications. Assessment of absolute risk of

disease is fundamental for developing health intervention strategies to optimize an individual’s

risks and benefits. For example, absolute risk models can be used to identify individuals who

have a high risk of disease in order to target screening and disease prevention strategies [3–6].

Decisions regarding the initiation of screening or preventive intervention are often made on
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the basis of age and family history, considered proxies for risk. However, there is increasing

consensus in the medical community that these decisions should instead be guided directly by

individualized estimates of risk, which can be obtained from absolute risk models that include

a wider array of environmental and genetic risk factors. Assessment of the distribution of risks

for individuals in the population allows public health researchers to weigh the risks and bene-

fits of a given intervention, such as a screening regimen, for the entire population [7–9]. Abso-

lute risk models can also be applied to assess the power of clinical trials by projecting the

expected distribution of disease risk from the distribution of risk factors in a population [6]. At

an individual level, absolute risk estimates can be used to counsel individuals on the basis of

their personalized risk.

As large scale epidemiologic studies continue to discover new risk factors for many diseases,

there is a growing demand to develop and apply models for absolute risk prediction that can

facilitate translation of our understanding of etiology into tools for managing health. At pres-

ent there does not exist a general software for researchers to build, update, evaluate and apply

absolute risk models in R [10], and the Individualized Coherent Absolute Risk Estimation

(iCARE) package provides this much needed capability.

The iCARE package builds absolute risk models by synthesizing multiple data sources con-

taining information on relative risks, the distribution of risk factors in the population, and

age-specific incidence rates for the disease of interest and rates of competing risks. This

compartmentalization allows researchers to incorporate the best available information on key

model parameters, to easily update models as new information becomes available, and to tailor

or extend models to particular populations. For clinical applications of absolute risk prediction

models, it is critical that they are validated in independent studies that did not contribute to

the model building. Model validation involves two aspects: (i) model calibration i.e., whether

the model is producing unbiased estimates of risk in subjects with varying risk factor profiles;

(ii) model discrimination, i.e., ability of the model to draw distinction between cases and con-

trols. We have updated iCARE with a validation component, that will allow evaluation of

comparative performance of models, possibly across different studies, using a unified set of

methods. Releasing iCARE will reduce that start up time for researchers, help standardize the

methodology and make it easy to share absolute risk models and make associated analyses

reproducible. The package also implements methods for handling missing covariate data,

which is likely to be an issue in practice, and gives special attention to the efficient incorpo-

ration of genetic factors based solely on published information.

iCAREmethodology: Synthesizing data sources

Here, we present the statistical framework underlying the iCARE package. We describe the

data inputs that are required to use the tool, examples of appropriate sources for the data, and

details regarding how the key inputs are used to estimate model parameters. Specifically, we

explain the methodology used to estimate the baseline hazard function component of the

model and the approach used to handle missing data in the risk factor profiles used in the esti-

mation of individuals’ risks. We describe the tool’s special treatment of SNPs, which allows

genetic risk factors to be incorporated into the model based on published information.

Model

The iCARE package fits a model for absolute risk, assuming the age-specific incidence rates of

the disease given a set of risk factors, Z, follow the Cox proportional hazard (PH) model [11]
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of the form

PrðT 2 ½t; t þ DtÞjT � t;ZÞ ¼ lðtjZÞ ¼ l0ðtÞ expðb
TZÞ;

where T represents the time to onset of the disease of interest. The model assumes that risk fac-

tors Z act in a multiplicative fashion on the baseline hazard function, λ0(t). Given this model,

the absolute risk of the disease for an individual who is currently at age a over the time internal

a + τ is defined as [1],

Z aþt

a
l0ðtÞ exp ðb

TZÞ exp ð�
Z t

a
½l0ðuÞ exp ðb

TZÞ þmðuÞ�duÞdt: ð1Þ

Formula (1) accounts for competing risks due to mortality from other causes through the

age-specific mortality rate function m(t). In the current implementation, for simplicity, it is

assumed that risk of mortality does not depend on the risk factor Z, but the method, in princi-

ple, can be extended to relax this assumption if covariate-specific risks of competing mortality

can be estimated from external sources or models.

Data and estimation

In order to build the above model and apply it for absolute risk estimation, users must provide

three main data sources:

• a model for the log relative risk (or log hazard ratio) parameters: β

• a marginal age-specific disease incidence rate: λm(t)

• a dataset containing risk factors for a set of representative individuals that could be used to

estimate the risk factor distribution for the underlying population: Zj for j = 1, . . ., Nref

In order to account for competing risks, an optional input with age-specific incidence rates

of all-cause mortality, ideally excluding the disease of interest, m(t) should also be provided.

The iCARE tool computes absolute risk estimates as the sum of the integrand of (1) over

integer ages in the time interval of interest. The user-provided log relative risk parameter esti-

mates, b̂, are plugged into the equation directly to carry out the computation. There are a

number of ways that these input parameters may be obtained. For example, the estimates b̂

may be derived from the analysis of a prospective cohort study using a multivariate PH model.

It is recommended that assumptions, such as proportionality of hazards, are tested in those

studies that produced the estimates of the regression coefficients and standard functions from

R packages can be used for this step (e.g., survival package). Alternatively, they may be

obtained from the analysis of a population-based incident case-control study using a multivari-

ate logistic regression model adjusted for fine categories of age [12]. Ideally, datasets used to

estimate model parameters should include information on all risk factors of interest and be

large enough to provide precise estimates. When this is not available, estimates of relative risk

for different risk factors could be obtained from multiple data sources (e.g., large published

studies or meta-analyses). It is important that the provided estimates are adjusted for other

risk factors in the model and interactions. Often information on odds-ratio parameter are

more widely available in practice and one can approximate hazard ratios by odd-ratios under

the assumption of rare disease, at least within small age intervals.

The second data source needed for the model is an estimate of the overall (or marginal)

age-specific disease incidence rate, defined as

PrðT 2 ½t; t þ DtÞjT � tÞ ¼ lmðtÞ;

iCARE: An R package to build, validate and apply absolute risk models
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for the population of interest. This information, for example, could be available from popula-

tion-based registries, such as the United States’ Surveillance Epidemiology and End Results

(SEER) cancer registry maintained by the National Cancer Institute [13]. Similarly, users who

wish to account for competing risks must provide the optional marginal age-specific incidence

rates of all-cause mortality excluding the disease of interest

PrðM 2 ½t; t þ DtÞjM � tÞ ¼ mðtÞ:

In general it is best to incorporate rates defined for fine age categories, such as 1- or 5-year age

strata, however iCARE can accommodate information on coarser age strata as well. For esti-

mation, the age-specific disease incidence rates λm(t) are used in combination with the third

data input, a dataset of risk factors that is representative of the population of interest, to esti-

mate the baseline hazard function, λ0(t).

