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GHB is an endogenous short-chain organic acid presumably also widely applied as a rape
and knock out drug in cases of drug-facilitated crimes or sexual assaults (DFSA). Due to
the endogenous nature of GHB and its fast metabolism in vivo, the detection window of
exogenous GHB is however narrow, making it challenging to prove use of GHB in DFSA
cases. Alternative markers of GHB intake have recently appeared though none has hitherto
been validated for forensic use. UHPLC-HRMS based screening of blood samples for
drugs of abuse is routinely performed in several forensic laboratories which leaves an
enormous amount of unexploited data. Recently we devised a novel metabolomics
approach to use archived data from such routine screenings for elucidating both direct
metabolites from exogenous compounds, but potentially also regulation of endogenous
metabolism andmetabolites. In this paper we used UHPLC-HRMS data acquired over a 6-
year period from whole blood analysis of 51 drivers driving under the influence of GHB as
well as a matched control group. The data were analyzed using a metabolomics approach
applying a range of advanced analytical methods such as OPLS-DA, LASSO, random
forest, and Pearson correlation to examine the data in depth and demonstrate the
feasibility and potential power of the approach. This was done by initially detecting a
range of potential biomarkers of GHB consumption, some that previously have been found
in controlled GHB studies, as well as several new potential markers not hitherto known.
Furthermore, we investigate the impact of GHB intake on human metabolism. In
aggregate, we demonstrate the feasibility to extract meaningful information from
archived data here exemplified using GHB cases. Hereby we hope to pave the way for
more general use of the principle to elucidate human metabolites of e.g. new legal or illegal
drugs as well as for applications in more global and large scale metabolomics studies in the
future.
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INTRODUCTION

Gamma-hydroxybutyrate (GHB) is an endogenous short-
chain organic acid derived from γ-aminobutyric acid
(GABA) in the brain and periphery (Struys et al., 2006).
GHB is approved as a prescription medication for the
treatment of narcolepsy, and in the amelioration of drug
and alcohol withdrawal in clinical practice (Carter et al.,
2009). Also, GHB, or more recently its lactone prodrug γ-
butyrolactone (GBL), is consumed recreationally as a drug of
abuse, and is known as a rape drug and knock out drug in cases
of drug-facilitated crimes or sexual assaults (DFSA) in forensic
toxicology although the frequency apparently is low (Epperson
and Ralston, 2016; Francesco et al., 2018). However, the low
frequency of detection may be caused by the fast metabolism
and thereby narrow detection window of typically up to 6 h in
whole blood and 12 h in urine (Busardò and Jones, 2019).
Many DFSA cases are likely reported late causing blood or
urine samples to be drawn too late for detection of exogenous
GHB intake (Kintz et al., 2001; Odujebe et al., 2007; Busardò
and Jones, 2019). Therefore, the detection of GHB,
discrimination between endogenous and exogenous GHB,
and subsequently proving the ingestion of exogenous origin
is challenging and likely underreported (Brenneisen et al.,
2004; Abanades et al., 2007).

As alternative to direct detection of elevated levels of GHB,
reliable and validated biomarkers that reflect prior ingestion of
exogenous GHB intake can be useful though such are currently
unknown. It is reported that GHB can be metabolized to
succinic semialdehyde, followed by oxidation to succinate
(Kaufman and Nelson, 1987). GHB can also be further
catabolized to acetyl-CoA and glycolate by β-oxidation, and
converted to 3-hydroxypropionyl-CoA by α-oxidation (Steuer
et al., 2019). In addition, GHB-glucuronide and GHB-sulfate
have been reported as Phase II metabolites of GHB (Petersen
et al., 2013; Hanisch et al., 2016), but neither are apparently
suitable to confirm GHB consumption (Mehling et al., 2017;
Piper et al., 2017). Recently, Kraemer et al. (2022), also
synthesized fatty acid esters of GHB that also were detected
as potentially novel GHB metabolites in blood (Kraemer et al.,
2022). GHB-carnitine and GHB-glutamate were tentatively
identified for the first time as urinary metabolites of GHB
in the study of Steuer et al. (2019), and the structures of GHB-
carnitine was later confirmed by an authentic standard in their
following study (Steuer et al., 2021). Furthermore, conjugates
of GHB with glycine, taurine and pentose were found in urine,
and GHB-pentose was reported to be promising for longer
detection, while none of these GHB conjugates were found in
blood samples (Steuer et al., 2021). 2,4-dihydroxybutyric, 3,4-
dihydroxybutyric acid, and glycolic acid have also been
reported to be potential GHB biomarkers by a control study
with five participants (Jarsiah et al., 2021; Küting et al., 2021).
Most of these studies for GHB biomarker discovery were based
on a limited number of GHB-users, e.g., to our knowledge up
to 20 participants and with a maximum dose of 50 mg/kg
reported (Steuer et al., 2021). Furthermore, the time interval
from ingestion of GHB to collection of samples is limited with

a maximum period of 30 h in a single arm study reporting
succinate and glycolate as potential markers based on
comparison with pre-intake levels (Palomino-Schätzlein
et al., 2017). Novel reliable and importantly validated
markers in whole blood is thus still needed for forensic
toxicological analyses to confirm exogenous GHB intake.

Untargeted ultra-performance liquid-chromatography-
high-resolution mass spectrometry (UHPLC-HRMS) based
screening is increasingly used to analyze blood samples for
drugs in forensic laboratories (Telving et al., 2016). This
technique leaves much unexploited data and in particular if
the same quality controlled method has been run over several
years, a unique opportunity to mine the existing data for
correlations between drug intake and formation of novel
metabolites as well as impact on ordinary human
metabolism. The feasibility of such a retrospective analysis
in metabolomics was initially demonstrated in a seminal paper
analyzing data from blood samples from humans exposed to
3,4-methylenedioxymethamphetamine (MDMA) over a 2-year
period (Nielsen et al., 2016). The findings provided an initial
proof-of-principle that meaningful results can be derived from
retrospective data analysis of routine data from toxicological
screenings. In contrast to MDMA, GHB is an endogenous
compound, and the concept still needs further proof and
verification for such more complicated cases. More recently,
the principle was also applied by other groups to detect novel
direct metabolites of valproate, as well as to examine whether
data from post-mortem samples can be used to get insight into
mechanism of death (Mollerup et al., 2019; Elmsjö et al., 2020).
Still, the method is yet in its infancy and needs further
development to, e.g., tackle archived data produced over a
longer period, as the shift of retention time (RT) and intensity
is much larger in retrospective analysis compared to single or
consecutive runs as is custom in the field. Furthermore, a more
thorough examination and validation of more advanced data
analysis methods is wanted to prepare for future more large-
scale studies. Finally, though important insight into direct
metabolites of, e.g., MDMA and valproate was
demonstrated in previous studies, a validation of the impact
of the exogenous compound—here GHB—on endogenous
metabolism would ultimately prove that the method merits
further attention and use in the future.

Consequently, the aim of this study was to investigate a
range of advanced analytical methods to discover those best
suited for detecting novel and known biomarkers/direct
adducts of GHB consumption in data from routine
UHPLC-HRMS screenings. The results examined and
potentially validated by comparison to data from controlled
studies in the literature. Furthermore, to investigate the impact
of GHB intake on human metabolism and also validate this to
the literature. For the analysis we used HRMS data from 51
GHB positive and 51 negative driving under the influence of
drugs (DUID) blood analysis acquired over a 6 year time
period. Towards this aim, data normalization and a range
of advanced analytical methods were applied to examine and
develop our analytical approach in further depth and
demonstrate the power using the GHB data and
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simultaneously opening up for more large scale metabolomics
studies using archived data in the future.

