

POSTER PRESENTATION

Computation of the gradient-induced electric field noise in 12-lead ECG traces during rapid MRI sequences

Shelley H Zhang^{1*}, Zion T Tse², Wei Wang¹, Raymond Y Kwong¹, Charles L Dumoulin³, Ehud J Schmidt¹

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

Successful physiological monitoring using a 12-lead ECG during MR imaging is essential for safe conduction of cardiovascular interventions within a MR scanner. However, ECG artifacts induced by magnetic field gradients

severely affect the signal quality and fidelity. Previously, the gradient-induced artifacts were reduced by blocking ECG transmissions during all gradient ramps [1], which has been shown feasible while the method is not suitable for short-TR sequences. Theoretical and experimental

¹Brigham and Women's Hospital, Boston, Massachusetts, USA Full list of author information is available at the end of the article

© 2014 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Figure 2 During Imaging, the restored ECG (red line) signal preserves the same signal shape as the ECG has in the absence of imaging (no gradient switching), while low-pass (LP) filtering (green dashed line) fails to clean the gradient-induced artifacts.

							5	Subje	ct1								
xial	۵	β	Y	С	error	Sagittal	a	β	Y	C	error	Coronal	a	β	Y	C	error
1	3.6	-3.6	5.2	2 -0.0012	0.17	V1	0.9	-3.3	0.9	0	0.24	V1	-0.7	-8.5	8.7	-0.0014	0.0
2	2.3	-0.8	1.7	7 -0.0007	0.28	V2	5.1	-1.0	-3.8	-0.0006	0.07	V2	1.2	-0.3	1.1	-0.0003	0.2
3	-4.3	-3.1	-5.(5 0.0010	0.12	V3	4.9	-2.3	-4.0	-0.0005	0.19	V3	2.9	-9.7	8.9	-0.0008	0.0
4	-6.3	-2.2	-8.5	5 0.0019	0.07	V4	7.8	-1.2	-7.1	-0.0006	0.09	V4	3.9	-7.8	6.9	-0.0002	0.0
5	-9.9	-1.3	-12.8	0.0028	0.04	V5	9.5	0.1	-9.7	-0.0007	0.07	V5	4.8	-6.8	5.3	0.0002	0.1
	4th rib	-	R	/	A	-	β					4th rib	F	1	1	1	-
St Sth. 7th n	th nb h nb h b	V ₁	V ₂	V ₃ V	4 ¥5	V ₆ α	β ,β,γ un nd C ur	iitin Vo nitin m Subje	olt•Se iVolt ct2	c∙m/T,		4th nb 5th nb 6th nb 7th nb	V ₁	V ₂	V3 1	4 V5	V ₆
St Sth 7th n Axial	th nb h nb b	V ₁	V ₂	c	error	ν 6 al Sagittal	β ,β,γ un nd C ur S	itin Vα nitin m Subje	olt•Se iVolt ct2 v	c∙m/T, c	error	4th nb 5th nb 6th nb 7th nb	ν V1	β	V3 1	4 V5	error
St Sth, 7th n Axcial	ath nb h nb b -3.4	β -3.5	V2 -1.5 -	c	error 0.23	Ca Ca Sagittal V1*	β ,β,γ un nd C ur S α -2.2	itin Vα nitin m Subje β -3.4	olt•Se iVolt ct2 v 1.7	c∙m/T, c	error 0.37	4th nb 5th nb 6th nb 7th nb	ч V1 -0.2	β -12.9	V 12.5	c	error 0.1
St Sth. 7th n Axial V1 V2*	ath nb h nb b -3.4 -1.1	β -3.5 -2.4	V 2 -1.5 - 0.1	C 0.0003	error 0.23 0.36	Contraction Contr	β ,β,γ un nd C ur S -2.2 -5.3	itin Vα nitin m Subje β -3.4 -2.4	olt•Se iVolt ct2 v 1.7 7.9	c∙m/T, c -0.0012 -0.0014	error 0.37 0.26	4th nb 5th nb 6th nb 7th nb Coronal V1 V2	a -0.2 -0.2	β -12.9 -7.6	v 12.5 8.5	c 0.0002 0.0002	error 0.1
St Sth, 7th n Axial V1 V2* V3	a 	β -3.5 -2.4 -0.7	¥ -1.5 - 0.1 -1.9	C 0.0003 0 0.0002	error 0.23 0.36 0.13	Ca a Sagittal V1* V2 V3	β ,β,γ un nd C ur <u>S</u> -2.2 -5.3 -7.1	it in Vo nit in m Subje β -3.4 -2.4 -0.7	olt•Se iVolt ct2 v 1.7 7.9 11.1	c∙m/T, c -0.0012 -0.0014 -0.0003	error 0.37 0.26 0.13	4th nb 5th nb 6th nb 7th nb Coronal V1 V2 V3	a -0.2 -0.2 -0.1	β -12.9 -7.6 -3.5	v 12.5 3.8	4 V5 c 0.0002 0.0002 0	error 0.1 0.3
Sth., 7th n Axial V1 V2* V3 V4	a -3.4 -1.1 -1.9 -1.8	β -3.5 -2.4 -0.7 0.3	V -1.5 - 0.1 -1.9 -2.5	C 0.0003 0.0002 0.0001	error 0.23 0.36 0.13 0.08	V1 [*] V2 V3 V4	β ,β,γ un nd C ur -2.2 -5.3 -7.1 -9.2	it in Vc hit in m Subje β -3.4 -2.4 -0.7 0.2	olt•Se Volt ct2 v 1.7 7.9 11.1 14.7	c•m/T, c -0.0012 -0.0014 -0.0008 -0.0005	error 0.37 0.26 0.13 0.09	4th nb Sth nb Sth nb Th nb Coronal V1 V2 V3 V4*	a -0.2 -0.2 -0.1 -0.1	β -12.9 -7.6 -3.5 -0.3	v 12.5 8.5 3.8 0.7	C 0.0002 0.0002 0 0.0004	error 0.1 0.3 0.8
50 50 50 70 n 70 n 70 n 70 n 70 n 70 n 70 n 70	a -3.4 -1.1 -1.9 -3.2	β -3.5 -2.4 -0.7 0.3 1.1	V2 -1.5 - 0.1 -1.9 -2.5 -4.9 -	C 0.0003 0 0.0002 0.0001 0.0001	error 0.23 0.36 0.13 0.08 0.06	α Sagittal V1* V2 V3 V4 V5	β ,β,γ un nd C ur S -2.2 -5.3 -7.1 -9.2 -13.9	itin Vα hitin m Subje -3.4 -2.4 -0.7 0.2 1.0	olt•Se Volt ct2 v 1.7 7.9 11.1 14.7 22.3	c+m/T, c -0.0012 -0.0014 -0.0008 -0.0005 -0.0002	error 0.37 0.26 0.13 0.09 0.08	4th nb 5th nb 5th nb 7th nb Coronal V1 V2 V3 V4* V5*	a -0.2 -0.2 -0.1 -0.1	β -12.9 -7.6 -3.5 -0.3 1.6	V 12.5 8.5 3.8 0.7 -1.7	c 0.0002 0.0002 0 0.0004 0.0005	error 0.1 0.3 0.8 0.7

