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1  | INTRODUC TION

Carrot (Daucus carota L.) is consumed by millions of people all over 
the world. It belongs to the family Umbelliferae. Carrot is one of the 
most important and useful vegetables for the human body since it 
contains nutrients and vitamins. Also, it increases an individual's re-
sistance to infectious diseases (Abbas, 2011; Zhu et al., 2019).

Carrot is used mostly as a raw edible product. One of the carrot 
problems is shape nonhomogeneity. Although carrots with irreg-
ular shapes have no problems regarding their nutritional proper-
ties, they are not commonly selected by customers in the markets. 
This causes to remain the carrots in the markets for long times and 
then increase the material loss. Therefore, adopting an appropri-
ate method for sorting and packaging this product can increase its 

desirability in the market and decrease product loss (Jahanbakhshi & 
Kheiralipour, 2019).

Sorting of agricultural products based on the product quality 
is one of the most basic and important operations after harvest-
ing. The operation assists customers in recognizing product quality 
more easily and leads to a more organized distribution and supply 
of an agricultural product. Until some decades ago, quality control 
in food industries was carried out by experts. Evidently, in tradi-
tional method, the performance is low and it is expensive and in-
efficient to respond to the increase in consumers' demands. Image 
processing is a modern technology, which has witnessed consid-
erable progress both theoretically and practically in recent years. 
The main advantages of using a machine vision system for quality 
control of agricultural products are the precision and consistency. 
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Abstract
The most important process before packaging and preserving agricultural products 
is sorting operation. Sort of carrot by human labor is involved in many problems such 
as high cost and product waste. Image processing is a modern method, which has 
different applications in agriculture including classification and sorting. The aim of 
this study was to classify carrot based on shape using image processing technique. 
For this, 135 samples with different regular and irregular shapes were selected. After 
image acquisition and preprocessing, some features such as length, width, breadth, 
perimeter, elongation, compactness, roundness, area, eccentricity, centroid, centroid 
nonhomogeneity, and width nonhomogeneity were extracted. After feature selec-
tion, linear discriminant analysis (LDA) and quadratic discriminant  analysis (QDA) 
methods were used to classify the features. The classification accuracies of the meth-
ods were 92.59 and 96.30, respectively. It can be stated that image processing is an 
effective way in improving the traditional carrot sorting techniques.
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Recently, the food industry has benefitted from image process-
ing methods and the use of such methods has been successful 
in nondestructive assessment of the food products (Azarmdel, 
Mohtasebi, Jafari, & Muñoz,  2019; Jahanbakhshi, Momeny, 
Mahmoudi, & Zhang, 2020; Kheiralipour & Pormah, 2017; Wang, 
Sun, Yang, Pu, & Zhu, 2016).

Sorting is defined as putting items into homogenous and uniform 
classes. This process is one of the most important applications of 
a machine vision in which objects or products on a line are sepa-
rated from one another based on their apparent physical properties 
(Javadikia, Sabzi, & Rabbani, 2017; Mollazade, Omid, & Arefi, 2012; 
Momin, Yamamoto, Miyamoto, Kondo, & Grift, 2017; Qiaohua, Yihua, 
& Zhuang, 2017). A fruit's shape is one of the most important crite-
ria and a top priority for quality control by the customers (Fu, Sun, 
Li, & Wang, 2016; Kheiralipour & Pormah, 2017; Khojastehnazhand, 
Omid, & Tabatabaeefar, 2010).

Many studies have been conducted in the field of sorting and 
classifying of products such as kiwi fruit (Fu et  al.,  2016; Rashidi 
& Seyfi,  2007), strawberry (Liming & Yanchao,  2010), pear (Zhang 
& Wu,  2012), tomato (Arjenaki, Moghaddam, & Motlagh,  2013; 
Clement, Novas, Gázquez, & Manzano-Agugliaro, 2012), apple (Vivek 
Venkatesh, Iqbal, Gopal, & Ganesan, 2015), persimmon (Mohammadi, 
Kheiralipour, & Ghasemi-Varnamkhasti, 2015), pistachio (Kheiralipour, 
Ahmadi, Rajabipour, Rafiee, & Javan-Nikkhah, 2015; Kheiralipour et al., 
2016), grapes (Qiaohua et al., 2017), and potato (Al-Mallahi, Kataoka, 
Okamoto, & Shibata, 2010; Elmasry, Cubero, Moltó, & Blasco, 2012; 
Farokhzad, Modaress Motlagh, Ahmadi Moghadam, Jalali Honarmand, 
& Kheiralipour, 2020) using image processing technique.