EXPERIMENTAL METHODS

Chemicals
Acetonitrile (LC-MS grade), methanol (LC-MS grade), formic
acid and hydrochloric acid were purchased from Merck
(Darmstadt, Germany). Purified water was prepared by a
Milli-Q IQ 7000. All other chemical standards including GHB,
amphetamine-d5, cocaine-d3, diazepam-d5, and phenobarbital-d5
were purchased from Sigma-Aldrich (Schnelldorf, Germany). 4-
hydroxybutyryl-carnitine chloride was purchased from Toronto
Research Chemicals (Toronto, Canada). GHB-glutamate was
synthesized following the procedures in Supplementary
Material.

Biological Material
Ante-mortem whole blood samples from drivers suspected of
DUID were collected by the Danish police in tubes containing
fluoride oxalate mixture and tubes containing a fluoride citrate
mixture on different sites in western part of Denmark (4 police
districts). The collected samples were subsequently sent to our
department by normal mail. All samples were frozen and stored
at −18°C immediately after arrival until analysis within a
maximum of 7 days.

Sample Extraction
For the ultra-high-performance-liquid-chromatography
quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF)
analysis, the extraction procedures followed the method in the
study of Telving et al. (2016). An aliquot of the whole blood
sample was precipitated with a mixture of methanol and
acetonitrile and centrifuged. The supernatant was filtered
through a 30 kDa filter and evaporated to dryness,
reconstituted and transferred to a LC-vial. For quantitative
analysis on ultra-high performance-liquid-chromatography
triple-quadrupole (UHPLC-QQQ), the extraction procedures
referred to the study of Sørensen and Hasselstrøm, (2012). In
short an aliquot of the whole blood sample was precipitated with a
mixture of methanol and acetonitrile and centrifuged. The
supernatant was transferred to a cation exchange column and
the eluate was transferred to a LC-vial.

Untargeted Screening Using UHPLC-QTOF
The qualitative analysis of the whole blood sample extracts was
performed on an ACQUITY I-Class UHPLC system (Waters
Corporation, Milford, MA, United States) coupled to a Bruker
maXis Impact QTOF mass spectrometer (Bruker Daltonics,
Bremen, Germany). The analysis was performed using an
ACQUITY BEH C18 (100 mm × 2.1 mm, 1.7 μm) column
with mobile phases A consisting of 0.1% formic acid in
water and B of acetonitrile, and the analytical method was
carried out using the method by Telving et al., (2016).

An electrospray ionization source was operated in positive
mode using m/z calibration range of 50–1000 Da at a rate of

10 Hz, and fragmentation analysis was carried out using
broadband Collision Induced Dissociation (bbCID) with
collision energy of 25 eV. The exactly same analytical method
was applied over the 6 years, though the column, was changed
regularly e.g. approximately every 6 months during the period.
Auto-MS/MS with collisions carried out at energies from 10 to
35 eV was additionally used for some specific fragmentation of
selected features after retrospective data analysis for further
verification of structures.

Quantitative Analysis Using UHPLC-QQQ
Quantitative Analysis of GHB was routinely carried out using a
validated method with UHPLC-QQQ. The method was
described in a previous study (Sørensen and Hasselstrøm,
2012).

Data Collection and Preprocessing
Samples in this study were collected over 6 years from 2015 to
2020 both inclusive. Fifty-one samples with verified GHB
concentrations above 10 mg/kg were matched against a
control group of 51 samples with endogenous levels of GHB
(<10 mg/kg), 10 mg/kg was selected as a threshold to be sure of
GHB intake. Besides GHB, various other drugs were also
detected providing both group similar “backgrounds” to
level out potential confounding effects by other drugs
(Supplementary Table S1). The detailed sample
information including the GHB concentration and data
collection years of both the control and the GHB positive
group is shown in Supplementary Table S2.

Mass spectrometry data obtained from the UHPLC−QTOF
were transformed to the mzml. file format using Bruker
Compass DataAnalysis (Bruker Daltonics, Bremen,
Germany) after internal calibration. The mzml. files were
processed with XCMS in R (version 4.0). The XCMS
parameters were optimized (Supplementary Table S3) and
a tabulated data matrix list with aligned RT and m/z values was
summarized in .csv format. The ions with null value in the data
matrix file were imputed with one third of the lowest value of
the given ion in all the samples in order to make log-
transformation in the next step. Known adducts or isotopes
of GHB, namely [(104.0467 + H+1)+, (104.0467 + Na)+,
(104.0467 + Na+1)+, (104.0467-H2O)+, (104.0467-H2O+1)+]
were also excluded in the statistics to get more reliable results
for other GHB markers.

As alternative to ordinary quality controls samples in our
retrospective analysis, we initially corrected the peak intensity
using the internal standards (IS) with the NOMIS method
(normalization using optimal selection of multiple internal
standards). The data were log-transformed (log 10) to fit the
assumptions of the NOMIS method and then normalized by
four IS (“metabolomics” package), as illustrated in the study of
Sysi-Aho et al. (2007). NOMIS uses variability information
from multiple IS to find the optimal normalization factor for
each feature. We validated our data quality and the accuracy of
the “NOMIS” correction in retrospective analysis by
comparing the GHB intensity (not corrected/corrected by
NOMIS) in all samples obtained from UHPLC-QTOF to
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GHB levels measured by UHPLC-QQQ using a linear
regression analysis.

Statistics and Machine Learning
T-Test, Fold Change, and PCA
The normalized data obtained by the NOMIS method were used
for the following statistical analysis. Pairwise univariate T-tests
were used to test the difference for each feature between groups
(control/positive) using a critical value of 0.05 (Wang et al., 2021).
To account for multiple testing, p-values were further adjusted
using the false discovery rate (FDR). Also, the fold change (FC)
was used to illustrate the ratio of the integrated peak areas
between the control and the positive GHB group. Principle
component analysis (PCA) by using “ggplot” R package was
applied for multivariate analysis.

Pearson Correlation Analysis and Correlation Network
Pearson correlation analysis was used to quantitatively calculate
the correlation between each feature’s and GHB’s intensity to find
potential GHB metabolites. The correlation coefficients were
calculated using the “rcorr” function in the “Hmisc” package
in R. On the basis of Pearson correlation, we also constructed a
correlation network (CN) using all selected GHB-related
metabolites to explore the potential interaction between all
these features and make a better understanding of the impact
of GHB on metabolism. CN can be interpreted as a system
biological data analysis method. Correlations between features
were considered significant if FDR-corrected q-value < 0.1 and
only significant features were displayed in the network. Each edge
represents correlation between features, and each node represents
one selected feature. Features were plotted with the R package
“qgraph.” Only networks containing a minimum of three
molecules were plotted.

