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Abstract: Worldwide rates of Western-diet-induced obesity epidemics are growing dramatically.
Being linked with numerous comorbidities and complications, including cardiovascular disease, type
2 diabetes, cancer, chronic inflammation, and osteoarthritis (OA), obesity represents one of the most
threatening challenges for modern healthcare. Mouse models are an invaluable tool for investigating
the effects of diets and their bioactive components against high fat diet (HFD)-induced obesity and its
comorbidities. During recent years, very high fat diets (VHFDs), providing 58–60% kcal fat, have
become a popular alternative to more traditional HFDs, providing 40–45% total kcal fat, due to the
faster induction of obesity and stronger metabolic responses. This project aims to investigate if the
60% fat VHFD is suitable to evaluate the protective effects of curcumin in diet-induced obesity and
osteoarthritis. B6 male mice, prone to diet-induced metabolic dysfunction, were supplemented with
VHFD without or with curcumin for 13 weeks. Under these experimental conditions, feeding mice a
VHFD for 13 weeks did not result in expected robust manifestations of the targeted pathophysiologic
conditions. Supplementing the diet with curcumin, in turn, protected the animals against obesity
without significant changes in white adipocyte size, glucose clearance, and knee cartilage integrity.
Additional research is needed to optimize diet composition, curcumin dosage, and duration of
dietary interventions to establish the VHFD-induced obesity for evaluating the effects of curcumin on
metabolic dysfunctions related to obesity and osteoarthritis.
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1. Introduction

The global epidemic of obesity represents one of the most urgent healthcare challenges worldwide.
Several strategies were tested to reduce obesity and alleviate its associated metabolic and inflammatory
diseases including osteoarthritis. Among these, novel therapeutic approaches based on enriching
the diet with bioactive foods have gained attention of nutritionists and biomedical researchers.
Low-molecular-weight plant polyphenol curcumin (diferuloymethane), obtained from turmeric
(Curcuma longa) roots, has been used in medicine and as a spice in the countries of South-East Asia for
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4000 years [1]. The beneficial effects of curcumin against obesity, metabolic disorders, inflammation,
malignancies, and a variety of other pathophysiologic conditions have been ascertained in numerous
clinical trials [2]. The anti-inflammatory effects of curcumin relate to its ability to modulate intracellular
signaling via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein
1 (AP-1), and signal transducer and activator of transcription (STAT) pathways, thereby interfering
with the signal transduction of pro-inflammatory transcription factors [3]. By curcumin, inhibition of
NF-κB may be mediated by the toll-like receptor 4 (TLR-4)-dependent mechanisms [4–6]. Moreover,
curcumin activates the adenosine monophosphate-activated protein kinase (AMPK), which inhibits a
lipid deposition and stimulates glycolysis and fatty acid oxidation in fat and other tissues [7,8]. Recent
mouse studies have also implicated curcumin in the recovery from Western-diet-induced intestinal
barrier permeability [9,10]. It should be noted that, like other polyphenols, curcumin is poorly absorbed
in the intestines and undergoes deep biotransformation by intestinal bacteria [11–14]. Most of the
curcumin detected in the blood of diet-obese mice, which received a curcumin supplement, is found in
a glucuronide-conjugated form [12]. Since the relative contribution of curcumin and its metabolites to
reported health protective effects has not been evaluated, the molecular mechanisms of these effects
require further clarification.

Reports about curcumin’s efficacy against obesity and its associated complications in clinical studies
are, to a certain extent, conflicting. While studies show no obesity- and metabolism-related health
status alterations or only significant shifts in one of several investigated parameters have been observed,
a much wider spectrum of positive outcomes, including improved weight loss, downregulated fat
accumulation in adipose tissue and liver, reduced inflammatory cytokines, and oxidative stress markers
in blood have been reported [15–18]. Considering the existing clinical data controversy, developing a
universal animal model of obesity for curcumin-related studies with high translational potential may
produce a great asset for investigators in the field [19,20]. Different obesogenic diets with varying lipid
content have been used in mouse studies to stimulate the development of a high fat diet–induced
obesity and its associated pathologic conditions. Most such diets, developed for laboratory mice,
provide 45% total calories with fat (high-fat diets; HFD) or 60% total calories with fat (very-high-fat
diets; VHFD). A major advantage of VHFD is that they produce obesity in animals faster than HFD
and may induce stronger metabolic responses [21,22]. The protocols of curcumin administration also
vary substantially between studies. Some investigators administered very low curcumin doses [23–25];
others used the PEGylated curcumin derivatives (and not curcumin itself) delivered by a series of
intraperitoneal injections [26].

Our study goal was to investigate whether a mouse model of VFHD-induced obesity can be used
for evaluating the versatile protective effects of curcumin against a set of manifestations of obesity,
which are often investigated separately: insulin resistance, liver pathophysiology, and osteoarthritis.
Since most researchers working with mouse models of dietary obesity use mice fed with experimental
diets for 4–18 weeks [19], we treated the animals with VHFD for a period of 14 weeks. In our
unpublished studies, supplementing the 45%-fat HFD with 0.4% w/w curcumin resulted in significant
improvement of B6 animal metabolic health and immune status. In this study, conducted over the
animals housed under identical conditions, we enriched the 60%-fat VHFD with 0.7% w/w curcumin in
order to provide better protection against an increased amount of consumed fat.

