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Abstract: EGF signaling is a well-known oncogenic pathway in animals. It is also a key developmental
pathway regulating terminal and dorsal-ventral patterning along with many other aspects of
embryogenesis. In this review, we focus on the diverse roles for the EGF pathway in Drosophila
embryogenesis. We review the existing body of evidence concerning EGF signaling in Drosophila
embryogenesis focusing on current uncertainties in the field and areas for future study. This review
provides a foundation for utilizing the Drosophila model system for research into EGF effects on cancer.
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1. Introduction to EGF Signaling

1.1. Function of the EGF Receptor, Its Ligands, and an Antagonist

The Drosophila homolog of the epidermal growth factor receptor abbreviated as EGFR is known
by several names—faint little ball and torpedo—with flb referring to the embryonic phenotype and
torpedo referring to an oogenesis defect observed in eggs [1], DER and Ellipse for imaginal disc and
adult eye phenotypes [2,3]. It is a single-pass transmembrane receptor tyrosine kinase (RTK), and is
required for a variety of roles in normal Drosophila embryogenesis [4,5]. The extracellular domain
of EGFR contains two cysteine-rich subdomains (SII and SIV), and two extracellular cysteine-poor
subdomains (SI and SIII) [4]. Following a transmembrane domain, the intracellular portion of the
protein is a protein tyrosine kinase. Drosophila EGFR is highly conserved with vertebrate forms of
EGFR, sharing 40.5% identity [6–8].

EGFR receives its signal from a series of different ligands, which can interact with the receptor
through different molecular mechanisms [9]. These ligands include gurken (grk), spitz (spi), vein (vn),
and keren (krn) [10–12]. Three of the four ligands, grk, spi, and krn show the highest homology to TGF-α
whereas vn is homologous to neuregulin [10]. It was previously proposed that different EGF ligands
were responsible for different EGF responses [13], however recent evidence suggests that different
patterns of expression may be responsible for different EGF signaling outcomes [14]. For example, the
embryonic signaling function of vn can be substituted for by spi when expressed in the endogenous vn
pattern, showing that in some cases the identity of the ligand is not as critical compared to the ability
of the receptor to bind the signal [10].

krn is less well-characterized than spi. Emerging literature appears to suggest that, aside from its
alternative mechanism of transport and regulation, it is a functional homologue to spi, which functions
redundantly with spi in early development [10,15,16]. However, the functional redundancy of krn
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in embryogenesis lends itself to a question with no immediately compelling answer: what selective
pressure would cause krn to be maintained as a ligand in EGF signaling, and why would it develop an
alternative cleavage mechanism to the primary ligand, spi.

vn also appears to be biochemically redundant with the TGF-α-like ligands. In fact, loss of vn
in lateral embryonic stripes had no effect on downstream activation of ERK [17]. vn expression is
determined by the gradient of nuclear Dorsal established by the Toll pathway [17], but vn’s unique
function may be to activate the EGF signal in tissues where low levels of activation are required due
to its weaker activation capacity than spi [14,18]. spi is able to rescue vn mutants and modulates its
activity to roughly match the activation by vn [10]. Overall, these three types of ligands which serve
similar functions, allow the EGF pathway to signal in a variety of conditions increasing its accuracy
and specificity in effecting cellular changes in response to other developmental events.

In addition to these four extracellular ligands, Argos (arg) serves as a ligand antagonist by forming
a clamp-like structure around spi and thereby inhibiting EGF signal transduction [9]. arg functions in
the pathway through a negative feedback loop where it is produced as a result of high levels of EGFR
activity [19]. arg is required for normal function of the EGF pathway, and loss of Arg results in excessive
EGFR pathway activation and corresponding expansion of ventral cell fates [19]. arg therefore acts to
limit long-range effects of the signal by restricting the spread of spi [20].