Machine Learning Methods
The machine learning methods used for biomarker discovery in
this study were selected based on previously reported methods
(Nielsen et al., 2016; Liang et al., 2020; Liebal et al., 2020).
Orthogonal partial least squares discriminant analysis (OPLS-
DA) was applied for feature selection using SIMCA version 16
(Umetrics, Umea˚, Sweden). Pareto scaling was applied to the
data for the OPLS-DAmodel. The parameters Q2 and R2X (R2Y)
were used to evaluate the performance of the OPLS-DA model.
Q2 indicates the prediction quality of the model, whereas R2
explains how well the model fit the data. The accuracy of the
OPLS-DA model was validated with 10-fold cross validation, and
the dataset was further randomly divided into a training set and a
test set containing 50% of the samples for each. Variable
importance parameters (VIPs) from OPLS-DA indicate the
importance of each feature that contributes to the separation
of the two groups (VIP ≤ 0.5: unimportant; VIP > 1: significantly
important according to usual interpretation of VIP) (Sinclair
et al., 2021). Least absolute shrinkage and selection operator
linear regression (LASSO) from the “glmnet” R package was used
to predict metabolites associating to exogenous GHB intake.
Random forest regression (RFR) and classification (RFC) from
the “randomForest” R package were also applied to select the

potential metabolites that associated to GHB. RFR calculates the
percentage increase of the mean squared error (%IncMSE), which
is used to explain the importance of the features corresponding to
GHB. %IncMSE indicates the increase in mean squared error
(MSE) of predictions (estimated with out-of-bag-CV) as a result
of variables being permuted (values randomly shuffled) (27). We
also randomized all the samples and applied OPLS-DA model
again as an example to see whether we could still identify any
markers.

Metabolite Identification
We used the guidelines from the Metabolomics Standard
Initiative to annotate features (Sumner et al., 2007). Selected
features with high importance in correlation-based and statistic-
based approach were searched from our in-house database with
endogenous metabolites (ca. 400 metabolites) and/or online
databases as METLIN (https://metlin.scripps.edu), the human
metabolome database (http://www.hmdb.ca), lipid maps (http://
www.lipidmaps.org), and KEGG (http://www.genome.jp/kegg/)
using MetFrag (http://msbi.ipb-halle.de/MetFrag) in silico
fragmentation for tentative identification. Structures of the
selected features were confirmed by matching the m/z-values,
fragment pattern, and RT to database or available authentic
standards. Annotated metabolites were marked with
identification levels. For features identified to level 1, we
compared m/z of precursor, retention time and fragmentation
spectra to an authentic standard. For level 2 identification, we
compared the m/z of precursor, fragmentation spectra to public
database.

RESULTS

XCMS & NOMIS Align and Normalize the
Data Over 6Years
The GHB concentration quantified by UHPLC-QQQ in the
positive group is in the range from 10 mg/kg to 231 mg/kg
whole blood, and the GHB level in 51 negative samples are all
below 10 mg/kg. RT deviates with a maximum of 20 s before
peak alignment, which indicates the variation between
samples. Chromatograms of all studied samples before and
after RT correction are shown in Supplementary Figure S1.
The peak area variation of the four internal standards in all
samples varies up to five times (Supplementary Figure S2).
Regarding to the integration accuracy, we compared the
integrated peak area of GHB by XCMS to the manually
integrated peak area of GHB. As shown in Supplementary
Figures S3, in general the peak integration accuracy is
acceptable (R2 = 0.85), and only six samples (11.8%) are a
bit off from others with their xcms-integrated peak area
around half of the true value.

The accuracy and performance of the “NOMIS”
normalization method in retrospective analysis is evaluated
by plotting the logarithmic peak area of GHB in all the
positive samples integrated by XCMS using the routine
screening data acquired on UHPLC-QTOF to the GHB
concentration obtained by UHPLC-QQQ. As shown in
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Figure 1, the R2 is 0.48 before log-transformation and data
normalization, and it is 0.69 after log-transformation but before
normalization. The correlation further increases to 0.844
following NOMIS, which indicates a strong positive
correlation across a long time period and which we evaluate
as sufficient for the current purpose.

Statistical Analysis for Selection of Potential
GHB-Markers
XCMS pre-processing extracted 3913 features. The FDR
adjusted p-values (q-value) resulted in 554 features using a
threshold of 0.05 and 110 features using a threshold of 0.01.
For FC, 674 features were higher than 1.2, 147 were higher than
1.5, and 34 were higher than 2.0. Finally, 516 features had FC
values lower than 0.8, and some of them could be potential
down-regulated metabolites induced by GHB. M354T52,
M507T82, M250T52 are top three features with highest FC,
and their FC are 6.0, 4.0, and 3.8, respectively. The FC of all
features can be found in Supplementary Table S4. The
identified metabolite GHB-carnitine and the tentatively
identified metabolite GABA-2-hydroxyglutarate also have
relative high FC with values of 2.6 and 2.3 (The top 20
highest). A volcano plot is shown in Figure 2, and FC with

1.2 and q-value 0.05 were used as cutoff. PCA shows no clear
clustering between the two groups, which indicates that GHB
metabolites does not vary enough to affect the first two
principal components of the PCA (Supplementary Figure S4).

Correlation and Machine Learning Models
to Select Significant Features Correlated
to GHB
Pearson correlation, OPLS-DA, RFR, RFC, and LASSO were
applied to identify the potential metabolites correlated to
GHB. In Pearson correlation, features with correlation
coefficients (R) higher than 0.5 are defined as significant
resulting in 11 positively correlated features (R > 0.6) and one
negatively correlated feature (M165T51) to GHB (R < −0.6).
These features with high correlation coefficients also show high
VIP scores (VIP > 2.5) in OPLS-DA (Figure 3A) and are the most
significant features in the S-plot (Figure 3B) and volcano plot
(Figure 2).

OPLS-DA discriminates the two groups with R2Y = 0.86,
R2X = 0.42, and Q2 = 0.36. The returned root-mean-square
error of estimation (RMSEE) is 0.19 using 10-fold cross-
validation. The high R2 and the low Q2 indicates some
overfitting, which is also seen by the low specificity in the

FIGURE 1 | Correlation between the GHB concentration and the GHB peak area integrated by XCMS: (A) correlation between GHB concentration and GHB peak
area without log-transformation and data normalization. (B) correlation between GHB concentration and GHB peak area with log-transformation but without any data
normalization, (C) correlation between GHB concentration and GHB peak area with log-transformation and NOMIS normalization. The peak area in y-axis is from
screening method on UHPLC-QTOF, and concentration of x-axis is measured by UHPLC-QQQ. Only GHB positive samples were used in all the plots.
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validation set. This could be explained by the endogenous
nature of GHB. In OPLS-DA, the sensitivity (true positive) and
specificity (true control) from test set validation are 92% and
76%. Among all the features, VIP values of 1350 features are
higher than 1.0, and 353 features are higher than 1.5. The
importance of features are shown in an S-plot (Figure 3B),
where the x-axis indicates the magnitude of the variables and
their importance, and the y-axis shows the reliability, the
closer to ±1, the more reliable. The most discriminating
features of GHB positive samples versus the control group
are highlighted. M165T51, M507T82, M354T52, M342T52,
M297T48 are the top five features with highest VIPs that
discriminate the two groups. GHB-carnitine, GABA-2-
hydroxyglutarate (tentatively identified) and some other
endogenous metabolites or reported unknown features also
show significant importance in S plot, which will be discussed
further in the following sections. As a control of the approach,
we finally randomized the united pool of samples and applied
the OPLS-DA model again, the results are shown in
Supplementary Table S4. As evident, we could not find any
GHB markers among the top 50 features with highest VIP
score using the randomized samples, e.g., GHB carnitine
(M248T57) got a VIP score of only 0.41.