vector plots in the center illustrate graphically sagittal acquisitions in both subjects utilizing phase-encoding along Y (Anterior-Posterior) for the precordial electrodes V1-V6. A gradually increasing influence of the magnetic gradient fields on the ECG noise was observed from V1 to V6.

studies have shown a linear relationship between electric fields and the temporal derivatives of the magnetic field gradients [2,3]. We propose an algorithm to restore the true ECG signal by subtracting system response functions, based on the MR gradient signals, from ECG signals distorted by gradient interference.

Methods

Data Acquisition: An MRI-conditional 12-lead ECG system [1] was used to acquire data on two healthy volunteers inside a 3T MRI. Outside the MRI room, high-fidelity ECG traces, along with the x, y and z gradient waveforms were digitally recorded simultaneously at 62kHz. Balanced SSFP sequences with various slice orientations (axial, coronal, sagittal and oblique) were acquired. Data Analysis: The gradient-induced ECG noise was computed as the difference between aligned ECG traces with and without MR sequence running. The noise voltage (Vni) at each electrode (i) was modeled as a linear combination of gradient derivatives and system factors, $Vni = \alpha i \cdot dGx/dt + \beta i \cdot dGy/dt$ + γ i•dGz/dt+Ci, where α i, β i, γ i and Ci are positiondependent. These parameters were then used to reconstruct the noise, for comparison with the measured ECG noise, and to further derive the restored ECG.

Results

The recorded ECG traces and low-pass filtered gradient derivatives are displayed in Figure 1a. The computed noise vector (Vni) and the measured noise (Figure 1b) had differences of $21\% \pm 20\%$ in normalized Euclidean distance. The restored ECG signal was comparable to the clean ECG segments (Figure 2), providing higher signal quality and fidelity relative to low-frequency filtering of the ECG signal. Vectorial display of the fitted parameters (Figure 3) demonstrated systematic changes across the precordial leads, and varied in magnitude between subjects.

Conclusions

The gradient-derivative model closely fit the measured ECG noise, possibly allowing for efficient gradient-noise removal utilizing rapid calibration scans, combined with hardware blocking of extremely high noise intervals.

Funding

NIH U41-RR019703, R03 EB013873-01A1, and SBIR-1R43HL110427-01; AHA10SDG261039.

Authors' details

¹Brigham and Women's Hospital, Boston, Massachusetts, USA. ²Engineering, The University of Georgia, Athens, Georgia, USA. ³Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.

Published: 16 January 2014

References

- 1. Tse ZT, et al: Magn Reson Med 2013.
- 2. Felblinger J, et al: Magn Reson Med 1999, 41(4):715-21.
- 3. Glover PM, et al: Phys Med Biol 2008, 53:361-373.

doi:10.1186/1532-429X-16-S1-P151

Cite this article as: Zhang *et al.*: **Computation of the gradient-induced electric field noise in 12-lead ECG traces during rapid MRI sequences.** *Journal of Cardiovascular Magnetic Resonance* 2014 **16**(Suppl 1):P151.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit