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Abstract: The antral hormone gastrin potently regulates gastric acid secretion and fundic mucosal
growth. Consequently, appropriate gastrin secretion and plasma concentrations are important for the
early phases of digestion. This review describes as the first premise the normal biogenesis of gastrin in
the antral mucosa, but also mentions the extraantral expression. Subsequently, the molecular nature
and concentration levels of gastrin in serum or plasma are overviewed. Third, assays for accurate
measurements of plasma or serum concentrations are commented. Finally, the problem of moderate
hypergastrinemia due to Helicobacter pylori infections and/or treatment with proton-pump inhibitors
(PPI) is discussed. The review concludes that accurate measurement of the true concentrations of
bioactive gastrins in plasma is important. Moreover, it suggests that moderate hypergastrinemias are
also essential health issues that require serious attention.

Keywords: duodenal ulcer; gastric cancer; gastrin; Helicobacter pylori; hypergastrinemia; proton-
pump inhibitors

1. Introduction

Gastrin is the gastroduodenal hormone that stimulates acid secretion and growth
of the fundic mucosa (see Figure 1 and the recent reviews [1,2]). Precisely regulated gas-
trin secretion is essential for normal digestion and, consequently, for good health. In
contrast, either total lack of gastrin or the opposite, severe hypersecretion of gastrin, are
life-threatening. Complete lack of gastrin is seen in genetically modified “knockout” mice.
Such mice cannot produce gastric acid [3,4]. However, gastric acid is necessary for killing
ingested bacteria and other pathogenic microorganisms. In the absence of gastric acid,
the stomach, therefore, becomes infected with bacteria that gradually lead to irreversible
intestinal metaplasia and carcinogenic tumor development [5,6]. Vice versa, severe hyper-
secretion of gastrin as seen in the Zollinger–Ellison syndrome caused by gastrin-producing
tumors (gastrinomas) is, in its fulminant forms, also life-threatening—partly due to gross
gastric hyperacidity with multiple duodenal and jejunal peptic ulcers, diarrhea and se-
vere water–electrolyte disturbances and partly because gastrinomas—although mostly
slow-growing—are malignant, metastatic neoplasias [7,8]. In addition to the relatively rare
neuroendocrine gastrinomas, however, gastrin is also expressed locally in common cancers,
for instance, in some brain tumors, most lung cancers, exocrine pancreatic cancers, gastric,
colorectal and ovarian adenocarcinomas in which autocrine and/or paracrine gastrin may
stimulate carcinogenetic growth [9–14].
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1. Introduction 

Gastrin is the gastroduodenal hormone that stimulates acid secretion and growth of 
the fundic mucosa (see Figure 1 and the recent reviews [1,2]). Precisely regulated gastrin 
secretion is essential for normal digestion and, consequently, for good health. In contrast, 
either total lack of gastrin or the opposite, severe hypersecretion of gastrin, are life-threat-
ening. Complete lack of gastrin is seen in genetically modified “knockout” mice. Such 
mice cannot produce gastric acid [3,4]. However, gastric acid is necessary for killing in-
gested bacteria and other pathogenic microorganisms. In the absence of gastric acid, the 
stomach, therefore, becomes infected with bacteria that gradually lead to irreversible in-
testinal metaplasia and carcinogenic tumor development [5,6]. Vice versa, severe hyper-
secretion of gastrin as seen in the Zollinger–Ellison syndrome caused by gastrin-produc-
ing tumors (gastrinomas) is, in its fulminant forms, also life-threatening—partly due to 
gross gastric hyperacidity with multiple duodenal and jejunal peptic ulcers, diarrhea and 
severe water–electrolyte disturbances and partly because gastrinomas—although mostly 
slow-growing—are malignant, metastatic neoplasias [7,8]. In addition to the relatively 
rare neuroendocrine gastrinomas, however, gastrin is also expressed locally in common 
cancers, for instance, in some brain tumors, most lung cancers, exocrine pancreatic can-
cers, gastric, colorectal and ovarian adenocarcinomas in which autocrine and/or paracrine 
gastrin may stimulate carcinogenetic growth [9–14]. 
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Figure 1. The structure of gastrin-17, the first identified molecular form of gastrin in antral G cells [15].
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In between the described extremes of gastrin secretion—from complete lack to ex-
cessive overproduction—are the moderate variations of plasma gastrin levels (Table 1).
In addition to the variations of fasted and fed normogastrinemic healthy persons, they
include hypogastrinemias as seen, for instance, after classic Whipple operations (where
the antrum, the duodenum, the upper jejunum and the head of the pancreas have been
removed [16]) and in achlorhydric patients with pernicious anemia also involving atrophy
of the antral mucosa [17]. Frequent moderate hypergastrinemias are, however, seen in Heli-
cobacter pylori-infected patients [18–24] and in patients who are treated with proton-pump
inhibitors [25–33].

Table 1. Gastrinemias.

Category Condition Basal Plasma Concentration
Levels (pmol/L)

Agastrinemia Genetically modified animals 0

Hypogastrinemia Antroduodenally resected patients
Antro-mucosal atrophy patients 0–5

Normogastrinemia Fasting normal subjects and mammals 5–15

Hypergastrinemia (I)
(moderate)

Helicobacter pylori-infected subjects
Proton-pump inhibitor-treated patients

Early gastrinomas
20–100

Hypergastrinemia (II)
(excessive)

Atrophic gastritis
Gastrinomas with fulminant Zollinger–Ellison syndrome

Gastric polyposis
>100

This review discusses, in particular, moderate hypergastrinemias and their possible
pathogenetic significance. In order to have such a discussion, an essential premise is first to
understand the biogenesis of bioactive gastrin peptides in antral G cells, and then to also
consider the cellular expression of gastrin outside the antral mucosa.

2. G Cell Synthesis of Gastrin

In healthy adult humans, G cells in the antral and duodenal mucosa are the main site
of gastrin synthesis and subsequent release to blood (for a recent review see [2]). A few
sporadic G cells are also present in the jejunum and in the ileum. So far, however, gastrin
biosynthesis studies have examined antral gastrin production [34–36]. Interpretation of
the results of these studies in the light of general knowledge about peptide biosynthesis
provides a picture of normal synthesis of antroduodenal gastrin, as shown in Figure 2 and
as detailed earlier [37,38].

After translation of gastrin mRNA in the rough endoplasmic reticulum and cotransla-
tional removal of the signal peptide from preprogastrin, progastrin is transported to the
Golgi apparatus where the first posttranslational modifications occur (Figure 2). These
are O-sulfation by sulfotransferases of the Tyr66 residue and the first endoproteolytic
cleavages by prohormone convertase 1/3 at the dibasic Arg36Arg37 and Arg73Arg74 sites.
The dibasic Lys53Lys54 site in the middle of the gastrin-34 sequence is cleaved later by
prohormone convertase 2 [39]. From the trans-Golgi network, secretory vesicles carry their
cargo of processing intermediates toward the basal part of G cells where the peptides are
stored and condensed in secretory granules.

The endoproteolytic processing and exoproteolytic trimming, such as removal of the
Arg73Arg74 residues by carboxypeptidase E, as well as the subsequent glutamyl cyclization
of the N-termini of gastrin-34 and gastrin-17, continue during the transport to the early
secretory granules. The last and decisive processing step in the synthesis then occurs
during storage in the maturing secretory granules, where the peptide α-amidation enzyme
complex (PAM) removes glyoxylate from the C-terminal glycyl residue in the immediate
precursors, the glycine-extended gastrins [40]. Partial phosphorylation of serine in the
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C-terminal flanking fragment may also occur, but the significance of this modification and
nature of the kinase involved are not yet known [41].
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Figure 2. Scheme of processing steps for progastrin to release the two major bioactive gastrins,
gastrin-17 and gastrin-34. Both forms are synthetized partly tyrosyl-sulfated. The endoproteolytic
cleavages of progastrin are performed by prohormone convertases 1/3 and 2 [37,39].

As a result of multiple steps in the biosynthetic pathway, of which none are complete
(sic!), G cells release a heterogeneous mixture of progastrin products from the secretory
granules to the surrounding capillaries. A small percentage comprises non-amidated pre-
cursors and processing intermediates, including the glycine-extended gastrins. However,
in a normal human, more than 90% are α-amidated bioactive gastrins, the longest form
of which is gastrin-71 [42]. Of the amidated gastrins, around 85% are gastrin-17, 10% are
gastrin-34 and the rest are a mixture of gastrin-71, a little gastrin-52, some gastrin-14 and a
short sulfated C-terminal hexapeptide amide, gastrin-6 [43] (Figure 3).

Of significance for understanding hypergastrinemic conditions is the realization that
the faster rate of gastrin biosynthesis changes the molecular pattern in gastrin-producing
tissues. Such increased synthesis occurs in humans—as mentioned—in gastrinomas,
occasionally in gastric juvenile polyposis [44], as well as in Helicobacter pylori infections in
the antral mucosa, achlorhydria as seen in pernicious anemia and during PPI therapy. In
these disorders, the biosynthesis in G cells is increased and the intracellular transport of
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secretory vesicles is enhanced so that processing enzymes apparently cannot keep up with
the processing of progastrin. Consequently, gastrinoma cells, gastric polyposis cells and
antral G cells in achlorhydric and Helicobacter-infected stomachs release larger amounts of
unprocessed and less processed progastrin products [8,21,36,44–46]. In addition, gastrin
peptides are less sulfated and the N-terminus of progastrin is less truncated.
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3. Extraintestinal Gastrin Expression

As previously described [37,38], the gastrin gene is also expressed in cells other
than the antroduodenal G cells in the digestive tract. Quantitatively, these other cells
normally contribute very little—if at all—to gastrin in plasma. This is because the level
of expression is low because the secretion seems to serve local purposes and because the
biosynthetic processing is cell-specific, i.e., different from that of the antroduodenal G
cells. So far, we have seen extraantral and extrasmall intestinal expression of the gastrin
gene in unidentified cells in the colon [11,47]; in endocrine cells in the fetal and neonatal
pancreas [48–50]; in pituitary corticotrophs and melanotrophs [51–53]; in oxytocinergic
hypothalamo-pituitary neurons [52,53]; in a few cerebellar and vagal neurons [54,55]; in
the adrenal medulla [56]; in the bronchial mucosa [10]; in postmenopausal ovaria [12]; and
in spermatogenic cells [57].

The function of gastrin synthesized outside the antroduodenal mucosa is unknown.
However, one possibility is local paracrine regulation of growth. Another is that the pep-
tides, although without a function in adults, are a relic of a more comprehensive fetal
synthesis and function. The third possibility is that low cellular concentration reflects
constitutive rather than regulated secretion. Although the extraantroduodenal synthesis of
gastrin is without significance in the normal adult organism, the phenomenon is interesting
from an oncofetal carcinogenetic and hence cancer diagnostic point of view. Thus, when
carcinomas are developed from extraantral cells that normally express the gastrin gene at a
low level, carcinomas may also express gastrin. However, cancer cell processing of progas-
trin is often tumor-specific. Colorectal cancers, for instance, cannot carboxyamidate gastrin
precursors and, therefore, produce only progastrin-processing intermediates without effect
on gastric acid secretion and growth [11].
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4. Plasma Pattern and Concentration Levels of Gastrin in Hypergastrinemia