For the LASSO linear regression, the model is first validated by
10-fold cross-validation. The RMSE is 0.27 and the R2 is 0.96,
which is sufficient to make prediction. LASSO selects 14 features
as important features, where four of them (M929T287,
M495T277_2, M192T140, M410T173) are found to be

insignificant in Pearson correlation with correlation
coefficients of 0.36, 0.35, and 0.23, and 0.17, respectively.

The RFR and RFC algorithm is another way to provide
information on variable importance. The accuracy of RFC
using 10-fold CV is 0.89 (mtry = 58). The RMSE of RFR is
0.62, and R2 is 0.80 (mtry = 88). In the results, %IncMSE of 304
features are higher than 1.2, and 76 features are higher than 1.5.
The top 11 features are consistent with the top significant features
in the Pearson correlation with almost the same order. RFC
calculates mean decrease accuracy (MDA) of each feature, which
expresses how much accuracy the model losses by excluding each
variable. In the results of RFC, MDA of 140 features are higher
than 1.2, and 38 features are higher than 1.5. The prioritized
features sorted by all the different data analysis methods and how
they overlap are shown in Supplementary Table S4. Table 1
shows all the information of selected metabolites that were
prioritized and predicted by the different statistics and models.
The ID, RT, annotations, T-test, FC, and importance of various
models of these features are all shown here, and explanation of the
content in this Table 1 will be discussed in the following section.

Feature Selection for Further Analysis
Three feature selection strategies were used: a statistic-based
approach, a correlation-based approach and a machine
learning based approach. In the statistic-based approach,
T-test and FC were used, and absolute fold-change (1.2) and
q-value (0.1) were treated as statistical significance cutoffs. Both
correlation and machine learning approaches were based on

FIGURE 2 | Volcano plot of significant features between the GHB positive group and the control group. y-axis represents the log-transformed adjusted p-values
calculated by t-test. x-axis is log2(FC). Cutoffs of 1.2 and 0.05 are used for fold change and adjusted p-values (q-value), respectively. FC of 674 features are higher than
1.2, and 516 features have FC lower than 0.8. Adjusted p-values of 554 features are higher than 0.05.
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features with statistical significance. In the correlation-based
approach, the top 50 features sorted by Pearson correlation
were selected. The top 50 features with highest VIP values in
OPLS-DA model were also selected. In addition, all features were

matched with our in-house database that includes endogenous
metabolites and all the GHB-related metabolites reported in the
literatures, and those metabolites showing significance in at least
one method (FC > 1.2/FC < 0.8, VIP>1 or q-value<0.1) are also

FIGURE 3 | OPLS-DA. (A) OPLS-DA plot showing the discrimination between control and the GHB positive group. (B) S-plot highlighting the most discriminating
features of GHB intake in the positive samples compared to controls in the OPLS-DA model. The x-axis shows the magnitude of the variables and their importance, and
the y-axis indicates the reliability; the closer to ±1, the more reliable. The annotation of each feature with ID refers to Table 1. The unknown features marked with “r”mean
they were reported in the literature.
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TABLE 1 | Metabolites found to be associated with GHB intake that predicted by random forest, Pearson correlation, lasso, and OPLS VIP-Scores.

ID Annotation Formula rt_min Dir Idl FC m/z VIP p-value q-value Lasso %
IncMSE

MDA PC

M147T21 Glutamine Seo et al.
(2018)a

C5H10N2O3 0.35 ↑ 1 1.28 147.0764 1.05 0.072 0.126 0 −0.95 −1 0.18

M176T283 3-indole-acetic-acid C10H9NO2 4.72 ↓ 1 0.81 176.0706 0.77 0.044 0.095 0 0.54 −1.42 −0.12
M385T74 5-adenosyl-

homocysteine
C14H20N6O5S 1.23 ↑ 1 1.15 385.1288 1.29 0.196 0.214 0 −1 0 0.1

M204T23 Acetylcarnitine C9H17NO4 0.38 ↑ 1 1.23 204.1238 1.48 0.006 0.031 0 1.39 0 0.26
M456T478 Arachidylcarnitine C27H53NO4 7.97 ↓ 2 0.49 456.4044 2.18 <0.001 0.005 0 1 0.31 0.36
M118T24 Betaine C5H11NO2 0.4 ↑ 1 1.18 118.0868 1.44 0.036 0.084 0 1.19 1 0.18
M428T460 C17:0 acylcarnitine C25H49NO4 7.66 ↓ 2 0.43 428.3737 2.69 <0.001 0.001 0 −0.13 0 −0.38
M199T92 Cyclo (Pro-Thr) C₉H₁₄N₂O₃ 1.53 ↓ 1 0.52 199.1076 1.63 <0.001 0.008 0 1 1 −0.3
M197T159 Cyclo (Pro-Val) C₁₀H₁₆N₂O₂ 2.64 ↓ 1 0.7 197.1285 1.09 0.008 0.038 0 1.1 1 −0.23
M316T356 Decanoylcarnitine C17H33NO4 5.93 ↑ 1 1.9 316.2493 1.68 0.002 0.017 0 −1 −0.21 0.26
M234T52 GABA-2-

hydroxyglutarate
C9H15NO6 0.87 ↑ 2 2.27 234.0969 2.92 <0.001 <0.001 0.19 4.31 5.57 0.79

M248T57 GHB-carnitine Steuer
et al. (2019)a

C11H21NO5 0.95 ↑ 1 2.55 248.149 2.11 <0.001 <0.001 0 2.09 2.37 0.43

M148T21 Glutamic acid Seo et al.
(2018)a

C5H9NO4 0.35 ↑ 1 1.3 148.0604 1.29 0.032 0.079 0 −1 −1 0.26

M136T23_2 Homocysteine C4H9NO2S 0.38 ↓ 1 0.76 136.0425 1.05 0.051 0.103 0 0.97 −1 −0.2
M146T128 Indole-3-

carboxaldehyde
C9H7NO 2.14 ↓ 2 0.55 146.0602 1.89 <0.001 0.002 0 −1 −0.37 −0.31

M206T246 3-Indole lactic acid C11H11NO3 4.11 ↓ 1 0.85 206.081 0.66 0.042 0.091 0 0.67 1 −0.16
M522T480 L-A-LysoPC; 18:1 C26H52NO7P 8 ↓ 1 0.77 522.3569 0.88 0.044 0.095 0 −1 0 −0.21
M344T387 Lauroylcarnitine C19H37NO4 6.45 ↑ 1 1.68 344.2798 0.77 0.112 0.158 0 −1.08 −1 0.11
M116T22_2 Proline Seo et al. (2018) C5H9NO2 0.37 ↑ 1 1.18 116.0711 1.42 0.015 0.051 0 0.83 0 0.26
M120T21 Threonine C4H9NO3 0.35 ↑ 1 1.34 120.0656 1.37 0.001 0.014 0 1.46 0 0.32
M147T80 Lysine Seo et al. (2018) C6H14N2O2 1.33 ↓ 1 0.6 147.1127 1.62 <0.001 0.012 0 1.92 0 −0.27
M510T491 LysoPC 17:0 C25H52NO7P 8.18 ↓ 1 0.57 510.3559 2.1 0.003 0.021 0 0 1 −0.27
M482T481 LysoPC O-16:0/0:0 C24H52NO6P 8.02 ↓ 2 0.56 482.3605 2.24 <0.001 0.01 0 −1 −1 −0.32
M508T489 LysoPC P-18:0/0:0 C26H54NO6P 8.15 ↓ 1 0.57 508.3765 2.23 <0.001 0.012 0 0.37 −1.73 −0.3
M101T88 Methyl methacrylate C5H8O2 1.46 ↑ 2 1.49 101.0597 1.27 <0.001 0.005 0 0.9 −0.68 0.45
M298T130 Methylthioadenosine