Estimating the baseline hazard function

Given the model of log relative risks, b̂, and marginal age-specific disease incidence rates,

l̂mðtÞ, we use the following relationship to derive the baseline hazard rate

lmðtÞ ¼ l0ðtÞE½expðb
TZÞjT � tÞ� ¼ l0ðtÞ

Z

expðbTzÞPrðzjT � tÞdz; ð2Þ

where, under the proportional hazard model,

PrðzjT � tÞ ¼
expð�

R t
0
l0ðuÞ expðb

TzÞduÞ
R

exp
n
�
R t

0
l0ðuÞ expðb

TzÞdu
o
dFðzÞ

with F(Z) denoting the distribution of the risk factors in the underlying population. If the dis-

ease can be assumed to be rare, then (2) can be approximated in closed form as

lmðtÞ �
Z

l0ðtÞ expðb
TzÞdFðzÞ:

Computationally, the iCARE implementation starts with an initial value for λ0(t) based on the

rare disease approximation and iterates based on formula (2) to obtain more exact estimates.

This approach is closely related to an alternative approach for estimation of λ0(t) described by

[1]. The latter approach involves estimation of baseline hazard using the risk factor distribution

from a random sample of cases. In contrast, our estimation method relies on an available distri-

bution of the risk factors for a general population. Thus, a model based on our proposed method

(as implemented by iCARE) can be easily updated to reflect the risk factor distribution for differ-

ent populations without requiring access to a sample of cases from each population of interest.

Specification of risk factor distribution

The risk factor distribution F(Z) plays a key role in calibrating the model to the marginal dis-

ease incidence rates in the underlying population. Thus, to carry out the calibration, the user

must provide individual level data on the model risk factors for a sample that is representa-

tive of the underlying population. This multivariate dataset should reflect the correlations

between the risk factors. Ideally, this representative dataset can come from a national survey,

an epidemiologic study such as a population-based cohort or controls from a population-

based case-control study sampled from the population of interest. When empirical data are

available, there are no additional modeling assumptions needed. However, if complete

empirical data in all risk factors are not available, users can instead provide a representative

iCARE: An R package to build, validate and apply absolute risk models
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dataset that may have been simulated under modeling assumptions appropriate to the popu-

lation of interest (e.g., independence of certain risk factors). We assume here that the user is

going to use best possible resource(s) to build this dataset and feed that into the software.

Handling missing data in covariate profile

In addition to providing the three data inputs for estimating model parameters, users must

provide information on risk factors for the individuals to whom the model should be applied.

When there is complete information for all risk factors of interest, risk estimation is as

straightforward as plugging the risk factors Z into formula (1). However, in practice there may

be missing data on some of the risk factors for individuals for whom we want to produce risk

estimates.

One way to handle missing data on risk factors for a given individual is to use multiple

imputation procedures [14]. The user would obtain estimates of absolute risk using iCARE
for each of the completed-by-imputation risk factor profiles for the individual, and then aver-

age the absolute risk estimates to obtain an overall estimate of the absolute risk for that

individual.

The iCARE tool also provides an internal option for handling missing data in the covariate

profile for prediction: model-free imputation based on the reference dataset of risk factors pro-

vided by the user. The methodology underlying this imputation is as follows. For any subject

indexed by i with a covariate profile Zi, we define the risk score Ri = βT Zi, the linear predictor

associated with the user specified log relative risk model. If a subject has missing values in

some of the covariates, we partition Ri ¼ Ro
iP þ Ru

iP, where P indexes the observed pattern of

missing data and where Ro
iP ¼ b

o
PTZ

o
iP and Ru

iP ¼ b
u
PTZ

u
iP denote the corresponding “observable”

and “unobservable” components of the risk score. In general, this partitioning depends on

which columns of the design matrix of the original model can be specified by the observed set

of covariates for a given individual’s risk factor profile. Given this partitioning, the absolute

risk, AR, of the individual i is defined by

ARðRo
iPÞ ¼

X

ruiP

ARðRo
iP; r

u
iPÞPrðr

u
iPjR

o
iPÞ ¼ E½ARðRo

iP;R
u
iPÞjR

o
iP�: ð3Þ

The absolute risk for the i-th individual is obtained by averaging over possible values for the

unobserved component of the risk score given the value of the observed component of the risk

score. As all the risk scores are scalar quantities, one can estimate the conditional distributions

PrðruiPjR
o
iPÞ in a fairly non-parametric fashion using the user-specified reference dataset.

In particular, to carry out (3) for a given covariate profile with missing data, the method

finds subjects in the reference dataset that are similar to the individual with missing data on

the basis of the observable component of the risk score, Ro
iP, informed by the observable risk

factors. Specifically, the observable risk scores Ro
jP are obtained for j = 1, ‥Nref in the reference

dataset, categorized into single percentile strata, and the individual’s observable risk-score Ro
iP

is matched to one of the strata. From the “matched” group, we then sample multiple times to

fill in the unobserved part of the risk-score for the individual with missing data. The final abso-

lute risk for an individual is calculated by taking average over the risks obtained from multiple

filled-in values for the risk-score. So, this is essentially a model-free multiple imputation

method where the user can specify the number of imputations (n.imps) and uncertainty is

accounted for by taking average over risks from multiple filled in values for the risk-score.

This imputation strategy based on the risk score can be viewed as a type of “hot deck” imputa-

tion in sample survey literature.

iCARE: An R package to build, validate and apply absolute risk models
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Special option for SNP markers

As large genome-wide association studies continue to discover low penetrant, common SNPs

associated with risk of complex chronic diseases, it is important to investigate the utility of the

SNPs, in combination with other risk factors, for public health strategies of disease prevention.

Evaluation of absolute risk, as opposed to relative risk which is typically used for summarizing

associations, is fundamental for these public health applications. Due to the importance of

SNP markers in absolute risk models and natural assumptions specific to genetic data, the

iCARE package provides a number of options for incorporating SNPs into the model.

Users can include individual SNPs in the model, or include a polygenic risk score (PRS), in

the same way as any other risk factor as long as all input components can be identified. This

allows researchers to specify interactions between SNPs and other risk factors in the model or

to include PRSs with more complex weighting structures, if desired. However, to include SNPs

this way, a reference dataset must be provided that has the individual SNPs (or the PRSs) for

all subjects. If the reference dataset is not available, the researchers may need to estimate this

reference distribution by creating a simulated dataset of individuals who are representative of

the underlying population.

Alternatively, the iCARE package also provides a special approach for handling indepen-

dent SNPs, which requires that the user only provide information on the odds ratio θk and

population allele frequency fk for each SNP to be included. iCARE internally creates a PRS

from all provided SNPs weighted by the odds ratios,

PRS ¼
X

k

logðykÞGk;

where Gk denotes the SNP genotype status of individuals, coded as the number of non-referent

alleles they carry (with respect to the referent allele for which the odds ratios are reported).