Some recent experiments suggest that the EGFR ligands are interchangeable as there is significant
redundancy between ligands, similarity in mechanisms of activation, and minimal differences in
regulation between the ligands [10,16,18,21]. Instead, it seems that differing quantitative transduction
of signal due to differences in ligand concentration (and activation capacity), is responsible for the
differentiation of EGF receiving tissues. What this means is that each ligand is capable of activating a
specific amount of signal transduction, where tissues receiving the EGF signal differentiate according
to the strength of signaling. There is no compelling explanation for how selective pressure led to the
evolution of several redundant mechanisms. It is possible that the broad diversity and critical nature
of EGF signaling both in development and in a wide range of other biological processes has influenced
the development of redundant ligands with subtly differing regulatory mechanism or strength. It is
also possible, especially given the similarity of spi, krn, and grk to TGF-α, and vn’s corresponding
dissimilarity, that any of these ligands were co-opted from another function early in evolution, and the
original function was later lost, with the ligand taking on a new role as a redundant regulator of the
EGF signal. The finding that arg binds to the EGF receptor, not the ligand, and in a manner different
from the ligands, is consistent with the idea that several ligands were co-opted from other functions
while the inhibitory ligand (of which only one exists) was central to the function of the receptor prior
to the evolutionary events where other ligands were co-opted [22].

1.2. Intracellular Regulation of EGF Ligands

EGF ligands undergo significant intracellular regulation in the process of their production. SPI is
initially produced as a transmembrane pro-protein, which is then cleaved to release the extracellular
signaling domain [11]. SPI is cleaved into the endoplasmic reticulum (ER), and trafficked by bulk
flow to the Golgi [23–25]. In the absence of STAR, a ubiquitously-expressed type II single domain
transmembrane protein, which binds to the inactive form of SPI, it will undergo retrograde trafficking
back to the ER [26]. Formation of the STAR-SPI complex will inhibit retrograde trafficking from the
Golgi to the ER [24,25]. The STAR-SPI complex is then trafficked to an endosomal compartment
where Rhomboid1 (RHO-1) cleaves SPI, yielding the active ligand which can now be secreted to the
extracellular space, and the STAR-SPI and RHO-SPI complexes disassociate [24,25,27,28]. Interestingly,
KRN is capable of undergoing low levels of cleavage and subsequent EGF activation in the absence of
rho-1/star-mediated trafficking, despite its otherwise identical function to SPI in terms of activating
the EGF signaling pathway [15].

rho-1 deserves particular attention as a regulatory protein within the EGF signaling pathway.
Not only is rho-1 very highly conserved [21], but it also has been shown to specifically act in trafficking
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of EGF ligands [25]. All four EGF ligands and STAR are substrates for rho-1 mediated cleavage [24].
While the regulatory action of rho-1 on EGF extracellular ligands is clear, it is still unclear what, if any,
regulatory function RHO-1 has on STAR [25]. Both star and spi are ubiquitously expressed, whereas rho-1
is precisely spatially and temporally regulated [17,29], which has key influence on spatial transduction of
the EGF signal. Therefore, to understand more precisely the mechanism through which RHO-1 regulates
EGF signaling, an understanding of the regulatory mechanisms Rho-1 has on STAR is needed. Overall,
Rho-1 is understood to be the primary effector of the EGF response, due to its ability to respond both to
positive feedback and to induce EGF signaling in neighboring cells in oogenesis [25]. This mechanism is
likely to be seen in embryonic development as well, exerting its effect through spi rather than grk. RHO-1
is a key point of cross-pathway regulation in early embryogenesis, which will be discussed below.

1.3. Transduction of the EGF Signal from the Receptor to ras

Drosophila was originally thought to have three homologs of vertebrate ras, a gene at 85D based on
chromosome location (ras85D or ras1), the second gene at 64D (ras64D or ras2), and rap1 (ras3) (which
was later found to be a separate GTPase and not in fact a ras homolog). We will focus on Ras1 as it is
most applicable to embryonic patterning [30,31]. ras1 has been studied extensively in EGF—mediated
signaling in the Drosophila eye and in higher organisms, and we will apply many of the structural
findings which have elaborated the molecular mechanisms through which ras1 transduces the EGF
signal to the later components of the pathway in embryogenesis.