(MTA)
C11H15N5O3S 2.17 ↑ 1 1.89 298.0968 1.57 0.032 0.079 0 −0.34 0 0.19

M372T413 Myristorylcarnitine C21H41NO4 6.88 ↓ 1 0.7 372.311 1.97 <0.001 0.008 0 −0.9 0 −0.31
M192T140 N-acetylmethionine Luca

et al. (2014)a
C7H13NO3S 2.34 ↑ 1 1.34 192.0689 0.87 0.018 0.058 0.04 1.38 1 0.22

M288T319 Octanoylcarnitine C15H29NO4 5.32 ↑ 1 1.6 288.2173 0.95 0.186 0.208 0 −0.84 0 0.09
M426T443 Oleoylcarnitine Luca

et al. (2014)
C25H47NO4 7.38 ↓ 1 0.62 426.3583 1.74 0.002 0.018 0 −0.43 1 −0.26

M220T109 Pantothenic acid C9H17NO5 1.82 ↑ 1 1.43 220.1182 1.01 0.01 0.041 0 1.05 −1 0.23
M265T151 Phe-Val C14H20N2O3 2.51 ↑ 1 1.63 265.1545 0.86 0.064 0.117 0 0.51 −0.64 0.17
M262T41 Succinylcarnitine Steuer

et al. (2019)a
C10H14N4O5 0.68 ↑ 2 1.36 262.1285 1.29 0.005 0.03 0 −1 0 0.22

M134T23 Thioproline C4H7NO2S 0.38 ↑ 1 1.25 134.0271 2.04 <0.001 0.013 0 −1.38 1 0.33
M231T428 Val-leu C11H22N2O3 7.14 ↓ 2 0.56 231.1743 1.67 0.002 0.018 0 −1.54 0 −0.32
M153T52 Xanthine C5H4N4O2 0.86 ↑ 1 1.48 153.0407 1.37 0.046 0.097 0 0.98 −1 0.17
M218T81 Unknown 1.34 ↓ 0.46 218.059 2.76 0.0001 0.004 0 −0.77 0.74 0.37
M80T42 Unknown 0.71 ↓ 0.14 80.04935 2.63 <0.001 0.011 0 0 1 −0.26
M93T95 Unknown 1.58 ↓ 0.43 93.06945 2.73 <0.001 0.007 0 1.34 0.96 −0.33
M96T43 Unknown 0.71 ↓ 0.26 96.0443 2.55 <0.001 0.002 0 −1.02 0 0.32
M79T95 Unknown 1.58 ↓ 0.22 79.0541 2.5 0.0001 0.004 0 −1 1 0.29
M538T535 Unknown 8.92 ↓ 0.48 538.3872 2.47 <0.001 0.006 0 1.02 0.62 −0.34
M119T128 Unknown 2.13 ↓ 0.29 119.0683 2.44 0.0001 0.003 0 −1.08 1.41 0.29
M271T560 Unknown 9.33 ↑ 1.76 271.2744 2.27 <0.001 <0.001 0 −1.87 0 0.38
M262T52 Unknown 0.87 ↑ 2.16 262.0134 1.95 <0.001 0.005 0 4.28 2.32 0.54
M256T52 Unknown 0.87 ↑ 1.53 256.079 1.61 <0.001 0.004 0 1.5 2.84 0.47
M840T313 Unknown 5.22 ↓ 0.76 840.2059 1.42 <0.001 <0.001 0 1.16 −1.16 0.39
M733T286_3 Unknown 4.76 ↑ 1.26 733.2255 1.23 <0.001 0.008 0 1.21 0.92 0.4
M130T173 Unknown Steuer et al.

(2019)a
2.89 ↓ 0.38 130.0498 2.15 <0.001 <0.001 0 −0.56 0 −0.34

M169T102 Unknown Steuer et al.
(2019)a

1.71 ↓ 0.68 169.1331 1.47 0.01 0.042 0 0.03 0 −0.23

M367T466 7.76 ↑ 1.11 367.1415 1.05 0.069 0.122 0 0 0 0.15
(Continued on following page)
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listed in Table 1. In the end, all these features with high
importance (statistically or the individual top 50 lists) in
different strategies and the endogenous metabolites that match
with our in-house database and shows significance were
combined, resulting in 89 features (Table 1; Supplementary
Table S5).

Metabolites Associated With GHB Levels
A range of features that correlated to GHB levels are identified
or tentatively identified, as shown in Table 1, and their fragment
patterns that obtained from DDA or DIA mode from UHPLC-
QTOF are shown in Supplementary Table S6. In
Supplementary Table S6, fragments without abundancy
mean that they were fragmented in bbcid mode since not all
the precursors got fragmented, otherwise they were fragmented
in auto-MS/MS mode. Among the identified features, GHB-
carnitine is identified with an authentic standard, which has
been reported in previous studies (Steuer et al., 2019, Steuer
et al., 2021). GHB-carnitine is found to be a highly significant
feature in both OPLS-DA (VIP: 2.11), Pearson correlation (R =
0.43), and FC (2.55). M428T460 is tentatively identified as a
C17:0 acylcarnitine with VIP score of 2.69 and FC of 0.43, and
M456T478 was tentatively identified as arachidylcarnitine. Nine
carnitine conjugates are found to be correlated to GHB intake,
the levels of myristorylcarnitine, oleoylcarnitine, C17:0
acylcarnitine, and arachidylcarnitine are negatively correlated
to GHB according to their FC and Pearson correlation
coefficients, while decanoyl carnitine, lauroylcarnitine,
octanoylcarnitine, succinylcarnitine, and acetylcarnitine are
upregulated by GHB.

Feature M234T52 has the 10th highest VIP among all
detected features (2.92) and also high FC (2.27). This
metabolite has the same mass as GHB-glutamate that was

reported in the study of Steuer et al. (2021), but has so far only
been tentatively identified without an authentic standard as it
is not commercially available. We therefore synthesized GHB-
glutamate according to the structure they proposed in their
paper and tested it against our samples (Steuer et al., 2019).
However, the RT of the authentic GHB-glutamate did not fit
with the RT of M234T52 detected in GHB samples with delta
RT of 0.4 min, which means that M234T52 is not GHB-
glutamate, but another compound with high correlation to
GHB intake, possibly GABA-2-hydroxyglutarate as discussed
below. The chromatogram of a GHB sample spiked with
authentic GHB-glutamate is shown in Supplementary
Figure S5. The two main fragments produced by M234T52
are m/z 84.05 and m/z 130.05, which are also found in GHB-
glutamate but with different abundancy (Supplementary
Figure S5). Also, GHB-glutamate gives rise to two
additional fragments, m/z 102.06 and m/z 69.03, which is
not produced by M234T52. The detailed synthesis
procedure and NMR spectra of GHB-glutamate are shown
in Supplementary Figures S6–S11, and the proposed
structure and possible pathway of GABA-2-
hydroxyglutarate is shown in Supplementary Figure S12.
Two unknown features M259T82 and M507T82 might
belong to the same compound due to same RT and show
particularly high significance in various statistics and models,
but no matches are found in any database.