In general, iCARE assumes this PRS to be distributed independently of all other covariates.

However, if a family history (FH) variable is included in the model, then the method allows a

simple adjustment to account for correlation between PRS and family history. The adjustment

method assumes the latter is coded as a binary indicator of presence or absence of disease

among first-degree relatives. In particular, when the model risk factors include family history,

iCARE provides the option to adjust the log odds ratio associated with family history using

the formula:

b
A
FH ¼ bFH � 0:5

X

k

flogðykÞg
2
� 2fkð1 � fkÞ

with θk denoting the disease odds ratio of the SNPs, unadjusted for family history. This adjust-

ment reflects the fact that, with the addition of SNPs into the model, the effect of family history

is attenuated by a magnitude that is proportional to the degree of heritability explained by the

SNPs. This treatment should be applied only when the provided βFH represents the association

of a binary variable for presence or absence of disease among first-degree relatives, unadjusted

for the SNPs. Users may provide relative risk estimates for family history that are already

adjusted for the SNPs in the model, and if so they should simply not select the option for the

family history adjustment.

One important way in which this approach treats SNPs differently involves the reference

dataset of risk factors. This dataset might come from a national survey; however, a national

survey is unlikely to have genotyped individuals, particularly for the exact set of SNPs to be

included in the model. Recognizing this, for user convenience, the reference dataset just needs

to include non-genetic risk factors and iCARE will simulate SNP genotype values based on the

iCARE: An R package to build, validate and apply absolute risk models
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provided allele frequencies for the population. The SNPs are multiply imputed with user-speci-

fied number of imputations (n.imps) for each subject in the reference dataset. The method

assumes that the SNPs are independent and that the genotype distributions follow Hardy-

Weinberg Equilibrium in the population. Specifically, the joint distribution of SNP genotypes

and other risk factors (X) are assumed to follow the decomposition

Prðg1; . . . ; gk;XÞ ¼ Prðg1; . . . ; gkjFHÞ � PrðXÞ:

If family history of the disease is included in the model as a binary risk factor indicating the

presence or absence of any first-degree relative with disease history, assuming that the disease

is rare, we approximate

Prðg1; . . . ; gkjFH ¼ 0Þ � Prðg1; . . . ; gkÞ ¼ Prðg1Þ � . . .� PrðgkÞ:

The distribution of SNP genotypes among subjects with family history is approximated as

Prðg1; . . . ; gkjFH ¼ 1Þ � Prðg1jFH ¼ 1Þ � . . .� PrðgkjFH ¼ 1Þ; where

Prðgk ¼ gjFH ¼ 1Þ ¼
y

0:5g
k Prðgk ¼ gÞ

X2

l¼0

y
0:5l
k Prðgk ¼ lÞ

:

The above approximation is derived under the assumption of rare disease and multiplicative

effect of SNPs on the risk of the disease and uses Mendel’s laws of inheritance. If family history

is not indicated to be in the model, and is thus not provided for each reference dataset subject,

we impute the SNPs based on the unconditional distribution for independent SNPs in Hardy-

Weinberg equilibrium.

It is possible that SNP information may also be missing in the covariate profiles for whom

the model will be applied to estimate risk. In this case, SNPs are treated the same as all other

risk factors and handled according to the methodology as described earlier. This approach is

equivalent to averaging over the possible values of the missing SNPs according to the popula-

tion distribution, taking advantage of any known SNPs in the genotype profile.

Computation of confidence intervals for absolute risk

Absolute risk estimation using iCARE requires information on the relative risk of the risk fac-

tors and population-based disease incidence rates and competing mortality rates and an indi-

vidual level reference dataset of risk factors representative of the underlying population. One

can compute confidence intervals for absolute risk using the bootstrap methods. We can

assume that the incidence rates and competing mortality rates to be known without uncer-

tainty. The relative risks can be re-sampled using a parametric bootstrap approach assuming a

multivariate normal distribution with the mean and variance covariance matrix derived from

prior studies. The reference dataset can also be re-sampled using non-parametric bootstrap.

For each sample, we can estimate the absolute risk using the formula (1). This will give a distri-

bution of the absolute risks based on the bootstrapped re-samples and the confidence intervals

can be computed using this distribution. Given the formula (1) of absolute risk is a smooth

functional of the different input parameters (relative-risk and reference risk-factor distribu-

tion), we expect from standard theory that this will be a valid method.

In risk prediction literature, there is debate about the value of uncertainty estimates associ-

ated with individual risk estimates beyond measures. The risk itself is a measure of uncertainty

associated with whether one individual will develop a disease in the future or not and a concept

clinicians and general public often struggle with. While providing an estimate of uncertainty

iCARE: An R package to build, validate and apply absolute risk models
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of uncertainty can be of some statistical interest, how such information can be useful in prac-

tice is unclear. Like other popular risk tools (e.g., the Gail model: https://bcrisktool.cancer.

gov), the current version of iCARE does not return estimate of uncertainty, such as 95% CI,

with the estimate of the absolute risk of the individual.

Model validation methods

Suppose we are given a model to predict the absolute risk of a disease. In other words, the dif-

ferent pieces of information needed to estimate absolute risk in (1) are given to us. Moreover,

we also have an independent prospective cohort study (or a case-control study nested within a

cohort), that we would like to use to validate the absolute risk model. Given below are the steps

for implementing the model validation methods in the independent study.

Model calibration. Model calibration attempts to answer the question whether the risk

prediction model is producing unbiased estimate of risk for subjects with varying risk factor

profiles. The observed followup for a subject in the validation cohort is defined as the time

from study entry to the last contact or linkage for acquiring information. It is possible to vali-

date a model over the entire follow-up period of study. However, researchers often desire to

validate a model for absolute risk over a fixed year (τ) of follow-up (e.g., 5-year or 10-year). In

that scenario, the predicted risk for each subject is calculated over the minimum of τ years and

observed follow-up. The predicted risk can be supplied by the user. Alternatively, it can be

computed by iCARE, using Eq (1), with the input components supplied by the user.

For evaluating model calibration, the subjects who developed the disease over the minimum

of τ years and observed follow-up were considered as cases and the subjects who did not were

designated as controls. We categorize the validation cohort based on low risk to high risk of

disease based on a pre-specified number of categories (e.g., deciles) of the risk score Ri. We

denote the categorical version of risk score as ~Ri. The categories are indexed by c = 1, . . ., C
(e.g., C = 10 for deciles). At each category, we compute the observed proportion of cases (p̂o;c)

in that category. For comparison, we also compute an average of the subject specific predicted

absolute risk of disease, p̂e;c, over the subjects in that category. An influence function based var-

iance formula for p̂o;c is implemented (details in Appendix). The 95% Wald based confidence

intervals for p̂o;c are computed using this variance formula. iCARE reports a ratio of the

expected to observed number of cases and its 95% confidence interval. The popular Hosmer-

Lemeshow type test for goodness of fit is also implemented, where the test statistic has the

form:

HL ¼
XC

c¼1

ðp̂o;c � p̂e;cÞ
2

Var½p̂o;c�

The above HL statistic approximately follows a chisquare distribution with C degrees of free-

dom. This test, in spite of its limitations [15], is intuitively appealing and easily understood by

subject matter scientists. The next version of iCARE will implement more sensitive tests for

model validation based on the approach proposed in [15] and the R package rms.