The basic outcome of EGF signal transduction is the activation of RAS. The actual mechanism
is more complex. First, upon ligand binding, EGFR forms a dimer and trans-phosphorylates across
the dimer. The protein Downstream of Receptor Kinase (DRK, the Drosophila homolog of mammalian
Grb2) binds through its SH2 domain to the phosphorylated tyrosines on EGFR localizing it to the
plasma membrane. In turn, DRK binds Son of Sevenless (SOS) the guanine exchange factor which
triggers activation of RAS by promoting GTP binding [20,32].

RAS is therefore positively regulated by the EGF. It is also negatively regulated by sprouty (sty).
sty was once thought to be an extracellular inhibitor of EGF signaling [33], but recent data suggests that
sty functions as an intracellular inhibitor of the pathway modulating ras activity [34]. While the precise
mechanism through which sty regulates the pathway is not clear, evidence suggests that STY interacts
with DRK and GAP1, at least in eye development [14]. This interaction between STY and DRK was
suggested to prevent the interactions of DRK with SOS and other accompanying activating factors.
Understanding how sty functions will lead to a full molecular mechanism of signal transduction from
EGF to ras [14].

1.4. Mechanism of RAS Activation of RAF and the Kinase Cascade

The main function of active RAS is to activate D-RAF (also known as polehole in Drosophila or just
RAF), a highly conserved serine-threonine protein kinase. The fundamental function of activated RAS
is to localize RAF to the plasma membrane, where RAF undergoes further activation [35,36]. RAF has
three conserved regions, the first binds to RAS, the second is the negative regulatory domain, and
the third is the kinase [37]. After RAF is activated by RAS, RAF phosphorylates mitogen-activated
Protein kinase kinase (MAPKK, MKK), also known as also known as mitogen-activated protein
kinase/extracellular signal-regulated kinase (ERK) Kinase (MEK). MEK was originally known in
Drosophila as downstream of raf-1 (dsor1), and was shown to have significant sequence similarity to
murine MEK and Xenopus MAP Kinase activator. MEK was shown to be activated through direct
phosphorylation by RAF, causing activation of kinase activity [38–40]. After MEK is activated by RAF
it phosphorylates the Drosophila homolog of MAP kinase (MAPK)/extracellular signal regulated kinase
(ERK), known as rolled [40,41]. Among many targets, activated rolled phosphorylates the transcription
factors such as pointed and yan which in turn lead to transcriptional responses [42]. Cells with a loss
of function in rolled, as expected, produce the same cell-death phenotype as seen in an EGF loss of
function [43].
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In embryogenesis, pointed is responsible for most of EGF’s effects on cell differentiation [44,45].
pointed has two promoters, allowing expression of two different transcript forms, which can in some
cases show partial heteroallelic complementation [44]. A second rolled target is yan (also known as
anterior open), a transcription factor responsible for inhibiting cell differentiation. In essence, the two
transcription factors are in opposition with pointed as the activator of EGF pathway target genes and
yan as the repressor.

When the EGF signaling pathway is activated, yan is destabilized and therefore repressed, and
pointed is activated [30]. The combined effect of yan derepression and pointed activation results in
activation of EGF target genes such as orthodenticle (otd), arg, and tartan (which effect a wide variety of
changes in different tissue [19]. Figure one summarizes the entire EGF signaling pathway (Figure 1).
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Figure 1. Diagrammatic representation of the EGF signaling pathway. Question marks refer to the still
unknown mechanism of Sprouty action.