There are also several amino acids or conjugates of amino
acids that are found to be correlated to GHB levels, namely
glutamine, lysine, cyclo (Pro-Thr), cyclo (Pro-Val), Phe-Val, 5-
adenosyl-homocysteine, homocysteine, threonine, glutamic acid,
proline, and Val-Leu. The structures of these amino acids are all
confirmed by authentic standards. Lysine, Val-Leu, cyclo (Pro-
Thr), cyclo (Pro-Val), and homocysteine are all downregulated by

TABLE 1 | (Continued) Metabolites found to be associated with GHB intake that predicted by random forest, Pearson correlation, lasso, and OPLS VIP-Scores.

ID Annotation Formula rt_min Dir Idl FC m/z VIP p-value q-value Lasso %
IncMSE

MDA PC

Unknown Steuer et al.
(2019)a

M259T82 Unknown Steuer et al.
(2019)a

1.37 ↑ 2.82 259.0786 3.1 <0.001 <0.001 0 3.91 6.85 0.73

M342T52 Unknown, adduct
of GHB

0.87 ↑ 3.64 342.0608 3.54 <0.001 <0.001 0.17 5.81 7.29 0.83

M165T51 Unknown 0.84 ↓ 0.19 165.0868 4.48 <0.001 <0.001 −0.13 1.39 4.97 −0.63
M507T82 Unknown 1.36 ↑ 3.99 507.1547 3.87 <0.001 <0.001 0.33 4.47 6.3 0.8
M297T48 Unknown 0.81 ↑ 3.12 297.0812 3.54 <0.001 <0.001 0.7 2.76 5.1 0.71
M325T52 Unknown 0.86 ↑ 2.69 325.1072 2.99 <0.001 <0.001 0.02 5.8 5.12 0.8
M345T50 Unknown 0.84 ↑ 1.91 345.0675 2.36 <0.001 <0.001 0.02 3.37 4.43 0.65
M354T52 Unknown, adduct

of GHB
0.87 ↑ 6.03 354.0608 3.81 <0.001 <0.001 0.94 6.18 7.11 0.85

M253T52 Unknown 0.87 ↑ 2.41 253.0213 2.71 <0.001 <0.001 0.13 4.41 3.77 0.75
M250T52 Unknown, adduct

of GHB
0.87 ↑ 3.79 250.0135 3.11 <0.001 <0.001 0 4.33 5.01 0.7

ameans the feature has been reported in the literature to be correlated to GHB.
%IncMSE, percentage increase of the mean squared error; MDA, mean decrease accuracy; Dir, direction of regulation by GHB; Idl, identification level. For features identified to level 1, we
compared the m/z of precursor, retention time and fragmentation spectra using an authentic standard. For level 2 identification, we compared the m/z of precursor, fragmentation spectra
to public database. PC, Pearson correlation coefficients.
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GHB, while the remaining metabolites are upregulated by GHB
intake.

Validation of Different Feature Selection
Methods by Comparison to Controlled GHB
Studies
To further compare the performance of the different statistics and
machine learning models, the identified GHB-related metabolites
among the top 50 features sorted by each method are shown in
Figure 4. Some of the identified metabolites have been reported
previously in controlled GHB studies and can be used to validate
our approach and the different analytical methods.

As GHB-carnitine, succinylcarnitine, and several reported
unknowns are not found in LASSO, this method is considered
less reliable for biomarker discovery in our case since it penalized
these previously described GHB-related metabolites (Liebal et al.,
2020). Relatively few GHB-related metabolites are also found in
top 50 features sorted by RFR and RFC (Figure 4), with only two
GHB-related features (GHB-carnitine and M259T82) consistent
with the literature. Both RFR and RFC however prioritize
M234T52 (possibly GABA-2-hydroxyglutarate). OPLS-DA is
able to model the difference between the GHB positive and
control group, and using this machine learning method four
reported GHB-related metabolites could be found in top 50

features with high significance (VIP > 1). Pearson correlation
provides valuable information to discover metabolites that are
highly correlated to GHB intake, and is known as the best method
of measuring the association between variables of interest.
However, as our study is uncontrolled, Pearson correlation
may not be the best method to interpret the results as the
Pearson correlation coefficients we obtained from most
relevant metabolites are not high enough to take as significant
features according to a typical significance cutoff such as 0.5, but
still provides additional information for the change of
metabolism. FDR q-value gives valuable information for
potential biomarkers and four of the top 50 prioritized
features have previously been identified as GHB-related
metabolites (Steuer et al., 2019). Random forest allows direct
biological understanding of the decision and classification (Liebal
et al., 2020). In aggregate, for our data, the outputs of RFR and
RFC vary much compared to the OPLS-DA and FDR q-value,
which provides less conservative results. Thus, we regard OPLS-
DA as the machine learning method used for feature selection
giving the most comprehensive information, while its combined
use with other statistics such as T-test and Pearson correlation
further strengthens the prioritization of relevant features/
metabolites.

Based on our combined feature selection strategy, 89 features
were selected for further correlation network analysis (see next

FIGURE 4 | Comparison of the different feature selection methods and identified compounds (as shown in grey area) among the top 50 most important features
sorted by each method. FDR q-value, OPLS-DA, and Pearson correlation prioritize most metabolites in their top 50 features compared with control studies.
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paragraph), and 77 of them show significant correlation with each
other after FDR correction. Table 1 only includes the features
with the top 20 highest VIPs values and top 20 highest correlation
coefficients, also together with all the identified metabolites that
match with in-house database and shows significance in at least
one method (FC, VIP, and q-value). The remaining unknowns
are shown in Supplementary Table S5. Twenty-five features of
the features included in Table 1 are plotted in a box plot
(Figure 5), to illustrate the difference of abundance between
the control and positive group.

GHB Impacts on Human Metabolism as
Reflected by a Correlation Network
The correlation network (CN) provides insights into the impact of
GHB on metabolism and the interaction between the individual
metabolites, this even though many features were not identified.

Based on our combined feature selection strategy, 89 features were
initially selected for further analysis. Of these 77 features are included
in Figure 6, as only networks containing a minimum of three
molecules were plotted. The CN highlighted the role of important
features, and there are three main subnetworks shown in the plot.
The highlighted subnetwork on the top shows the main features that
correlate to GHB directly, e.g., M354T52 (#26), M250T52 (#34),
M342T52 (#42), M259T82 (#37), M507T82 (#47), M234T52 (#22,
possibly GABA-2-hydroxyglutarate), M345T50 (#43), M297T348
(#40), are positively correlated to GHB, while M165T51 (#32) is
negatively correlated to GHB, M342T52 (#42), and M345T50 (#43).
To show the correlation of features to GHB more clearly, we also
zoomed in on the subnetwork that includes GHB with a different
scaling of edges. We speculate that the features #26, #34, #42 might
be direct adducts of GHB as the wider edges show a stronger
correlation. The intensity of feature #32 is not high enough to be
fragmented in DDA mode, while it is still interesting to notice that