The software also has capabilities to perform calibration on the scale of relative risks. The

observed relative risk in each category is defined as the ratio of the observed proportion of

cases in that category and the observed proportion of cases in the validation study. For com-

parison, the predicted relative risk is computed as the average of the predicted absolute risk

over the subjects in that category and the overall average of the predicted absolute risks in the

validation study. A variance formula for the observed relative risk is implemented (details in

Appendix) and is used to compute the 95% Wald based confidence intervals. A chi-square
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goodness of fit test for relative risk is also implemented. It is possible to check model assump-

tions (e.g., proportional hazards assumption) by investigating relative risk calibration in differ-

ent categories of age.

In a cohort study, data on some expensive bio-markers (e.g., genetic risk factors) are often

collected only on a judiciously selected sub-sample nested within the original cohort (e.g., a

nested case-control sample). In this case, the estimates of absolute and relative risks need to be

adjusted to account for the non-random sampling using sampling weights. An inverse-proba-

bility weighted (IPW) approach is implemented to estimate the absolute risks. Let Ii denote the

indicator of inclusion of a cohort subject (indexed by i) to the nested case-control sample and

Yi denote the case-control status. Denote by πi(Yi, Zi) = Pr[Ii = 1|Yi, Zi], the sampling weight,

i.e., the probability of inclusion for a subject indexed by i. The cut-points for the risk score cat-

egories are calculated using these sampling weights by inverting a weighted empirical distribu-

tion function of the risk score. The adjusted estimates of observed proportion of cases and

average of predicted risks, overall and at each category, are computed as the corresponding

weighted averages (instead of simple averages) with weights being inverse of the sampling

weights. A variance estimator of the observed proportion of cases in each category is also

implemented using the influence function approach (details in Appendix). The 95% Wald

based confidence interval is computed using this variance formula. The Hosmer-Lemeshow

type goodness of fit test statistic also uses this variance formula in its denominator.

Model discrimination. For well calibrated models, it is critical that the risk factors used in

the model have good discriminatory power i.e., ability to differentiate between cases and con-

trols. A risk prediction model with good discriminatory ability ensures that there is a good

amount of spread in the risk distribution of the subjects to facilitate risk stratification leading

to better evaluation of risks and benefits. A common measure of model discrimination is the

Area Under the Curve (AUC) defined as δ = Pr[R1 > R0], i.e., the probability that the risk

score for a case (R1) is larger than the risk score for a control (R0). For a cohort study, this

probability can be estimated using the empirical proportion of case-control pairs for which the

risk score of the case is greater than that of the control. For this setting, the asymptotic variance

formula of this estimator [16] is implemented and used to compute the 95% Wald based confi-

dence interval. For a nested case-control study, we implement an inverse probability weighted

estimator of AUC [17–21]. We also implement an influence function based variance estimate.

The influence function representation and the variance formula are shown in the Appendix

and further details are provided in [22]. The 95% Wald based confidence interval of this esti-

mator is computed using this variance estimate.

Existing R packages

In this section, we describe some of the unique aspects of iCARE compared to existing R pack-

ages for building and validating a model for predicting risk of a disease (see Table 1 for a sum-

mary). There are additional software packages developed in other platforms that allow risk

calculation of specific cancers, e.g., IBIS Breast Cancer Risk Evaluation Tool [23, 24] and Breast

and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA)

[25–28].

Model building

The riskRegression package [29–31] implements various regression based methods

for estimation of cumulative incidence in a cohort study setting with time-to-event out-

come subject to censoring. The methods cannot be easily adapted to use information from

multiple data sources, such as relative risk parameters from case-control studies and disease
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incidence information from population registries. In the PredictABEL package [32], the

conditional probability of disease given risk factors is estimated using a logistic regression

model. The target quantity is different from absolute risk. The BayesMendel package

[33] implements Bayesian approaches to genetic risk prediction using information from

detailed family history, genetic test results and some tumor characteristics. It is based on

Mendelian inheritance mechanisms in the setting of family based studies of some specific

cancers (e.g., breast cancer, colorectal cancer, pancreatic cancer, endometrial cancer). As

opposed to their method, we focus on risk prediction in the general population using infor-

mation from common genetic variants and epidemiologic risk factors in settings where

detailed family history may not be available.

The BCRA package [34] is developed to calculate risk projections for invasive breast can-

cer based on the Gail model [1], and its subsequent extensions in the different ethnic groups

[35–38]. The model uses information from some epidemiologic risk factors and family his-

tory of breast cancer. The basic setup of iCARE and BCRA are similar as both build models

for absolute risk using information from different data sources and they use the same for-

mula for the absolute risk based on an underlying Cox proportional hazard model [1]. There

are, however, important differences in the underlying methodology. For estimating baseline

hazard and calibrating the model to the underlying population incidence rates, BCRA uses

the distribution of risk factors in cases of the study population. In contrast, we perform this

calibration step using the distribution of risk factors coming from the general population.

Our approach allows for developing risk models that reflect the distribution of risk factors in

the underlying population without having to use the distribution of risk factors from cases

of a specific study that may not be representative of the general population. While the BCRA
does not have an inbuilt machinery to handle missing risk-factor data, the iCARE uses a

coherent approach that involves internal imputation of missing risk-factors from the same

model with appropriate model averaging.

Table 1. Summary of features of existing R packages for risk prediction. ✓ denotes the presence of the feature and × denotes absence of the feature.

