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Efficient Generation and Selection of Virtual Populations
in Quantitative Systems Pharmacology Models

RJ Allen*, TR Rieger and CJ Musante

Quantitative systems pharmacology models mechanistically describe a biological system and the effect of drug treatment on
system behavior. Because these models rarely are identifiable from the available data, the uncertainty in physiological
parameters may be sampled to create alternative parameterizations of the model, sometimes termed “virtual patients.” In order
to reproduce the statistics of a clinical population, virtual patients are often weighted to form a virtual population that reflects
the baseline characteristics of the clinical cohort. Here we introduce a novel technique to efficiently generate virtual patients
and, from this ensemble, demonstrate how to select a virtual population that matches the observed data without the need for
weighting. This approach improves confidence in model predictions by mitigating the risk that spurious virtual patients
become overrepresented in virtual populations.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 140–146; doi:10.1002/psp4.12063; published online 17 March 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Parameter uncertainty in quantitative systems pharmacol-
ogy models may be explored by the creation of virtual patients, which are typically weighted to form virtual populations to
match clinical populations. Several algorithms designed to weight virtual patients have previously been published.
• WHAT QUESTION DID THIS STUDY ADDRESS? � Given that the parameters of a systems model are undercon-
strained, can we explore this uncertainty to efficiently generate physiologically reasonable patients and construct virtual
populations where weighting is not necessary? • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE � This study out-
lines a methodology that improves on previous methods for efficiently generating and selecting virtual patients to match
clinical population-level statistics. The final fitted populations will closely match empirical data, with all virtual patients
weighted equally, which avoids the potential for overweighting certain solutions and skewing simulation results found in
some previous algorithms. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS � Gen-
eration of realistic virtual populations, and a deeper exploration of parameter uncertainty, should lead to better confidence
in the predictions and better quantification of uncertainty of systems pharmacology models, particularly in the context of
clinical trial simulations and analysis.

Quantitative Systems Pharmacology (QSP) models are an

effective approach for gaining mechanistic insight into the

complex dynamics of biological systems in response to

drug treatment.1–3 QSP models in the drug discovery and

development process have been utilized for increased confi-

dence in rationale for early development targets, preclinical

to clinical translation, and predictions of clinical response to

novel therapeutics. To be fit for this purpose, these models

must include sufficient biological scope and mechanistic

detail to link pathway modulation to overall system

response.4–8 Due to the complexity of the biology, the itera-

tive model-building process frequently results in a model

that is a large, nonlinear, multiscale system of equations.

Many different data sources are required to quantify QSP

models, including in vitro and in vivo preclinical and clinical

data; moreover, the resulting models are frequently under-

constrained by any one dataset.9 Therefore, to explore the

impact of known variability and uncertainty,10–14 QSP mod-

els are simulated using ensembles of parameterizations

often termed “virtual patients” or “VPs.” A virtual population

(VPop) that reflects individual subject and population-level

characteristics of a typical clinical cohort provides increased

confidence that prospective simulations of response to

novel therapeutics will reflect the intersubject variability

seen in the clinic, and may help to identify responders and

nonresponders to treatment.
Ensembles of VPs are often sufficient for exploring the

broad range of responses that are possible from perturbing

a model (pharmacologically or otherwise), but the outcome

will not necessarily reflect the distribution (e.g., log-normal)

of population-level data.15 The result is a range of predic-

tions from the model, which are all possible outcomes but

fail to provide insight into the probability of observing that

outcome in a clinical trial. Previous authors have overcome

this critique by weighting model outputs,13 or model compo-

nents,14 to create VPops.
Klinke proposed linearly weighting each VP, with some

receiving a weight greater than 1/N (where N is the number

of VPs in the ensemble) so that the mean and standard

deviation of the VPop match the desired population charac-

teristics.13 This approach is intuitive and easily imple-

mented, but this also can be computationally expensive,
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requires refitting the VPop each time VPs are added or
removed from the analysis, and can result in a dramatic
overweighting of a few select VPs, which may skew the
final simulation results. Schmidt et al. refined this approach
by taking the weights off of the individual VPs and placing
them on “mechanistic axes.”14 Their approach is computa-
tionally faster, allows new VPs to be incorporated into the
VPop without refitting, and should avoid the problem of
overweighting small numbers of VPs. However, this
approach requires collecting parameters into mechanistic
axes, possibly without a priori rationale, and in our experi-
ence is more challenging to communicate to a non-technical
audience.