FIGURE 5 | Boxplot of selected features showing up and down regulated metabolites in the GHB positive samples compared to the control group. Features
marked with “*” means they have reported in controlled studies. The figure shows 25 features selected from Table 1, which includes features reported in controlled
studies and interesting metabolites included in correlation network, and also unknowns with high VIP score. N-acetylmeth is N-acetylmethionine, Indole-3-carbo is
indole-3-carboxaldehyde, GABA-2-hydroxyglut is GABA-2-hydroxyglutarate, which is tentatively identified.
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this feature is highly downregulated by GHB. GHB-carnitine (#2) is
directly correlated to M297T48 (#40) and M345T50 (#43), and
subsequently correlated to GHB. A strong correlation is found
between feature #47 and #37, which indicates they may belong to
the same compound as also noted previously. The subnetwork
including GHB is connected to another subnetwork in the
middle according to feature M256T52 (#36). Succinylcarnitine is
negatively correlated to features including lysine, Indole-3-
carboxaldehyde, and a number of unknowns (#27, 29, 46, 52,
57–60), and betaine is also negatively correlated to indole-3-
carboxaldehyde, and a range of unknowns (#27, 31, 46, 52,
57–62). Top-left subnetwork contains acetylcarnitine, thioproline,
and four amino acids (proline, glutamic acid, threonline, and
glutamine), which are correlated to betaine and connected to the
middle subnetwork. LysoPCO-16:0/0:0, LysoPC P-18:0/0:0, LysoPC
(17:0), myristorylcarnitine, oleoylcarnitine, arachidylcarnitine, C17:
0-acylcarnitine, and several knowns are included in the subnetwork
bottom-left side, which shows that carnitines and lipids are closely
related. It is found that mainly carnitines and lipids are included in

this subnetwork, and they are connected to the middle subnetwork
according to #48.

DISCUSSION

The main findings of the present study is the demonstration that it
is indeed possible to use archived data normalized by NOMIS for
identification of metabolites correlated to drug intake—here
demonstrated with GHB using a combination of OPLS-DA,
Pearson correlation and FDR q-value. In the data processing
part, our results prove that the NOMIS normalization using
multiple internal standards is a superior normalization method
for retrospective analysis. The typical batch correction methods
that are widely applied in metabolomics studies need a number of
pooled quality control (QC) samples, while our data were
efficiently normalized without using QC. Despite the large
intensity variation in the raw data, the NOMIS can still take the
analytical variation corresponding to sample preparation and ion

FIGURE 6 |Correlation network of features associated with GHB intake. Edges represent correlations between features, edges in greenmean positive correlations,
edges in red mean negative correlation. Correlations between features were considered significant if FDR-corrected q-value < 0.1, 77 significant features are shown in
this network. The subnetwork on the top is enlarged with a different scaling of edges to get more visible relations between these features. Only networks containing a
minimum of three molecules are plotted.
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source variation into account, and makes it possible to get good
correlation between actual concentration and corrected peak areas.

As use of archived data for metabolite correlation is still in its
infancy, we performed a range of advanced both statistical and
machine learning methods to evaluate which performs the best.
In general, OPLS-DA, Pearson correlation, and FDR q-values give
the most valuable information when evaluating based on the
number of prioritized metabolites found, that also have been
reported in previous controlled studies (Steuer et al., 2019). These
feature selection methods have also been used in previous
metabolomics studies (Nielsen et al., 2016; Elmsjö et al., 2020;
Jung et al., 2021), where meaningful results also were reported
using these methods. Mass spectrometrory metabolome data
analysis is complicated, since metabolites interact nonlinearly,
and the data structures themselves are complex, especially when
the study is retrospective and uncontrolled. Supervised machine
learning has great potential in metabolomics research because of
the ability to supply quantitative predictions (Jung et al., 2021). In
this study, the machine learning model OPLS-DA gives better
results than other machine learning models LASSO and random
forest, while these models still provide compensatory information
for feature selection that we could investigate in the future. Of
important relevance is the combination of different feature
selection methods to discover the potential biomarkers.

GHB-carnitine was first identified tentatively in urine samples in
the study of Steuer et al. (2019), and further verifiedwith standard in
their latest study (Jung et al., 2021). Although GHB-carnitine was
not detectable in serum in the study of Steuer et al. (2019), we
routinely detected it using our analytical setup on the whole blood
DUID cases. This is likely due to differences between our extraction
or analytical methods or alternatively caused by the uncontrolled
and potentially higher recreative consumption of GHB in the DUID
cases. GHB-carnitine is the ester between GHB and carnitine.
Carnitine is a small and highly polar zwitterionic compound
that plays a critical role in energy metabolism and β-oxidation
by facilitating transport of conjugated long chain fatty acids or more
simple organic acids across the mitochondrial membrane (Bremer,
1983; Mo et al., 2014). Usually the synthesis of acylcarnitines
proceed via an acyl SCoA intermediate, where the activated acyl
group is then transferred to carnitine in a second step catalyzed by a
carnitine acyltransferase. The current findings further suggest that
whole blood GHB-carnitine could be a potential marker for
exogenous GHB intake.

M259T82 shows particularly high significance in various
statistics, and previously has been reported to be correlated to
GHB intake even though it is still unknown without fragment
pattern being provided (Steuer et al., 2019). The unknown features
M507T82 also show very high significance being top 10 in all the
models we applied, M259T82 and M507T82 might belong to the
same compound due to the strong correlation in Pearson
correlation (Figure 6) and also the same RT. A feature with
similar mass to feature M234T52 has previously been identified
tentatively as GHB-glutamate (Steuer et al., 2021). However, by
comparison to a synthesized reference of GHB-glutamate we could
not verify the identity in our case. Instead, we tentativly propose the
feature as GABA-2-hydroxyglutarate (Supplementary Figure
S12), which has the same mass as GHB-glutamate, but different

RT and fragmentation pattern. GABA-2-hydroxyglutarate is an
ester of GABA and 2-hydroxyglutaric acid, the latter which has
been shown to be a prominent metabolite of GHB in mammals
(Struys et al., 2006), and it indicates GHB intake with very high
correlation. M507T82 or M259T82, and the tentative metabolite
GABA-2-hydroxyglutarate could all be used as potential
biomarkers for GHB intake, and it is worthwhile to further
identify these unknown features.

Various other carnitine metabolites are either found to be up or
down regulated by GHB intake, e.g., oleoylcarnitine that has also
been reported in a previous GHB study (Steuer et al., 2021). In
relation to GHB-carnitine, succinylcarnitine is perhaps the most
relevant one as a supportive biomarker to GHB-carnitine.
Succinylcarnitine, was also observed to be upregulated in
previous controlled studies as a result of GHB administration
(Steuer et al., 2019; Jarsiah et al., 2020). Furthermore, succinate
is known to be formed from GHB via oxidation to succinic
semialdehyde and then to succinate, which then ultimately can
enter into the citric acid cycle as an energymetabolite (Zhang et al.,
2009). As succinate previously also have been reported to increase
on GHB consumption, it seems likely that excess of succinate is
diverted into succinyl SCoA and then finally succinylcarnitine
following GHB intake. Increased levels of the two metabolites
GHB and succinyl carnitine combined accordingly may more
strongly support exogenous GHB intake. This together with the
regulation of other strongly regulated metabolites we will need to
verify in a controlled clinical study, in which the detection window
of the relevant component can also be assessed.