2. Patterning of the Neuroectoderm

Three homeobox genes control the development of the dorsal-ventral axis of the Drosophila central
nervous system: muscle segment homeobox (msh), ventral nervous system defective (vnd), and intermediate
neuroblasts defective (ind) [46]. This subdivision is mediated by toll, dpp, and EGF signaling, which
together are responsible for establishing three separate Hox domains. Specifically, where the msh
domain is patterned due to repression of dpp, ind is expressed after being activated both by Toll and EGF
signaling, and the vnd domain is established by Toll signaling and maintained by EGF signaling [46–48].
This process works through a repressive function of dpp signaling [49], and shows that EGF signaling
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works both to repress dpp signaling and to preserve the existing dorsal-ventral axis established by early
Toll signaling [50–52]. While this model is highly compelling on a basic level, recent evidence has shown
that development of the neuroectoderm depends on a vast web of connecting repressive and activating
networks. Far from acting independently of one another, the three homeobox genes repress each other
(through ind repression of vnd), and that EGF over expression causes the expansion of both vnd and ind
into the lateral domain (originally msh-expressing domain) [53]. Recently, evidence has also emerged
suggesting that EGF signaling is necessary for glial cell development, supporting the argument that
EGF plays a more significant role in cell fate determination in the developing neuroectoderm. Kim et al.
found that glial markers such as gcm and repo were reduced in the absence of EGF or spi, concluding
that EGF signaling is responsible both for initial formation and maintenance of lateral glia. Likewise,
over expressing EGF through over activated spi caused an expansion of the medial and intermediate
cell fates into the lateral cell column, causing a repression of Repo [54]. This indicates that EGF has
both necessary repressive and activating functions in specification of ventral nervous system cell fates,
mediated by complex interactions with components of other signaling pathways. For example, while
EGF was originally thought to only repress dpp, recent work shows that EGF could also be repressed
by dpp. While dpp primarily functions at a short range, bounded by interaction with EGF and other
pathways, dpp can also function indirectly at long-range in neuroblast development by repressing EGF
signaling, again demonstrating the significant versatility of EGF signaling as a regulatory mechanism
for precise spatial and temporal differentiation of the neuroectoderm [55].

Furthermore, we now know that EGF signaling has at least some degree of ability to pattern
the neuroectoderm independently of its genetic effect on key neural development homeobox genes.
EGF signaling has been shown to mediate the direct phosphorylation of ind through its downstream
effector MAP kinase. Phosphorylation of ind results in repression of ind target genes, which allows
EGF signaling to modify cell fate even in the presence of high levels of ind protein [56].

This finding strengthens the conclusion that EGF signaling is necessary for neural development,
as an active regulator of key homeobox genes and their protein products. This is further supported
by the fact that the loss of EGF signaling results in widespread apoptosis of alternative neuroblast
identities [57]. Finally, the regulatory mechanisms thought to be common to the diverse functions of
the pathway (i.e., argos-mediated repression of EGF ligand binding) allows EGF signaling to maintain
precise gradients of cell fate determination in the lateral regions of the ventral neuroectoderm [58].
Figure two summarizes the signaling events involved in patterning of the neuroectoderm (Figure 2).
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3. Non-Neuroectodermal Ventral Patterning, Including Segmentation

EGF signaling is also involved in ventral epidermal patterning, where it interacts with wnt
and hedgehog signaling in the patterning of denticles. There are two ways in which WNT and EGF
signaling interact [59–61]. First, EGF signaling induces denticle cell fates through the transcription
factor shavenbaby [62]. WNT signaling blocks EGF signaling and permits cells to develop the smooth
cuticle cell fate [61,62], but in a complicated twist EGF is also required for the survival of smooth
cuticle cells [61,63,64]. This is very similar to EGF signaling in the neuroectoderm where it is both
a repressor of certain alternate neuroblast cell fates and requisite for the survival of most types of
neuroblasts (see the above section). Second, downstream of raf-1 (Dsor1, the Drosophila homolog of
MEK1/2) has been shown to inhibit AXIN-mediated destruction of Armadillo (ARM) in an EGF
signaling independent manner [60], demonstrating that there is crossover between these pathways
independent of the outcome of EGF signaling. Third, EGF signaling has also been shown to link WNT
signaling components with Toll signaling, by inducing expression of wntD, which limits dorsal (dl)
nuclear localization at the poles and along the dorsal-ventral axis of the developing embryo [59]. Our
recent findings further suggest that EGF signaling directly influences toll in embryonic patterning
(unpublished observations). Overall, recent work on EGF signaling in non-neuroectodermal ventral
patterning shows that EGF signaling is capable of playing a wide-ranging and diverse set of roles in its
pathway interactions.