Here we propose a new algorithm for generating biologi-
cally reasonable VPops. We will show how this algorithm
complements previous approaches by being intuitive, com-
putationally efficient, and avoiding the problem of over-

weighting VPs. We demonstrate the utility of this new

algorithm by fitting the joint distribution of low-density and

high-density lipoproteins (LDL and HDL, respectively) from

the National Health and Nutrition Examination Survey

(NHANES)16 to a previously published model of lipoprotein

metabolism by van de Pas et al.17

METHODS

A flow diagram of the algorithm is shown in Figure 1. To

implement this procedure for a given model it is necessary

to define bounds for input parameters and model outputs

(e.g., steady states or dynamic behavior). If bounds cannot

be defined empirically, feasible ranges of parameter values

can be asserted from physiological knowledge or theoreti-

cal considerations. For example, the tissue concentration of

Figure 1 Overview of algorithm for efficient generation and prevalence-based selection of virtual patients. To generate virtual patients
from a model, the prior information (green boxes) is used to define physiologically reasonable ranges for model outputs and parameter
values. An initial parameter guess is optimized until model outputs are physiologically plausible. This is repeated multiple times to form
a plausible population. A virtual population is constructed by selecting from this population with probability proportional to the preva-
lence in the real population relative to the prevalence in the plausible population. This selection is optimized to produce the best virtual
population given the patients in the plausible population.
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a species may not be known, but typical weight and water
content of that tissue may be known, which allows us to put
an upper limit on the species concentration.

We have provided a detailed description of terminology,
definitions, and the derivation of this algorithm in Table 1
and the Supplementary Material. Briefly, our approach is to
generate a large number of “plausible patients.” We define
these patients as a parameter set for which every compo-
nent of the model (whether it be the parameter values them-
selves, computed species concentrations, or combinations of
these that are experimentally measurable) falls into a biologi-
cally plausible range. From this “plausible population” we
can then select the virtual population such that it matches
the empirical distribution of interest. This is achieved by cal-
culating a probability of inclusion of a plausible patient into
the virtual population. This probability is computed from both
the empirical distribution and the density of plausible patients
(see Supplementary Materials for more details).

An important prerequisite to this approach is the ability to
generate a large number of plausible patients within the
region of the empirical data. To accelerate this process we
take an initial parameter guess (within the predefined
bounds) and optimize this choice until the required outputs
are within physiologically plausible ranges. Rather than

optimize to specific points, it is more efficient to be agnostic

as to where in the plausible ranges the optimization routine

ends. To implement this we shift the typical cost function

f(p) we would use optimizing a model to a new function,

g(p), where we consider both as purely dependent on the

parameter set p. If we constrain parameters using a num-

ber of model outputs Mi(p), with data di then f (in the sim-

plest, unweighted case) would be:

fðpÞ5
X
ðMiðpÞ2diÞ2:

To generate plausible patients, we modify this sum-of-
squared errors expression to:
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where ui and li are the predefined plausible upper and lower

bounds, respectively, for Mi(p). This expression ensures

that if Mi(p) is in the plausible range then the contribution of

the corresponding term in the expression is zero. The effect

of replacing f(p) with g(p) is visualized in 2D in Figure 2.

Table 1 An overview of the terminology used in this article

Term Definition Attributes

Systems Pharmacology Model _X 5 f ðX ; t ; pÞ X (species), and p(parameters) both vectors

Physiological Outcome Any quantity that is calculated from

the model that can be experimentally measured

i.e., Xi(t), dXi(t)/dt, g(X). . .

Plausible Patient A parameter set defining the model Each parameter and physiological outcome is within

biologically plausible ranges.

Plausible Population A collection of Plausible Patients None-specifically (all inherited from plausible

patients)

Virtual Population A subset of the Plausible Population Distribution matches the physiological outcomes for

which we have such information.

Virtual Patient (VP) A Plausible Patient that is also in

the virtual population

Parameters and physiological outcomes in plausible

ranges. Probability of observing set of observa-

tions in VP approximates probability of observa-

tions in real patient.

Figure 2 Cost function transformation for convergence to plausible virtual patients. Outputs of the model contribute to the cost function
to be minimized by considering the sum of squared errors (SSE) from an associated experimental observation. For each observation
we define a physiologically plausible range (arrows in a,b) and shift the SSE associated with that observation so that it is zero if the
model output is in this range (a,b). Combining these transformations in each dimension leads to a broader cost function that is mini-
mized by many points, rather than one (black rectangle in c).
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To test this approach we used a previously published

model of cholesterol metabolism.17 We chose this model

because we could use publicly available data from the

NHANES database16 to establish the empirical multivariate

distribution for LDL cholesterol, HDL cholesterol, and total

cholesterol (LDLc, HDLc, and TC, respectively). Note that

the distribution of these variables is well approximated by

a multivariate log-normal distribution (Supplementary

Figure 1). For the remainder of the article we will describe

these variables, either as model outputs or from NHANES,

in log units (prior to taking the logarithm, units are mg/dL

for cholesterol measures). The published version of this

model does not explicitly calculate LDLc or TC; instead, the

outputs are HDLc and non-HDLc. From these two quantities

TC is easily calculated. For full comparison with the

NHANES data we introduced a new parameter to the

model, k22, which is simply the ratio between LDLc and

non-HDLc. The supplied MATLAB (MathWorks, Natick, MA)

file “input_ranges.m” gives details on parameter and output

ranges for the van de Pas model. Also in the Supplemen-

tary Material is the code used in this case, which is easily

modifiable for application to other models.