Packages Model building Model validation

Calibration to

population incidence

Detailed family

history

Special option for

SNP markers

Imputation of missing

risk-factors

Full

cohort

Two-phase

study

Imputation of missing

risk-factors

riskRegressiona × × × × ✓ × ×
predictABELa × × × × ✓ × ×
BCRAb ✓c × × × × × ×
BayesMendelb × ✓ × ✓ × × ×f

rmap × × × × ✓ ✓e ×
iCAREb ✓c × ✓d ✓ ✓ ✓e ✓f

a These packages include some functions for model building (see Section), but those approaches do not demonstrate the key features shown in the above table.
b Capability to use information from multiple data sources, e.g., BCRA and iCARE can use relative risk parameters from cohort or case-control studies and disease

incidence and mortality rates from population registries.
c BCRA estimates baseline hazard and calibrates the model to the underlying population incidence rates using distribution of risk-factors from cases in a specific study

that may not be representative of the general population. This step is implemented in iCARE using a reference dataset that provides information on the distribution of

risk-factors in the general population.
d iCARE includes the special option in which independent SNP markers can be included using published estimates of odds ratios and allele frequencies.
e Inverse probability weighted estimators of model validation statistics are implemented, accounting for bias due to non-random sampling using sampling weights.
f BayesMendel incorporates imputation methods for certain risk-factors (e.g., age), but they do not implement any method of validating risk prediction models. iCARE

implements an inbuilt imputation approach to deal with missing risk-factors using a reference risk-factor dataset representative of the underlying population. The

standardized model validation methods implemented in iCARE can take advantage of this inbuilt feature to impute missing risk-factors in the validation study.

https://doi.org/10.1371/journal.pone.0228198.t001
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Model validation

The riskRegression and PredictABEL packages have limited capability of model vali-

dation in a cohort study setting. The rmap package [39–41] implements methods for indepen-

dent evaluation of risk prediction models in studies that may involve two phase designs. One

unique feature of iCARE, that is not available in other packages, is that it includes an exhaus-

tive set of functions so that model building and model validation can be implemented in tan-

dem. Thus the iCARE based model validation procedures can take advantage of the inbuilt

features of the package to deal with summary level genetic information and imputation of

missing risk factors.

Illustrations

In this section, we demonstrate how to use iCARE to build and apply two absolute risk models

for breast cancer: one with only SNP markers, and one with classical risk factors and SNPs.

We also illustrate the use of the validation component of the package.

We use computeAbsoluteRisk function in iCARE to compute absolute risk. The

input arguments to this function are named with the prefix “model.” or “apply.” accord-

ing to whether they are used primarily for model building or application respectively.

The R package can be downloaded from the GitHub repository (https://github.com/

parichoy/iCARE) using the commands:

R> install.packages(“devtools”, dependencies = TRUE)
R> library(devtools)
R> devtools::install_github(“parichoy/iCARE”)
Alternatively, it can be downloaded and installed from the Bioconductor website (http://

bioconductor.org/packages/release/bioc/html/iCARE.html) using the instructions provided

there. The GitHub version of the package is non-archival and may acquire new features earlier,

while the Bioconductor version is archival.

In the next step, we load the package and the example dataset object bc_data:

R> library(“iCARE”)
R> data(“bc_data”, package = “iCARE”)
R> set.seed(50)

Example 1: SNP-only model

To specify a SNP-only model, we must input the marginal age-specific incidence rates of breast

cancer, bc_inc, and the SNP information matrix, bc_72_snps, that has three columns

named: snp.name, snp.odds.ratio, and snp.freq. Marginal age-specific incidence

rates of competing risks (mort_inc) are optional. We include them in this example.

Here, bc_72_snps contains published information on odds-ratios and allele frequen-

cies of 72 SNPs identified, among a larger set of markers, to be associated with breast cancer

risk by a recent genome-wide association study [42]. bc_inc contains age-specific inci-

dence rates of breast cancer from Surveillance, Epidemiology and End Results (SEER) Pro-

gram, and mort_inc has age-specific incidence rates of all-cause mortality from the

WONDER mortality database [43]. In fitting a SNP-only model, the reference dataset need

not be provided as iCARE will impute the reference SNP distribution based on SNP allele

frequencies. The function call below builds an absolute risk model based on 72 SNPs for

breast cancer and applies the model to estimate risk of breast cancer in the interval from age

50 to age 80:

R> res_snps_miss = computeAbsoluteRisk(model.snp.
info = bc_72_snps,
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model.disease.incidence.rates = bc_inc,
model.competing.incidence.
rates = mort_inc,
apply.age.start = 50,
apply.age.interval.length = 30,
return.refs.risk = TRUE)

For this SNP-only model, we first opted for not providing any new profiles for estimation

(i.e., no apply.snp.profile input). In this case, iCARE simulates 10,000 SNP profiles

internally for the reference dataset and reports as the risk estimate the average of the risks esti-

mated from the profiles: 0.096. We can access the estimated risks for the (simulated) referent

profiles and obtain summary information by calling:

> summary(res_snps_miss$refs.risk)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.05745 0.08666 0.09494 0.09600 0.10422 0.15882
From this, we learn that on average women of age 50 years have a 9.6% chance of being

diagnosed with breast cancer before age 80, and that the 72-SNP model stratifies breast cancer

risk from a minimum risk of 5.75% to a maximum risk of 15.88% in the age interval 50 years

to 80 years.

Next, suppose we want to predict risk for three specific women whom we have genotyped;

we can then call:

R> res_snps_dat = computeAbsoluteRisk(model.snp.
info = bc_72_snps,

model.disease.incidence.rates = bc_inc,
model.competing.incidence.
rates = mort_inc,
apply.age.start = 50,
apply.age.interval.length = 30,
apply.snp.profile = new_snp_prof,
return.refs.risk = TRUE)

Now our output res_snps_dat$risk contains the risk estimates for the three women

whose genotype profiles were provided in apply.snp.profile = new_snp_prof.

Additionally, we have put the option: return.refs.risk = TRUE. Hence,

res_snps_dat$refs.risk returns the risk estimates for the reference dataset based on

10,000 internal simulations. These results allow us to create a useful plot (Fig 1) showing the

distribution of risks in our reference dataset and to add the risks of the three women to see

where they fall on the population distribution. We use the code:

R> plot(density(res_snps_dat$refs.risk),
xlim = c(0.04,0.18), xlab = “Absolute Risk of Breast
Cancer”,
main = “Referent SNP-only Risk Distribution: Ages 50-80
years”)

R> abline(v = res_snps_dat$risk, col = “red”)
R> legend(“topright”, legend = “New profiles”, col = “red”,
lwd = 1)
In this example, the first genotype profile had missing data on five SNPs. The second geno-

type profile had missing data on a different set of five SNPs. This demonstrates the capability

of iCARE to produce risk estimates when there is missing data in the risk factor profile with-

out compromising on user convenience.
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Example 2: Breast cancer risk model with risk factors and SNPs

In this example, we illustrate the use of iCARE to build models of absolute risk with both clas-

sical risk factors and SNPs. The classical risk factors included in the model are shown in

Table 2 [44].

The first step is to prepare the input parameters bc_model_cov_info, containing the

classical risk factor information and bc_model_formula, containing the model formula

object for the part of the model with epidemiologic risk factors only.