4. Specification of Muscle Precursors and Muscle Attachment to Tendons

Yarnitzky et al. showed in 1999 that vein (vn) and spitz (spi) are involved in the development of
muscle precursors and argued that vn is qualitatively different from spi to avoid arg-mediated negative
feedback into the EGF signaling process [64]. Unfortunately, since then few new insights have emerged
into EGF’s function in developing muscle tissue in embryogenesis. The main recent findings: (1) the
EGF pathway controls the specification and later maintenance of Adult Muscle Precursors [65]; and
(2) that EGF signaling through vn and spi permits regenerative proliferation of multipoint gastric
stem cells after damage [66]. Taken together, these findings both support the initial interpretation
that vn differs qualitatively from spi in muscle precursor development [64]. More importantly, these
findings provide significant evidence for an emerging theme in Drosophila EGF signaling: that most
EGF mediated pathways in Drosophila embryogenesis are involved both in the initial establishment
and subsequent maintenance of processes, as shown by the requirement for EGF in both repair and
establishment of muscle tissue.

The multiple roles for EGF signaling necessitate the need for tight regulatory mechanisms ensuring
the correct development of a complex organism, and at the same time, allowing flexibility in damage
repair, and preventing aberrant growth. As many experiments in a variety of model organisms and in
humans have shown, errors in EGF regulation result in highly tumorigenic growth, as the pathway’s
excessive activation allows uncontrolled growth of many tissue types as well as metastasis [67].

5. Specification of Tracheal Invagination

A new focus for embryonic research is the effect of EGF signaling in tracheal development,
specifically its role in specification of tissue integrity. EGF signaling was found to be necessary for
maintaining tissue integrity of epithelial cells during tracheal development through modulation
of cell adhesion a function independent of pointed one of the main transcription factors under the
regulation of EGF [68]. Activation of EGF signaling leads to increased stiffness in epithelial tissue, and
down-regulation of EGF signaling has the opposite effect [68], demonstrating a connection between
EGF and Cadherin-modulated cell adhesion. The precise mechanism by which EGF modulates
Cadherin based cell adhesion remains unclear, but a connection was suggested by another study
which showed that in the absence of EGF signaling, developing tracheal cells are unable to concentrate
filamentous Actin causing a defect in tracheal invagination [69]. EGF signaling was also shown
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to coordinate tracheal invagination by encircling the invagination site and promoting myosin cell
intercalation [70]. The net result is a precise spatiotemporal activation sequence of EGF, which
causes cells to invaginate as a group. Without EGF signaling, individual cells ingress without a
clear coordinating strategy in the tissue, suggesting that EGF is crucial for specifying precise tissue
boundaries in tracheal development [70,71]. Additionally, two receptor tyrosine phosphatases PTP10D
and PTP4e negatively regulate EGF signaling during tracheal development [72]. Studies of tracheal
development suggest that EGF provides very precise spatial and temporal information to cells in order
to coordinate unified tissue development and movement.

6. Cell Recruitment to the Chordotonal Organs

Recent work has provided some additional insight into EGF’s influence on development of
Chordotonal organs. Inbal et al. had previously shown that atonal (a transcription factor responsible
for nerve cell development) triggers rhomboid expression, causing EGF activation, which initiates
recruitment of attachment cells from the ectoderm and induce their specialization [73]. Again, it
appears clear that EGF signaling is a common mechanism for precise and accurate tissue differentiation
and maintenance of differentiation to prevent waste.

7. Specification of Oenocytes

In 2004, Brodu et al. [69] showed that oenocyte delamination occurs through discrete bursts,
mediated by a localized EGF response. They found that EGF signaling triggered sequential activation of
targets, which temporally communicated cell movement, a process which was continued by post-EGF
mediated intracellular signaling [74]. Aside from this work, oenocyte specification has seen limited
attention in the past 15 years.