RESULTS

We generated �300,000 plausible patients using the algo-

rithm. As expected, the initial plausible population does not

match the population-level statistics of the NHANES data

(Figure 3) but covers the empirical distribution (i.e., where
there are likely to be empirical observations there are plau-
sible patients).

We proceeded by calculating the probability of inclusion
for each plausible patient. Once calculated, we established
that most of the plausible patients are highly unlikely to be
in the final distribution (Figure 4). This is due to the relative
density of the plausible population to the empirical
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Figure 3 Comparison of the initial plausible population (N 5 300,000) with NHANES multivariate distribution ((a-c) black dotted lines
estimated PDF, Supplementary Figure 1a-c. (d-f) 2D projection of the 95% confidence surface of the estimated probability density
function).
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Figure 4 Histogram of plausible population selection probability.
The probability of inclusion into the virtual population is calcu-
lated by optimized relative prevalence. The red histogram (main
figure, and figure inset) is a virtual population that matches
NHANES data, and is selected from the plausible population
(blue histogram) based on displayed probability.
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distribution. With these probabilities, only �2% of the plau-
sible population was selected to be in the virtual population
(inset, Figure 4). Based on examining goodness-of-fit of
the distributions it appears, in this case, there is no further
value in increasing the size of the plausible population
(Supplementary Figure 2).

The distribution of an example selection fits the NHANES
data well (Figure 5). The 1D histograms (when normalized
for comparison with the NHANES probability density func-
tion) are indistinguishable from the data (Figure 5a–c) and
the correlations between variables also match the data
based on visual predictive check.

When selecting a subset of VPs from a larger population,
one concern is that the selected subset of VPs does not
reflect the variability of the original ensemble, which was
generated from the biologically plausible range of the
parameters. Analyzing the final fitted population, we found
little change in either the distribution of parameters or the
correlation structure between the parameters (Figure 6 and
Supplementary Figure 3). This also shows that despite
the virtual population being constrained against the
NHANES data the parameter values of the virtual popula-
tion (Figure 6b) are only slightly better constrained than
those of the plausible population. Furthermore, correlations
between parameters are only slightly increased in the vir-
tual population (Figure 6d) vs. the plausible population
(Figure 6c). At least in this case, constraining all outputs

into realistic ranges is a more stringent constraint than

selection of a virtual population.

DISCUSSION

One of the primary uses for QSP models is to prospectively

simulate the effects of a dynamic perturbation (pharmaco-

logical or otherwise) in populations of interest. Due to the

underconstrained nature of these models it would be diffi-

cult to have confidence in the simulation results if we simu-

lated a single parameterization of that model, even if that

set of parameters is an excellent fit to the available data.

For example, imagine creating a single hypercholesterole-

mia VP to simulate the effect of various anticholesterol

therapies. For the baseline characteristics of the VPop, we

have good data for the expected mean LDL and HDL (e.g.,

a prior clinical cohort), but we could still choose to mecha-

nistically represent hypercholesterolemia several ways

using the same model. We could increase cholesterol pro-

duction, decrease clearance, or apply some combination of

both. Our choice of how to parameterize that VP could

have significant consequences for the sensitivity of the

follow-on therapy simulations. Having impaired production

vs. clearance of LDL could lead to differential responses to

statins (production) vs. antiproprotein convertase subtillisin/

kexin type 9 (clearance). A better approach is to explore

the underconstrained nature of these models and sample
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Figure 5 Comparison of a virtual population with NHANES multivariate distribution (dotted black lines). The virtual population (red dots and
red histogram) matches the mean, variance, and covariance of the multivariate experimental distribution ((a-c) black dotted lines estimated
probability density function, Supplementary Figure 1a-c. (d-f) 2D projection of the 95% confidence surface of the estimated PDF).
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the biological uncertainty in the creation of plausible

patients by varying mechanistic parameters, such as pro-

duction and clearance rates, within biologically reaso-

nable ranges. Simultaneously, we need to constrain the

higher-level observables of the model based on known pop-

ulation distributions (e.g., the baseline characteristics of a

clinical trial cohort).
An appealing aspect of the approach we outline is that,

since the algorithm is probabilistic, once the plausible

patients are generated any number of subpopulations can

be selected as long as the generated patients reasonably

cover the full range of the (sub)population. Additionally, for

any particular population, any number of VPops can be

reselected to bootstrap the sensitivity of the model predic-

tions to the choice of VPop.
Achieving an acceptable fit to the data distribution is only

possible if the plausible patients densely cover the range of

the observables. This method should be computationally

tractable for many models. However, if we have higher-

order density functions, we will likely require additional

gains in efficiency, above and beyond what is presented

here, in methods for generating sufficient plausible patients.