Early studies showed—as also described before [38]—that plasma or serum from
normal fasting subjects and normogastrinemic patients with duodenal ulcer contain al-
most similar concentrations of gastrin-34 and gastrin-17 and only little of other molecular
forms [45], as shown in Figure 4 (upper panel). After a protein-rich meal, the initial rise in
gastrin concentrations is due mainly to gastrin-17, but later gastrin-34 prevails [45]. This
shift is in accordance with the content of gastrins in the secretory granules of antral G
cells. Hence, normal G cells in a human contain, as mentioned, mostly gastrin-17 and only
around 10% gastrin-34 [42,46]. However, since the metabolic clearance of, for instance,
gastrin-34 from the circulation is 10-fold slower than that of gastrin-17 [58], peripheral
plasma contains almost equal amounts of the two gastrins in the basal state and 30–45 min
after larger meals [45].
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The pattern of gastrin peptides in the circulation changes significantly due to perma-
nently increased cellular secretion of gastrin as seen in antral G cells in achlorhydria. Hence,
larger molecular forms, gastrin-71 and gastrin-34, predominate (Figure 4, lower panel).
Accordingly, there is relatively little gastrin-17 in hypergastrinemic plasma (Figure 4).
The mechanism behind the shift is considerably slower metabolic clearance of large gas-
trins [58,59], the effect of which becomes accentuated by hypersecretion. Moreover, due to
permanent hypersecretion, progastrin products in secretory granules have, as mentioned
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above, less time for intracellular maturation before they are released to blood. Conse-
quently, several granules may not achieve intragranular pH of 5.5, which is necessary for
normal endoproteolytic cleavage by prohormone convertase 2 [39]. With reduced cleavage
of processing intermediates, relatively less gastrin-17 is released. The combination of
decreased cellular synthesis of gastrin-17 and slower clearance of gastrin-34, -52 and -71
from the circulation [58,59] results in the gastrin patterns in plasma as seen in Figure 4
(lower panel). Thus, the pathobiology of the biosynthesis in gastrin-producing cells and
the different metabolic clearance rates of the different gastrins in the circulation explain
the molecular shift in the pattern of gastrin peptides in peripheral plasma. This shift
obviously necessitates immunoassays that measure the larger carboxyamidated forms of
gastrin—both gastrin-34 and longer gastrins—with an affinity similar to that of gastrin-17
(toward which most antibodies are raised). Assays that measure only or mainly gastrin-17
result in false low concentrations (Table 2) [8,60]. Moreover, the discrepancy increases
if mainly sulfated gastrin-17 is measured because the fraction of sulfated gastrins also
decreases during hypersecretion [8,36].

Table 2. Plasma concentrations of amidated gastrins versus gastrin-17 in consecutive gastrinoma
patients.

Gastrinoma Patients Amidated Gastrins
(pmol/L)

Gastrin-17
(pmol/L)

1 475 10
2 235 42
3 270 90
4 82 15
5 57 24
6 60 26
7 305 6

Median 235 24
Data from [60]. Note that only patient No. 3 displays increased gastrin concentrations with the gastrin-17-specific
immunoassay.

Regarding concentration levels of circulating gastrins in hypergastrinemias, it is
expedient to distinguish excessive hypergastrinemia from moderate hypergastrinemia at
the level of 100 pmol/L (as suggested in Table 1). The conditions/diseases in these two
categories differ. In this context, it should be noted that concentrations around 200 pmol/L
are the level at which gastrins in plasma have the maximal effect on both gastric acid
secretion and growth stimulation on ECL (enterochromaffin-like) cells in the stomach of
both humans [61,62] and rats [63,64].