8. Dorsal Midline Patterning (Including Dorsal Closure and Viability of Dorsal Midline Cells)

Antagonism between Dpp and EGF signaling is responsible for dorsal closure and corresponding
patterning of cells near the dorsal midline [58]. Dpp blocks EGF signaling stimulating apoptosis near
the midline [58]. This relationship is not unidirectional as EGF signaling down-regulates expression
of Dpp in the epidermis, and prevents apoptosis in amnioserosa cells [75]. This signaling process
highlights another common theme: EGF signaling is often required as the positive regulator of cell
viability in key developmental processes, but also directly regulates the apoptosis gene Hid [76].

9. Other Signaling Pathways

EGF signaling is responsible for modulating square cell packing in the presumptive Drosophila
pharynx by affecting planar cell polarity of cells in a square cell grid [77]. This process requires the
effector Pins to orient mitotic spindles perpendicularly to the midline of the cell, which causes cells to
adopt the square cell packed conformation [77]. This finding highlights the growing impact of EGF
signaling on cell polarity.

10. Conclusions

10.1. Common Themes

(1) EGF often functions in cell growth and proliferation and regulates apoptosis.
(2) EGF signaling in Drosophila is highly self-regulating, particularly through RHO-1 and STAR

mediated processing of EGF ligands and post-transcriptional control of ARGOS expression.
(3) EGF signaling also can differ qualitatively due to expression of different yet functionally similar

ligands (i.e., vein vs. spi). The availability of ligands with slightly different functionality allows
EGF signaling to be precisely regulated based on ligand availability, rather than attempting to
modulate the effects of the pathway after activation by a single ligand.
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(4) EGF signaling functions in cell adhesion and polarity. These four characteristics make EGF
signaling highly effective at modulating tissue boundaries involving multiple alternative
signaling pathways, as EGF signaling can self-regulate expression and interact with many other
pathways through both negative and positive regulation.

10.2. Utility of Studying the EGF Signaling Pathway

Overall, EGF signaling is a crucial factor in promoting cell survival and differentiation. The study
of EGF signaling in Drosophila embryogenesis has proven to be a valuable tool for understanding the
complex mechanisms which give rise to the complexity of the various tissue systems of the Drosophila
embryo. Careful study and analysis of EGF signaling mechanisms can reveal broader themes about
embryonic control of cell fate, and are highly clinically applicable in understanding how aberrant EGF
signaling can contribute to a wide range of human pathologies. This review did not cover other EGF
pathways such as PI3K/PTEN, mTOR and Src as this has mainly been studied in larval and adult
tissues. For EGF pathway studies, these tissues have provided a variety of useful tumor and drug
screening models [78], aging models [79], colon stem cell models [80,81], brain cancer [82,83], and cell
proliferation models [84].

With the advent of incredibly powerful new gene editing technologies such as the CRISPR/Cas9
system, and new mutants revealed in the genetic screens [85], there exists a plethora of new
opportunities to study the pathway. New tools, such as live imaging in three dimensions and novel
methods of fluorescent tagging, allow for the analysis of phenotypes which would otherwise be too
ambiguous or complex to be studied through traditional means. In the WNT pathway, optogenetic
approaches have been used to activate the co-receptor LRP6 (LDL receptor related protein, or Arrow in
Drosophila) through a CRY2 fusion and blue light, an approach that should work for EGFR [76,86–88].
While much of the classic research on the pathway centered around polehole and the faint little ball
phenotype, new methods will allow much more precise study of intracellular components of the
pathway, and will allow a deeper understanding of the complex interactions between the EGF pathway
and more well-studied embryonic signaling pathways, helping to further unravel the complexities of
the developing Drosophila embryo. The work we have presented here represents a broad foundation
upon which a deeper understanding of the mechanisms through which EGF signaling affects cancer
can be built.
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