Image processing has been vastly applied for fruit and vege-
table for detecting size, shape, and defect (Kheiralipour, Ahmadi, 
Rajabipour, & Rafiee, 2018; Pathmanabana, Gnanavel, & Sundaram 
Anandan, 2019). Riquelme, Barreiro, Ruiz-Altisent, and Valero 
(2008) sorted olive fruits based on the shape of their external de-
fects. First, the fruits were classified into seven categories by ex-
perts and then they were categorized according to features such 
as color and the shape of external defects. Furferi and Carfagni 
(2010) designed a machine vision system to sort olive fruits based 
on the ripeness level and external defects. Liming and Yanchao 
(2010) implemented an automated system for sorting strawber-
ries based on image analysis. The system was able to identify the 
physical properties of strawberries according to the image fea-
tures. They reported that the sorting precision was 88.8% based 
on color features and 90% based on shape features. Mousavi 
Balestani  (2012) discriminated and sorted cherry fruits accord-
ing to the fruit size, ripeness, and defects using image analysis 
method. They reported that sorting based on size, ripeness, and 
defects was carried out with accuracy of 96%, 92%, and 90%, 
respectively. Elmasry et al.  (2012) designed a rapid and accurate 
machine vision system to distinguish irregular from regular shape 
potatoes and reported that the practical accuracy of the system 
was 96.2%. Mohammadi et al. (2015) sorted persimmon fruit based 
on ripeness level through image processing technique. The results 
of their study showed that image analysis indicated a significant 

difference among different ripeness levels for most image features 
such as R, G, B channels and the gray level. They also reported 
that quadratic discriminant analysis (QDA) could sort fruits with 
accuracy of 90.24%. Kheiralipour and Pormah (2017) used image 
processing technique and artificial neural networks to sort cucum-
ber fruits and reported that the best sorting model was obtained 
through neural network with the accuracy of 97.1%.

Literature review on the subject shows that there are no re-
ported studies about carrot sorting based on shape. Thus, the aim of 
the present study was to distinguish the carrot shape using machine 
vision, which is useful for carrot sorting in order to increase its mar-
ketability and waste control of the product.

2  | MATERIAL S AND METHODS

In the present study, 135 carrot samples with different shapes (56 
regular and 79 irregular) were selected and their images were ac-
quired through an imaging system. First, an expert divided the car-
rots into two classes: regular and irregular shape. The carrots with 
irregular shapes were the ones with double or triple roots, curved, 
damaged, broken, and upright ones (Figure 1).

After image acquisition, the obtained images were used for pro-
cessing by a programmed algorithm in MATLAB R2012a software. 
The images were first read by the algorithm. Image preprocessing 
was the first step in processing. In this step, the red, green, and 
blue channels (R, G, and B) were extracted from the RGB images. 
Then, the image noises and marginal lines were removed. The blue 
channel was used for segmentation to separate the carrot from the 
background so that it could recognize which part of each image 
channel belongs to the carrot and which part relates to the back-
ground (Figure 2a). Thus, carrots in the images were given a dark 
color (Figure  2b) and the background became bright (Figure  2c). 
The image holes were eventually filled to complete the carrot shape 
(Figure 2d).

For extraction shape features from the images which are used 
to distinguish the irregular from regular carrot shape, the image ma-
trix was labeled and length, width (Figure 3), the centroid (Figure 4), 
area, eccentricity, extent, perimeter, elongation, and the lengths 
of the large and small axes of the oval around the carrot were 
calculated.

Other features such as roundness, elongation, and compact-
ness of the carrot images were calculated through Equations  1–3, 
respectively:

(1)Ro=
4�A

p2

(2)Co=
p2

A

(3)El=
a

b
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where Ro is roundness, Co is compactness, El is elongation, a is length, 
b is width, p is perimeter, and A is the area of carrot.

Some new features of carrot image were calculated, called 
partial centroid nonhomogeneity (Fci) and partial width 

nonhomogeneity (Fbi). For this, the carrot image was divided 
into seven parts. For calculating partial centroid nonhomoge-
neity, the centroid of each part of carrot image (ci) was found 
(Figure 5).