5. Measurement of Gastrin in Plasma

Accurate measurement of plasma or serum gastrin of sufficient reliability in both
gastric hypo-, normo- and hypergastrinemias can be achieved using immunoassays. As
mentioned before, the half-a-century-experience in our laboratory is primarily with the
optimized in-house radioimmunoassay (RIA) technology, using high-titer and high-affinity
antibodies with precisely defined epitope specificity. Thus, the antibodies have to be
directed against the common α-amidated C-terminus (Figures 1 and 3) so that they bind
all bioactive gastrins with equimolar potency irrespective of the length of the N-terminal
extension and degree of sulfation. Fortunately, such antibodies are fairly easy to raise,
and they rarely cross-react with CCK peptides to any disturbing extent [65–69]. The RIA
based on such antibodies measures hypergastrinemia accurately, both when all the gastrins
circulate in increased concentrations (Figure 4; lower panel) and when only large molecular
forms cause hypergastrinemia. Moreover, such gastrin RIA is simple and robust, and
technically the analysis can be optimized to last only 1–2 h before the results are available.
In addition, with high titers (>200,000), a high-affinity antiserum of adequate specificity
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can last for several decades. Thus, the rabbit antiserum still used for routine measurements
of gastrin in our department was raised in 1970 [68].

6. Helicobacter pylori-Induced Hypergastrinemia

Helicobacter pylori (first named Campolybacter pylori) is a Gram-negative bacterium that
often invades the stomach of young persons and causes chronic inflammation [1,2,24,70].
Helicobacter pylori survives the highly acidic environment in the stomach by production
of ammonia, acid inhibitory factors and induction of inflammatory cytokines [24]. Most
infected persons are without symptoms of the infection, but approximately 10% develop
peptic ulcers, 1%—adenocarcinomas in the stomach [18,19,71]. A mainly antral infection is
associated with hypersecretion of gastrin (Figure 5), subsequent increased acid secretion
and duodenal ulcer disease, whereas infection in the fundic mucosa reduces gastric acid
production and associates with adenocarcinoma development [21,24,72,73].
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The mechanism of the hypergastrinemia induced by antral Helicobacter pylori infection
appears to be an attack on antral somatostatin cells [22,23], which subsequently reduces the
normal paracrine release of somatostatin that inhibits antral G cell secretion [18,19,21,74].
The ensuing hypergastrinemia is moderate, two to four times that of the gastrin secretion
in healthy young subjects without Helicobacter infections [18,20,75]. Nevertheless, even
such moderate hypergastrinemia appears essential in the subsequent gastric hyperacidity
and fundamental in the pathogenesis of the duodenal ulcer disease [18–21].

Another aspect of the widespread Helicobacter pylori-induced hypergastrinemia is that
the gastrin concentrations in plasma or serum from normal, healthy subjects reported
in earlier studies [65,66,69] are too high because an unknown number of asymptomatic
but infected persons are likely to have been included in the reference groups as normal
control subjects. Consequently, the basal concentration levels of gastrin in uninfected,
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healthy fasting persons is 5–10 pmol/L [71] rather than the previously reported 20–25
pmol/L [65,66,69].

7. Proton-Pump Inhibitor-Induced Hypergastrinemia

The mean concentration of gastrins in plasma from healthy fasting subjects was—as
mentioned above—earlier measured to be 20–25 pmol/L [45,69]. However, healthy subjects
that are Helicobacter-negative display lower concentrations, often in the 5–10 pmol/L
range [18,19,76]. In contrast, the plasma gastrin concentration varies considerably in fasting
patients with chronic achlorhydria (as in pernicious anemia with preserved antral mucosa)
from 100 to 2000 pmol/L [17,36]. Gastrin concentrations in fasting ulcer patients treated
with PPI drugs are moderately increased, i.e., most levels reported are in between those
of normal subjects and those of patients with severe long-term achlorhydria in pernicious
anemia. The types and doses of PPI vary between the reports examined [25–33]. However,
as shown in Table 3, there is generally a three–five-fold increase in the basal plasma
concentrations of gastrin after daily oral doses of 40–80 mg PPI. It varies considerably,
however, both individually and with the length of the period under drug administration.
In a three-year study of patients refractory to H2-receptor antagonists, 11 of 106 fasting
patients had serum gastrin concentrations above 250 pmol/L [30], including three with
concentrations higher than 500 pmol/L. One cannot help but wonder whether the latter
patients in fact might have harbored a gastrinoma [7,8].