In previous studies, several GHB-related acids have been
reported in blood plasma and urine, such as glycolic acid, 3,4-
DHB, 2,4-dihydroxybutyric acid, GA and some organic acids from
the TCA cycle (Küting et al., 2021). None of these metabolites are
found in our study as these acidic metabolites are mostly analyzed
in negative mode, whereas only positive mode was used in this
study. Therefore analysis in negative mode could be carried out in
the future. In addition, three other unknowns, namely M127T391,
M367T466, M169T102 that previously have been reported to be
correlated to GHB intake (Steuer et al., 2019), are also detected in
our work (Table 1). All these unknown features show significant
effects in at least one of appliedmethods. These previously reported
unknowns also validate our approach although they may not be
direct GHB biomarkers.

To make a better understanding of the impact of GHB on
human endogenous metabolism, a correlation network (CN) using
all selected GHB-related metabolites was also constructed. The CN
also reveals potential interaction or co-regulation between non-
GHB features potentially revealing larger or more general
metabolic impact on groups of related metabolites (Figure 4).
From the Figure 4 it is evident that GHB impacts on the
metabolism of many carnitines, lipids, amino acids, a range of
unknowns as well as clustering of similar or biochemically related
compounds further strengthens the evidence and insight. As
previously mentioned, acylcarnitines mainly functions as entities
for transporting organic acids into the mitochondria for oxidative
metabolism (Skulachev, 1998; Alves et al., 2009). Increased levels of
these compounds usually reflect increased levels of their immediate
precursors, e.g., the increased level of acetyl carnitine reflects an
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increase or surplus of acetylSCoA following GHB ingestion
(Rubaltelli et al., 1987). Why we observe a build-up of
acetylcarnitine following GHB ingestion is unknown,
particularly as a range of long chain acylcarnitines as well as
lysoPC are down-regulated indicating that lipid metabolism
more generally is impeded. A high upregulation of lysoPCs and
carnitines in the brain of mice following acute GHB ingestion is
demonstrated in the Study of Luca et al. (2014), while they did not
see the same regulation in the liver of the mice. Significant
regulation of these metabolites are found in blood in our study,
though the regulation is opposite to what is observed in the cortex
of mice, but it may suggest a role for these metabolites following
GHB intake that perhaps is not directly involved in energy
metabolism (Luca et al., 2014). Based on the CN it however
appears that acetylcarnitine is more strongly correlated to
several amino acids, e.g., glutamate, glutamine, proline and
threonine, and as these can serve as metabolic fuel generating
acetylSCoA, the increased acetylcarnitine may simply reflect an
increased energy dependence on catabolism of these amino acids
perhaps as substitution for the retarded lipid metabolism. In the
CN, we could also find that glutamate, proline, glutamine and
acetylcarnitine are grouped together on the left, and as they are
metabolites of each other and accordingly biochemically connected
as reported (Tapiero et al., 2002; Susanna et al., 2010), it further
validates the outcome of our method and analysis. It can be
mentioned that GHB intake also in previous studies have been
correlated to increased levels of some of these amino acids (Steuer
et al., 2021), where, e.g., glutamic acid is identified with a relative
high VIP score (1.29). Several studies have furthermore shown
effects of GHB on glutamate release (Ferraro et al., 2001; Castelli
et al., 2003), and these results also suggest that the effects of GHB
on glutamate release might be mediated by GHB receptors and
GABAB receptors. Proline and lysine have also been reported to be
up and down regulated respectively by GHB exposure in rat, which
is consistent with our results, and it could also be an additional
validation of our method (Seo et al., 2018). Finally, we also found
some amino acids not previously reported to be regulated by GHB
intake, such as homocysteine, threonine, Phe-Val and cyclo (Pro-
Thr). These metabolites provides supplementary information for
the GHB metabolism interpretation and used as second targets of
methods to elucidate the metabolic impact.

In relation to use of the features as discriminative biomarkers
for GHB consumption, it is at the present stage difficult to
evaluate whether the obtained biomarkers of GHB intake will
be sufficiently strong and also persists long enough in vivo to be
useful. We however, note that several of the presumptive direct
metabolites of GHB are 2–3 fold upregulated and furthermore are
highly significant, so potentially they are. Even more if combined
with further known metabolites from other recently published
studies. Furthermore, based on our machine learning models we
indeed can discriminate presumed GHB users from non-users
with more than 80% accuracy, e.g., using the OPLS-DAmodel, we
get more than 80% accuracy in average for classification of groups
indicating that discrimination with some certainty already at the
present stage is possible. In the future with controlled follow-up
studies, we will most likely be able to get even more robust data
and accordingly accurate discriminations.

An increasing number of laboratories use UHPLC-HRMS
routinely for screening of biological samples for different
metabolites or exogenous compounds leading to a huge
amount of data of potential high value. As conducting clinical
studies is expensive and ethical problems also arise particular
when the studies involve new and untested drugs of abuse, a data
set from a controlled cohort is not always easily available.
Retrospective metabolomics studies, e.g., mining archived data
from routine screenings gives a unique opportunity to access such
data at almost no cost. This obviously is important within forensic
science, where many new illegal drugs constantly are appearing,
and little is known about their metabolites as well as their
potential impact on human metabolism. Apart from solving
this forensic toxicology issue, the use of archived data
furthermore allows access to larger samples sizes than usual in
controlled studies.

Our study demonstrates the power of this approach by initially
detecting a range of potential biomarkers of GHB consumption as
well as reveal how GHB intake further regulate endogenous
metabolism. Many of the discoveries being validated by
comparison to the literature. However, due to the uncontrolled
population in this and future similar studies, there are obviously
also several potential confounders such as the unknown interval
from intake to blood sampling and dose, the varying metabolic
rate between individuals, diet, the activity level, and the tolerance
to continuous use of GHB (or another drug), Furthermore, the
setup we use can also be improved, e.g., by inclusion of further
QC samples to improve normalization as well as it is advisable
also to perform routine analysis of the samples in the negative
mode in future to include metabolite coverage. In the current
study, we tried carefully to select a control group that matched the
GHB positive group with regard to additional drug intake. This
however cannot be perfect and should be kept in mind during
data analysis. Despite various challenges corresponding to the
cohort in this study, our findings and validation to the literature
prove that it is still feasible to utilize UHPLC-HRMS screening
data from long term forensic studies.

CONCLUSION

A general workflow is developed to carry out metabolomics
studies on archived HRMS data from routine UHPLC-TOF
screenings. The principle is demonstrated by using analytical
data from a selection of GHB positive and matched control cases
and validated by comparison of the results to those observed in
controlled GHB studies. Generally, we rediscover a range of
previously reported direct GHB metabolites, as well as we
observe regulation of endogenous metabolites both some
previously known, but also novel findings of potential
biochemical relevance. We apply data acquired over a quite
extensive time frame (6 years) indicating the robustness of the
method. The study gives a further proof-of-principle on use of
archived data when ordinary human data are unavailable, and
paves the way for both a direct and simple elucidation of
metabolites of new legal or illegal drugs as well as open up for
large scale metabolomics studies for more general use of archived
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data in the future. This can be from local databases as in this case
or, e.g., more big-data approach to disease prevention and
detection using more extensive data sets or blood samples.
Obviously, a range of cofounders will always exist in such
datasets due to the uncontrolled approach and this needs to
be taken into consideration when evaluating the results. The use
of archived data however has so many advantages including being
significantly cheaper than performing clinical studies, that the
approach merits further use and we strongly believe that it in the
future will become routine in laboratories applying such
screening procedures.
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