After preparing the data sources, we can now run:

R> res_covs_snps = computeAbsoluteRisk(model.
formula = bc_model_formula,

model.cov.info = bc_model_cov_info,
model.snp.info = bc_72_snps,
model.log.RR = bc_model_log_or,
model.ref.dataset = ref_cov_dat,
model.disease.incidence.
rates = bc_inc,
model.competing.incidence.
rates = mort_inc,
model.bin.fh.name = “famhist”,
apply.age.start = 50,
apply.age.interval.length = 30,
apply.cov.profile = new_cov_prof,
apply.snp.profile = new_snp_prof,
return.refs.risk = TRUE)

Fig 1. Estimated absolute risk of three women overlaid on the population distribution of absolute risk in the age

interval: 50-80 years.

https://doi.org/10.1371/journal.pone.0228198.g001
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Table 2. Detailed information about the classical risk factors included in the model.

Risk factor Variable name Variable type

Family history (presence or absence of disease among first degree

relatives)

famhist Binary

Presence

Absence

Age at menarche (years) menarche_dec Categorical:

� 11

11-11.5

11.5-12

12-13

13-14

14-15

>15

Parity (number of full term pregnancies) parity Categorical

nulliparous

1 birth

2 births

3 births

� 4 births

Age at first birth (years) birth_dec Categorical

� 19

19-22

22-23

23-25

25-27

27-30

30-34

34-38

>38

Age at menopause (years) agemeno_dec Categorical

�40

40-45

45-47

47-48

48-50

50-51

51-52

52-53

53-55

>55

Height (meters) height_dec Categorical

� 1.55

1.55-1.57

1.57-1.60

1.60-1.61

1.61-1.63

1.63-1.65

1.65-1.66

1.66-1.68

1.68-1.71

>1.71

(Continued)
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We indicate model.bin.fh.name = “famhist” to allow the software to properly

attenuate the log odds ratio for family history to account for the addition of the 72 SNPs. With

the exception of model.bin.fh.name, which is always optional, the arguments model.
formula, model.cov.info, model.log.RR, model.ref.dataset, apply.
cov.profile should either be included or excluded in the function call as a set. This is to

say that if one is included, then all should be included.

The above function call fits an absolute risk model with classical risk factors and 72 SNPs

associated with breast cancer. In a model that includes risk factors, such as this one, we must

Table 2. (Continued)

Risk factor Variable name Variable type

Body mass index (BMI, kg/m2) bmi_dec Categorical

� 21.5

21.5-23

23-24.2

24.2-25.3

25.3-26.5

26.5-27.8

27.8-29.3

29.3-31.4

31.4-34.6

>34.6

Use of Hormone Replacement Therapy (HRT) rd_menohrt Categorical

Premenopausal

Postmenopausal and never HRT user

Postmenopausal and ever HRT user

Use of estrogen + progesterone combined therapy rd2_everhrt_c Binary

Postmenopausal and ever user of combined therapy

therapy

Otherwise

Use of estrogen only therapy rd2_everhrt_e Binary

Postmenopausal and ever user of estrogen only therapy

Otherwise

Current use of HRT rd2_currhrt Binary

Postmenopausal and current HRT user

Otherwise

Alcohol, drinks/week alcoholdweek_dec Categorical

None

0-0.4

0.4-0.8

0.8-1.5

1.5-3.2

3.2-5.7

5.7-9.8

>9.8

Smoking status ever_smoke Binary

Ever

Never

Interaction of BMI and use of HRT rd_menohrt�bmi_dec Categorical

https://doi.org/10.1371/journal.pone.0228198.t002
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supply the model formula, the risk factor information, the log odds ratios for the risk factors,

and a reference dataset of risk factors to build the model. The model.cov.info gives the

variable names and types (i.e., continuous or categorical) for the classical risk factors. The

bc_model_log_or input contains the log odds ratios for classical risk factors, from a logis-

tic regression model adjusted for cohort and fine categories of age in the Breast and Prostate

Cancer Cohort Consortium [45–47]. The ref_cov_dat dataset was created by simulation

from the National Health Interview Survey (NHIS) and the National Health and Nutrition

Examination Survey (NHANES), which are representative of the US population.

In addition to summarizing and plotting the risk estimates, iCARE includes an option to

view more detailed output, by calling:

R> print(res_covs_snps$details)
This reports the interval start and end ages over which absolute risk was computed, the

entire covariate profile to which the model was applied (SNPs and risk factors, if applicable),

and the resulting risk estimate.

In this example, some of the classical risk factors were specified as decile categories to

model parsimoniously the non-linearity asscoiated with certain risk factors as reported in the

paper by Maas et al. [44]. It is possible to specify as input parameters in iCARE, more complex

model fit that may include non-linear transformations (e.g., splines) of continuous predictors.

The software has capabilities to generate absolute risks based on such models provided the

user appropriately specifies the input parameters: model formula, model covariate informa-

tion, log-relative risks, variables for the reference dataset.

Validation component

We illustrate the working of the model validation component of iCARE by evaluating a risk

prediction model with both classical risk factors and SNPs using simulated data.

The package includes a full cohort data in validation.cohort.data generated

through simulation. There are 50,000 subjects with information on age of study entry, age of

study exit, time to disease onset, disease status and classical risk factors in Table 2. A common

scenario in modern cohort studies is that the genetic factors are not measured on all the subjects

in the cohort, but only on a judiciously selected sub-sample. The package also includes a case-

control sample (validation.nested.case.control.data) of 5,285 women nested

within the full cohort with information on age of study entry, age of study exit, time to disease

onset, disease status, classical risk factors and 72 breast cancer associated SNPs. Further details on

how the full cohort and nested case-control data were simulated are provided in the Appendix.

To validate a model with epidemiologic risk factors and SNPs, we will use the nested case-

control sample. The calibration and discrimination statistics need to be adjusted for the non-

random sampling using sampling weights (i.e., probability of selection of a subject to the

nested case-control sample). When sampling weights are not provided, we recommend using

post-hoc estimation by assuming parametric models for selection mechanism. We illustrate

the sampling weight calculation through a logistic regression model of inclusion on disease sta-

tus, age of study entry, observed follow-up and interaction of disease status with age of study

entry and observed follow-up.

The first step is to identify the subjects in the full cohort who are included in the nested

sub-sample through matching of subject identifiers and create the indicator of inclusion:

R> validation.cohort.data$inclusion = 0
R> subjects_included = intersect(validation.cohort.data$id,

validation.nested.case.control.
data$id)
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R> validation.cohort.data$inclusion[subjects_included] = 1
The next step is to fit a logistic regression model of inclusion depending on the case/control

status, age of study entry and observed followup using the R function glm, as shown below:

R> validation.cohort.data$observed.followup =
validation.cohort.data$study.exit.age -

validation.cohort.data$study.
entry.age

R> selection.model = glm(inclusion ~ observed.outcome
� (study.entry.age + observed.
followup),

data = validation.cohort.data,
family = binomial(link = “logit”))

R> validation.nested.case.control.data$sampling.weights =
selection.model$fitted.values[validation.cohort.data
$inclusion == 1]

In the above code chunk, the second line shows the call to the glm function to fit the selec-

tion model. Once we have the sampling weights, we can call the ModelValidation func-

tion in iCARE that implements the validation analysis. We specify the risk prediction model

formula with epidemiologic risk factors only in bc_model_formula. The list object

risk.model combines all the input parameters required by the computeAbsolute-
Risk() function, used internally by the ModelValidation function to estimate absolute

risks in the validation study.