One potential avenue, for a future iteration of this algorithm,

may be to use methods that follow a directed search

through the parameter space, such as using Markov Chain

Monte Carlo (MCMC) algorithms.18–20 However, it should

be noted that the method presented here is in fact a hybrid

approach because the simulated annealing step, used to

generate a plausible patient is essentially an MCMC

method. The advantage of this approach is it generates

plausible patients (and hence virtual patients) independ-

ently—which is critical for the purpose of making a virtual

population. Also, once the plausible population is estab-

lished new virtual populations, suitable for new applications,

can be selected.

We believe that this method has broad utility in many

cases. However, a limitation of our approach is the compu-

tational cost of generating large plausible populations,

which may make this method unfeasible in models that are

slow to simulate. It should be noted that prior methods13,14

generated smaller virtual populations in larger models,

partly due to the computational cost of running the models.

Nevertheless, the computational efficiency of a model does

not alter the necessity for exploring the parameter space

(which in this context equates to larger virtual populations).

We therefore advocate for the optimization of large models

for speed, such that a fuller exploration of parameter uncer-

tainty is possible (either via the method presented here or

alternatives). It is important to remark that the larger the

model (specifically, in terms of the number of poorly con-

strained parameters) the greater the necessity for larger

virtual populations to attempt to account for the uncertainty

inherent in such a model.
An advantage of our technique over prior approaches is

that it is relatively unbiased, while still leveraging all avail-

able information on possible parameter values. The

approach by Klinke may overweight spurious model solu-

tions, whereas the approach by Schmidt et al. requires bin-

ning of parameter values into mechanistic axis which, for

axes containing more than one parameter, requires an

assumption about the correlation between parameters in

the population of interest that may not be supported by

available data.
As an introduction to this algorithm, we demonstrated

how to generate a VPop that matches the baseline charac-

teristics of a population or clinical cohort; however, in prac-

tice, a dynamic model should be constrained additionally

against as many in-scope perturbation experiments as pos-

sible (determined by available data). For this example, sim-

ulating changes in LDLc and TC to standard-of-care lipid

b d

a c

Figure 6 Degeneracy of the virtual population. Violin plots of the plausible and virtual populations (a,b, respectively) parameter values
(normalized to each parameter’s upper and lower bounds) and correlation matrix of the plausible and virtual population (c,d,
respectively).

Generation and Selection of Virtual Populations
Allen et al.

145

www.wileyonlinelibrary/psp4



therapies, such as statins and ezetimibe, would likely be an
important step before using the model to predict the
response to a novel mechanism. Ideally, information would
be available detailing the distribution of the data before and
after the application of therapy (i.e., not just summary sta-
tistics). The therapeutic response can be treated as a base-
line constraint for VP selection, just as we used HDLc and
TC at baseline.

Future developments of this method will be driven by
application to new models. We have applied this approach,
without major adaptation, to an unpublished model of
chronic kidney disease (42 Ordinary Differential Equations
(ODEs), �200 parameters) and to a model of body weight
change6 (8 ODEs, �50 parameters); we have made a brief
summary of the results in these cases available.21 One
challenge that we foresee, for virtual populations in general
(i.e., not specific to this approach), is development of effi-
cient ways to combine populations when merging distinct
models. We believe that for two models that have large vali-
dated virtual populations, na€ıvely combining every possibil-
ity will be computationally daunting. Hence, we are
interested in exploring more sophisticated approaches to
this question.

Quantitative systems pharmacology models are becoming
established as a valuable component of the drug discovery
and development process. Communicating their complexity
and uncertainty to an interdisciplinary project team is a criti-
cal but challenging component of their utility. Virtual popula-
tions are one tool that we have found to be successful in
exploring mechanistic and parametric uncertainty in an intui-
tive framework that is easily understandable by most audien-
ces. However, despite their widespread use, there are very
few published methods for generating virtual patients and
forming virtual populations. Here we have contributed an
approach to efficiently generate virtual patients and construct
a virtual population for which each patient is weighted
equally. This method relies on the ability to generate large
“plausible populations,” made up of plausible patients each
of which is a candidate to become a virtual patient. Because
a large plausible population is necessary, models that are
slow to integrate (for example, with dynamics across multiple
time-scales) may not be good candidates for this approach.
However, in cases where quantitative predictions are
required and the model is amenable to thorough examination
of parameter space, we have found this method to be an
improvement over previous approaches.
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