F I G U R E  1   Regular (top) and irregular 
(bottom) carrot shapes (Jahanbakhshi and 
Kheiralipour 2019)

F I G U R E  2   (a) Unchanged carrot image, 
(b) binary image, (c) reversing the image 
and filling the hole pixels, and (d) removing 
the noises

(b)(a)

(c) (d)
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Then, the centroid of part number 4 was subtracted from that of 
other parts and six features were obtained as Fc1 to Fc3 and Fc5 to Fc7 
(Equation 4):

where Fci is partial centroid nonhomogeneity and ci is centroid of each 
image part. The width of each part was also determined to calculate 
the partial width nonhomogeneity (Fbi) (Figure 6).

Then, the width of image part number 4 was subtracted from 
that of other parts and six features were obtained as Fb1 to Fb3 and 
Fb5 to Fb7 (Equation 5):

where Fbi is partial width nonhomogeneity and bi is the width of each 
image part.

The total centroid and width nonhomogeneity were extracted 
(Kheiralipour & Pormah,  2017). The sum of all partial centroid non-
homogeneity was calculated and divided by the biggest carrot width 
(Equation 6).

where Fct is the total centroid nonhomogeneity, Fci is the partial 
centroid nonhomogeneity of the carrot, and bm is the biggest carrot 
width. The total width nonhomogeneity was calculated by summing 
the all partial width nonhomogeneity and dividing by the biggest carrot 
width (Equation 7).

where Fbt is total width nonhomogeneity, Fbi is partial width non-
homogeneity, and bm is the largest carrot width (Kheiralipour & 
Pormah, 2017).

The last feature was extracted as the number of the roots (N) of 
carrot. This feature for single root carrots is equal to 1, but for sev-
eral root carrots, it is more than 1. In Figure 7, the image of a 2-root 
carrot is provided. In this sample, the number of root of the left end 
part is equal to 2.

In this study, efficient features of carrot shapes were selected for 
the classification. For this, an algorithm was programmed in MATLAB 
2012a software using cross-validation method based on quadratic 

discriminant analysis. Then, the carrot images were classified using 
linear discriminant analysis (LDA) and quadratic discriminant analysis 
(QDA) using SAS 9.1 software. The efficient features were used as 
input of the classification methods, and the output was class num-
ber, for example, 1 for regular and 2 for irregular shape carrots.

3  | RESULTS AND DISCUSSION

The efficient features of the carrot sample images were selected 
using cross-validation based on quadratic discriminant analysis 
method. These features that were considered as the input of the 
LDA and QDA methods are given in Table 1. All features had differ-
ent values for regular and irregular shapes at 5% probability level.

The average width of regular and irregular carrots was equal to 
922.86 and 1,082.69, respectively, and the mean of their perimeter 
was equal to 9,797.17 and 10,507.58, respectively, which indicates 
that the average width and perimeter of the irregular carrot were 
more than those of regular one due to inappropriate shape of the 
appearance shape of the irregular shaped carrots.

The roundness of the studied groups with average values of 
1,053,465.08 and 897,945.07 showed that the roundness of irreg-
ular carrots was lower than that of regular shape carrots. Also, the 
averages of the remained features in Table 1 including Fc2 to Fb6 and 
number of roots for regular carrots were lower than those of irreg-
ular ones. According to differences between the data of regular and 
irregular carrot shapes (Table 1), there can be told that the features 
are useful for the classification of the two groups.

In similar studies, Wang and Nguang (2007), Sabliov, Boldor, 
Keener, and Farkas (2002), Koc (2007) and Omid, Khojastehnazhand, 
and Tabatabaeefar (2010) emphasized on the use of image process-
ing systems as a new nondestructive method for extracting geomet-
ric properties of agricultural products for sorting and grading.

The confusion matrix of linear discriminant analysis (LDA) is 
given in Figure 8. The first category is related to regular shape car-
rot, and the second one is representative of irregular shape carrots.