Table 3. Mean concentrations of gastrin in plasma before and after treatment with proton-pump
inhibitors (PPIs).

Gastrin (pmol/L)
before PPI after PPI Reference

19 115 [24]
14 27 [25]
6 20 [27]
12 39 [28]
– 46 [29]
6 17 [30]
7 34 [31]
10 35 [32]

8. Problem with Commercial Gastrin Kits

In comparison with in-house gastrin assays developed in university settings, commer-
cial gastrin kits are, unfortunately, often problematic. As noted before [38], the original
radioimmunoassays that measure gastrin concentrations in the circulation were developed
in research laboratories at university departments and hospitals in different parts of the
world [65–67,77]. The development was driven by curiosity about the role of gastrin in
digestive physiology, pathophysiology and pharmacology [78–80]. Moreover, immunoas-
says also paved the way for the biochemical recognition that gastrin in plasma and tissue
was not only gastrin-17 but the above-described mixture of progastrin-derived peptides
of different lengths and amino acid derivations released in a cell-specific and sometimes
disease-specific way. Accordingly, academic gastrin laboratories realized under which
circumstances gastrin measurements are to be used for diagnosis of both excessive and
moderate hypergastrinemic diseases. They also realized when further development and
modifications of the immunoassay technology are expedient. The understanding, of course,
required a clear distinction between analytical and diagnostic reliability and specificity of
the assays employed. Thus, in the 1970s and 1980s, gastrin immunoassays were not only
developed by scientists in university hospital laboratories, but the diagnostic use of gastrin
assays was, to a large extent, also performed in university laboratories with a specific
research interest in gastrin-related diseases and interpretation of the measurements.
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In the recent decades, however, the research frontiers in gastroenterology have
changed, and the research in gastrin biology and pathophysiology has been continued only
in a smaller number of laboratories in Europe, North America, Japan and Australia. At the
same time, the worldwide need for laboratory diagnosis of hypergastrinemic diseases has
not diminished. Instead, it has opened a market for commercial gastrin kits during the past
25 years. The diagnosis of hypergastrinemic conditions is, therefore, to a large extent now
based on commercial kits. In so far as these kits have the necessary specificity, accuracy
and diagnostic meaningfulness, there is nothing wrong. However, the reliability requires
not only insight into the assay technology. The biology and pathobiology of the gastrin
peptide system and hypersecreting G cells also have to be known—not least of moderate
hypergastrinemias as detailed above. Unfortunately, several kits display shortcomings
in this respect because they only measure gastrin-17 (Table 2) [8,60] or have some other
specificity problems [8].

9. Conclusions

Today, we know that most peptide hormones are complex and that a hormone exists
in several different molecular forms which circulate in varying patterns in plasma. The
patterns and concentration levels are modified by bacterial infections, drugs and tumor
growth that affect the biogenesis of hormones. Consequently, the concentrations and
the molecular pattern in plasma or serum change during the disease. Evidently, peptide
hormone assays have to take these changes into account.

An example of such a complex hormone system is gastrin. An important issue with
gastrin is moderate hypergastrinemias as seen in Helicobacter pylori infections and during
long-term proton-pump inhibitor treatment as described above. Such moderate hypergas-
trinemias are significant risk factors for the development of gastric adenocarcinomas [81,82],
possibly due to the interaction of Helicobacter pylori gastritis and acid inhibitory induced
hypergastrinemia (for a recent review see [83]). Therefore, moderate hypergastrinemias
have to be taken seriously. Consequently, the gastrin immunoassays used for diagnosis
have to measure all the bioactive forms of gastrin in plasma in a reliable and accurate way.
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