R> data = validation.nested.case.control.data
R> risk.model = list(model.formula = bc_model_formula,

model.cov.info = bc_model_cov_info,
model.snp.info = bc_72_snps,
model.log.RR = bc_model_log_or,
model.ref.dataset = ref_cov_dat,
model.ref.dataset.weights = NULL,
model.disease.incidence.rates = bc_inc,
model.competing.incidence.rates = mort_inc,
model.bin.fh.name = “famhist”,
apply.cov.profile = data[,all.vars(bc_model_-
formula)[-1]],
apply.snp.profile = data[,bc_72_snps$snp.name],
n.imp = 5, use.c.code = 1,
return.lp = TRUE, return.refs.risk = TRUE)

R> output = ModelValidation(study.data = data,
total.followup.validation = TRUE,
predicted.risk.interval = NULL,
iCARE.model.object = risk.model,
number.of.percentiles = 10)

In the above function call, the argument iCARE.model.object stores the list of input

parameters that are used by iCARE to build an absolute risk model and compute model based

estimates of risk in the validation study. The arguments study.data inputs the nested case-

control sample used for model validation. In this example, we have set total.followup.
validation = TRUE and predicted.risk.interval = NULL to indicate that we

are validating the risk over the duration of follow-up of the subjects in the validation study.

One can set these parameters appropriately to validate τ-year risk in a given study. We have set
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number.of.percentiles = 10 to indicate that the categories of low risk to high risk of

disease were defined based on the deciles of the risk score.

The output of model validation can be viewed using the print command as follows:

> print(output)
Dataset: Example Dataset
Model Name: Example Risk Prediction Model
Model Formula: diagnosis ~ famhist + as.factor(menarche_dec) +

as.factor(parity) + as.factor
(birth_dec) +
as.factor(agemeno_dec) +
as.factor(height_dec) +
as.factor(bmi_dec) + as.factor
(rd_menohrt) +
rd2_everhrt_e + rd2_everhrt_c
+ rd2_currhrt +
as.factor(alcoholdweek_dec) +
as.factor(ever_smoke) +
as.factor(rd_menohrt) � as.factor
(bmi_dec)

Risk Prediction Interval: Observed Followup
Number of study subjects: 5285
Number of cases: 1251
Follow-up time (years) [mean,range]: [9.706, (5,13)]
Baseline age (years) [mean,range]: [62.556, (50,72)]

Absolute Risk Calibration
Hosmer and Lemeshow goodness of fit (GOF) test for
Absolute Risk

data: observed.frequency, expected.frequency
Chisquare = 25.925, df = 10, p-value = 0.003843

Relative Risk Calibration
Goodness of fit (GOF) test for Relative Risk

data: observed.frequency, expected.frequency
Chisquare = 35.528, df = 9, p-value = 4.807e-05

Model Discrimination
Estimate of AUC: 0.587
95% CI of AUC: (0.568,0.605)

Overall Expected to Observed Ratio
Estimate: 0.967
95% CI: (0.908,1.03)
We can also produce an useful plot using the command plot(output) showing the vali-

dation results (Fig 2).

The goodness-of-fit test results indicate poor model calibration overall and it is driven by

some risk categories. The example dataset is simulated from a Cox regression model where the

baseline hazard has a particular Weibull distribution (details in Appendix). In the validation

analysis, we estimate the baseline hazard using the procedure in the paper that uses informa-

tion from the marginal age-specific breast cancer incidence rates from the Surveillance,

Epidemiology, and End Results (SEER) database of the National Cancer Institute. The

iCARE: An R package to build, validate and apply absolute risk models

PLOS ONE | https://doi.org/10.1371/journal.pone.0228198 February 5, 2020 18 / 25

https://doi.org/10.1371/journal.pone.0228198


Fig 2. Plots showing model validation results. The top left panel shows calibration results for absolute risk; the top right panel shows

calibration for relative risk with respect to the average risk in the validation study; the bottom left panel shows the distribution of risk score in

cases (red) and controls (black); the bottom right panel shows the population incidence rates (black) and the incidence rates estimated in

validation study (red).

https://doi.org/10.1371/journal.pone.0228198.g002
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miscalibration in the model is expected due to mismatch between the SEER incidence rates

with those generated from the Weibull model. We have investigated through simulations that

using the Weibull model based incidence rates the model shows good calibration on an aver-

age. The example dataset, which was made previously available in iCARE, still serves the pur-

pose of illustrating the working of the validation component of the package.

Additional options

The iCARE software provides several advanced options as well. For example, model.ref.
dataset.weights allows the user to optionally specify a vector of weights for each row in

the reference dataset. Whenever any averaging is performed over the reference dataset, such as

in the case of missing covariates for prediction, a weighted average is applied using the pro-

vided sampling weights.

Using the computeAbsoluteRiskSplitInterval function a user can specify that

the absolute risk interval be computed in two parts, using two different sets of parameters.

This allows the proportional hazards assumption to be relaxed to some extent, by allowing the

relationship between risk factors and the outcome to vary over time. For example, it is well

documented that the relationships between certain risk factors, such as body mass index, and

breast cancer are different among premenopausal and postmenopausal women. Using com-
puteAbsoluteRiskSplitInterval, users can specify a different set of relative risks

through the input parameters model.log.RR and model.log.RR2 for use prior to and

after a cutpoint of age 50 years, the median age of menopause. This function is also useful

when the distribution of risk factors varies with age.

In addition to returning risk estimates for the specified profiles, the iCARE functions can

optionally return the absolute risks for the reference dataset as well if return.refs.risk =
TRUE. The risk scores, or βT Zi, for the covariate profiles can be obtained by setting the param-

eter return.lp = TRUE. For individuals where there is missing data in covariate profile Z,

the reported linear predictor is the average of the full linear predictors of all referent subjects in

the matching strata based on the approach described earlier to handle missing covariate data.