As shown in Figure 8, 53 out of 56 samples of regular shape sam-
ples have been correctly distinguished by LDA, while three samples 
have been wrongly identified as irregular shape carrot. From 79 ir-
regular shape carrots, 72 samples have been correctly recognized as 
irregular shape but seven samples have been wrongly identified as 
regular shape carrot. In the end, as can be seen in Figure 8, the LDA 
method could be able to classify carrot samples with correct classi-
fication rate of 92.59%.

(4)Fci= ci−c4 i=1−7,i≠4

(5)Fbi=bi−b4 i=1−7,i≠4

(6)Fct=

∑�Fci�
bm

i=1−7,i≠4

(7)Fbt=

∑�Fbi�
bm

i=1−7,i≠4

F I G U R E  3   The length (a) and width (b) of carrot image

a

b

F I G U R E  4   The area center of carrot image
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The results of the quadratic discriminant analysis (QDA) method 
are shown in Figure  9. According to Figure  9, correct classifica-
tion rate of the QDA method was 96.30%. In this method, all 56 

samples of regular shape carrots have been correctly distinguished 
but five out of 79 irregular shape carrot samples have been wrongly 
identified.

F I G U R E  5   The area center of each 
carrot image part

F I G U R E  6   The maximum width of 
each carrot image part

F I G U R E  7   An example of 2-root carrot

TA B L E  1   The efficient features for the classification of carrot

Feature

Mean ± Standard deviation CV %

Regular shape Irregular shape Regular shape
Irregular 
shape

Width 922.859 ± 116.701 1,082.692 ± 155.551 12.64 14.36

Extent 0.757 ± 0.028 0.643 ± 0.061 3.69 9.48

Perimeter 10,507.577 ± 1,098.383 9,797.165 ± 770.783 7.86 10.45

Roundness 897,945.073 ± 219,283.875 1,053,465.075 ± 265,848.023 25.23 24.42

FC2 1.327 ± 0.949 0.335 ± 0.325 97.01 71.51

FC3 1.665 ± 1.122 0.568 ± 0.405 71.30 67.38

FC5 0.503 ± 0.454 1.520 ± 1.239 90.25 81.17

FC6 0.282 ± 0.212 1.437 ± 0.856 75.17 59.56

FCt 5.624 ± 3.213 16.689 ± 7.446 57.13 44.61

Fb1 15.328 ± 8.513 16.055 ± 10.518 55.53 65.51

Fb2 16.605 ± 9.578 17.073 ± 12.143 57.68 71.12

Fb3 20.128 ± 6.912 21.512 ± 14.148 34.34 56.76

Fb4 21.668 ± 3.239 25.544 ± 8.297 14.94 32.48

Fb5 20.419 ± 8.956 25.295 ± 14.179 43.86 56.05

Fb6 16.091 ± 12.480 19.581 ± 16.557 77.55 84.55

Number of roots 1 ± 0 1.166 ± 0.375 0 32.16

Note: The unit of all features is pixel except for the number of roots.
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Image processing technique was applied for shape detection and 
sorting of products based on shape. Elmasry et al. (2012) sorted po-
tatoes based on their apparent shapes and obtained classification 
accuracy of 96.2%. Kheiralipour and Pormah (2017) conducted a 
study to detect desirable and undesirable cucumber shape. They re-
ported 95.7% as correct classification rate of artificial neural network 
classifier for the classification of cucumber shape. The result of the 
QDA method (96.3%) in the present study is comparable with similar 
studies.

The obtained results in the present study indicated the robust 
ability of the hypothesis to separate regular carrot shapes from ir-
regular ones by image processing technique aligned with the QDA 
method. Applying sorting machine in this regard besides increasing 
separating accuracy and decreasing costs, it assists to have signifi-
cant decrease in product losses. Product loss management by sort-
ing facilities removes the remaining time of products in the markets 
because of low marketability irregular shape products and allows 
direct entering of those to processing units such as salad, pickling, 
and food processing factories.

4  | CONCLUSIONS

In the present study, carrot shapes were classified into two classes, 
for example, regular and irregular shapes, according to their physi-
cal shapes. After the acquisition of carrot images, some efficient 
features were obtained and classified by linear discriminant analysis 
(LDA) and quadratic discriminant analysis (QDA) methods. The re-
sults showed that correct classification rates for the methods were 
92.59 and 96.30%, respectively. Eventually, it became known that 
the quadratic discriminant analysis method can sort carrots with 
high accuracy based on their shapes.
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