Conclusion

The iCARE package is a new tool for building, validating and applying absolute risk models

by synthesizing data sources on key model parameters. The tool standardizes methodology

and gives researchers the ability to easily update and share absolute risk models, and to evalu-

ate the public health implications of etiologic findings by translating relative risks onto the

absolute risk scale. The package incorporates calibration to population-based age-specific dis-

ease incidence rates and handling of missing data by leveraging a reference dataset of risk fac-

tors for the population of interest. Through its handling of missing data and the ability to

incorporate SNP information based on published estimates, the tool gives researchers the abil-

ity to easily handle data analytic issues that are likely to arise in practice when building absolute

risk models for public health. The package also incorporates standardized methods and tools

for validating an absolute risk prediction model in independent studies: a step that is critical

for clinical application of risk models (e.g., risk based screening). In this article, we have

described the methodology underlying this new tool and illustrated its use with examples by

building and validating absolute risk models for breast cancer. This tool can be ultimately used

for clinical decision making. In that context, while the current package can run in the back-

ground, there needs to be more user friendly web or mobile application based interfaces that

could be easily accessed by clinicians or general public. The package, in its current form, will

be most useful for public health researchers.
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Appendix

Variance of category specific absolute risk

Here we derive the influence function based variance formula for Var½p̂o;c� in a nested case-

control study setting, where p̂o;c is the observed proportion of cases in the cateogry c. We

denote by pc, the probability limit of p̂o;c. This estimator can be obtained by solving the estimat-

ing equation based on the total number of subjects (N) in the cohort:

XN

i¼1

Ii
pðYi;ZiÞ

Ið~Ri ¼ cÞðYi � pcÞ ¼ 0

The influence function representation of this estimator is given by:

ðp̂o;c � pcÞ �
1

NP½~Ri ¼ c�

XN

i¼1

Ii
pðYi;ZiÞ

Ið~Ri ¼ cÞðYi � pcÞ

Based on this influence function representation, the asymptotic variance formula is given by:

Var½p̂o;c� �
1

NPr½~Ri ¼ c�
pcð1 � pcÞ þ E

ðY � pcÞ
2
ð1 � pðY;ZÞÞ
pðY;ZÞ

j~Ri ¼ c
� �� �

The variance formula includes a binomial variance term and a correction factor that comes in

due to the adjustment for non-random sampling of subjects in the nested case-control study.

For the full cohort setting, the second term will be zero and only the first term contributes to

the Var½p̂o;c�.

Variance of category specific relative risk

The category specific relative risk is defined as the ratio of the category specific absolute risk

and the average absolute risk in the validation study. The categories include approximately

equal number of subjects. Hence, the average absolute risk can be approximated by the average

of the absolute risk over the categories. We assume that the vector of the centered and scaled

category specific absolute risks follows a multivariate normal distribution with mean zero and

a diagonal variance-covariance matrix (SAR) with the diagonal entries given by the category

specific variance of absolute risk. The vector of category specific relative risks is a smooth func-

tion of the vector of category specific absolute risks. Hence we implement a Delta method to

compute the variance-covariance matrix (SRR) of the vector of category specific relative risks.

We denote the category specific observed relative risk to be cRRo;c and the category specific

predicted relative risk to be cRRe;c. We further denote, cRRo ¼ ð
cRRo;1; . . . ;cRRo;C� 1Þ

T
, cRRe ¼

ðcRRe;1; . . . ;cRRe;C� 1Þ
T

and ~SRR denote the corresponding (C − 1) by (C − 1) submatrix of SRR.

We implement a test for relative risk calibration using the test statistic ðcRRo �
cRReÞ

T ~S � 1
RRð
cRRo �

cRReÞ that can be approximated by a chisquare distribution with (C − 1) degrees of freedom.

Variance of Area Under the Curve (AUC)

We denote by I1(I0), the indicator of inclusion of a case(control) in the cohort study to the

nested case-control sample. Let n1(n0) be the number of cases (controls) in the cohort. The

inverse probability weighted estimator d̂ is obtained by solving the estimating equation:

Xn1

i¼1

Xn0

j¼1

I1iI0j

pð1;ZiÞpð0;ZjÞ
IðR1i > R0jÞ � d
� �

¼ 0. The influence function representation of this
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estimator is given by:

ðd̂ � dÞ �
1

n1

Xn1

i¼1

I1i

pð1;ZiÞ
ER0
½IðR1i > R0Þ� � d

� �
þ

1

n0

Xn0

j¼1

I0j

pð0;ZjÞ
ðER1
½IðR1 > R0jÞ� � dÞ.

Based on this representation, the asymptotic variance formula is given by:

Var½d̂� �
1

n1

Var½ER0
½IðR1 > R0Þ��

�

þ E
ðER0
½IðR1 > R0Þ� � dÞ

2
ð1 � pð1;ZÞÞ

pð1;ZÞ

" #!

þ
1

n0

Var½ER1
½IðR1 > R0Þ��

�

þ E
ðER1
½IðR1 > R0Þ� � dÞ

2
ð1 � pð0;ZÞÞ

pð0;ZÞ

" #!

Simulation study design for illustration of model validation

We simulate data for a cohort study with 50,000 subjects with information on age of study

entry, age of study exit, time to disease onset, disease status, classical risk factors and the 72

breast cancer associated SNPs in bc_72_snps. The classical risk factors are generated by

resampling the reference dataset (described in Example 2 in the manuscript) to create a dataset

with 50,000 subjects. We generate the 72 breast cancer associated SNPs using the allele fre-

quencies available in bc_72_snps and accounting for correlation with family history (details

described in manuscript). We use the log relative risks for classical risk factors given in

bc_model_log_or. For the SNPs, we use the log odds ratios given in bc_72_snps. We

generate an age of disease onset from a Cox model that assumes multiplicative association of

the risk factors on disease risk. The baseline hazard function of the Cox model is generated

from a Weibull distribution with parameters with hazard function λ0(t) = λγtγ−1 with λ =

0.9 × 10−6 and γ = 2.15. We generate age of study entry from a discrete uniform distribution in

the range 50 years to 72 years. We also generate a length of observed follow-up from a discrete

uniform distribution in the range 5 years to 13 years.

After we generate the full cohort data, we select a case-control sample nested within the

cohort and assume that data on the 72 SNPs are available only on this sub-sample. We assume

a logistic regression model of selection depending on case/control status, age of study entry

and observed follow-up and compute the selection probabilities using the following code:

selection.model.params = c(-6.52,8.47,0.05,0.11,-0.09,0.04)
selection.model.matrix = model.matrix(~observed.outcome �

(study.entry.age
+ observed.followup),

data = validation.cohort.data)

selection.exp.lin.pred = exp(selection.model.matrix %�%
selection.model.params)

selection.prob = (selection.exp.lin.pred/(1 + selection.exp.
lin.pred))
In the above code, the selection.model.params object gives the log-odds ratios

associated with the covariates in the selection model. The selection probabilities are used to

generate a binary inclusion (yes = 1, no = 0) variable from a Bernoulli distribution. All the sub-

jects with inclusion taking value 1 are included in the nested case-control sample. Both the full
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cohort and nested case-control datasets have been made available with iCARE under the

names validation.cohort.data and validation.nested.case.control.
data, respectively.
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