2. Materials and Methods

2.1. Mice and Diets

Five-week-old C57BL/6 male mice, stock No. 000664 (Jackson Laboratory; Bar Harbor, ME,
USA) were housed in accordance with National Institutes of Health (NIH) guidelines for the use of
experimental animals and the Texas Tech University Institutional Animal Care and Use Committee
(IACUC) approval (protocol 16011-04). Animals were kept in individual cages at 23 ◦C. Upon arrival,
they were acclimated in the animal facility for one week. After the acclimation, the animals were
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randomized and combined in two groups consisting of 10 animals each. The animals of both groups
had similar original weight. For 13 weeks, they were fed with a VHFD containing 60% kcal fat, 20% kcal
carbohydrate, and 20% kcal protein (Research Diets, Inc.; D12492, New Brunswick, NJ, USA) or VHFD
mixed with 0.7% w/w curcumin powder, obtained from the same provider. The curcumin powder was
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Body composition was measured
at week 12 of dietary intervention by using an EchoMRI 3 in 1 Whole Body Composition Analyzer
(EchoMRI; Houston, TX, USA). At the end of the dietary interventions, the mice were euthanized by
CO2 asphyxiation. A cardiac puncture sampled the blood, and serum was separated by using BD
microtainers (Becton, Dickinson & Co, Franklin Lakes, NJ, USA). Collected tissue samples (WAT, liver,
hind legs) were snap-frozen in liquid nitrogen and placed in storage at −80 ◦C.

2.2. Glucose and Insulin Tolerance Tests (GTT and ITT)

Before the tests, animals were fasted for 5 h. GTT was conducted during week 11 on the diet.
The mice were challenged with 2 g/kg body weight d-glucose (Sigma-Aldrich, St. Louis, MO, USA),
administered as an intraperitoneal injection of 20% water solution. ITT was conducted during week 13
on the diet. The mice were challenged with 0.75 U/kg body weight human insulin (Humulin, Eli Lilly
and Co, Indianapolis, IN, USA), administered as an intraperitoneal injection. For both tests, blood
glucose measures were taken before the challenge at 15, 30, 60, 90, and 120 min after administration
using an Alpha Track glucometer (Abbott Laboratories, Chicago, IL, USA).

2.3. Triglycerides

Quantification of triglycerides in liver and serum used the Triglyceride Colorimetric Assay Kit
(Cayman Chemical, Ann Arbor, MI, USA). Collected tissue samples were stored frozen at−80 ◦C. For the
colorimetric analysis, the samples were processed according to the manufacturer’s recommendations.
Here, 2-mL liver tissue homogenates were produced from pre-weighed fragments of frozen samples
(350–400 mg). Triglyceride concentration in the serum was measured without diluting the samples,
and the liver homogenates were diluted five-fold. Absorbance was measured by using a Cytation 3
Cell Imaging Multi-Mode Plate Reader (Biotek, Winooski, VT, USA).

2.4. Serum Curcumin and Curcumin Glucuronide Measurements

Quantification of curcumin level and its major metabolite curcumin-β-d-glucuronide in the serum
was conducted using liquid chromatography mass spectrometry (LC-MS/MS). For the calibration
curve, a 10 µL aliquot of the standard solutions of curcumin and curcumin-β-d-glucuronide and 10 µL
hesperetin (internal standard, 10 µg/mL) were added into 70 µL plasma to a final concentration of 5, 10,
50, 200, 500, and 1000 ng/mL curcumin and curcumin-β-d-glucuronide, respectively. The extraction of
curcumin from the serum was performed as described before [27]. The solution was briefly vortexed
and diluted with 900 µL phosphate buffer saline (PBS) and then extracted with ethyl acetate. The
collected organic phase was evaporated to dryness, then reconstituted in 100 µL of mobile phase.
After centrifugation, a 25 µL aliquot of the supernatant was injected for LC-MS/MS analysis. The
chromatographic separation of curcumin, curcumin-β-d-glucuronide, and hesperetin was performed
by using a Vanquish high-performance liquid chromatography (UHPLC) system, with an Acquity BEH
C8 column (2.1 mm × 100 mm, 1.7 µm, 130 A, Waters, Milford, MA, USA) under a 10 min isocratic
gradient (60% solvent B) at a flow rate of 0.2 mL/min by using solvent A (water, 0.1% formic acid) and
solvent B (acetonitrile, 0.1% formic acid). The MS analysis was performed by using a Q-Exactive HF
(Thermo Fisher Scientific, Waltham, MA, USA) mass spectrometer in the positive ion mode by using
the developed parallel reaction monitoring (PRM) method with the full-scan MS (m/z 50–7500) and
tandem mass spectrometry (MS/MS) by HCD using a collision energy of 35%. The obtained calibration
curves for curcumin and its metabolite were used for serum samples quantitation.
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2.5. Gene Expression

Total tissue RNA was isolated by using an RNeasy Plus Mini kit (Qiagen, Hilden, Germany).
cDNA was synthesized from 1 µg RNA using a Maxima H Minus cDNA Synthesis Master Mix
(ThermoFisher Scientific, Waltham, MA, USA) and diluted five-fold for use in reverse transcriptase
polymerase chain reaction (RT-PCR). For the housekeeping gene expression analysis, this diluted
cDNA preparation was additionally diluted 100-fold. RT-PCR was conducted by using PowerUp
SYBERGreen Mastermix (Applied Biosystems, Foster City, CA, USA) on a QuantaStudio 3 device
(Applied Biosystems, Foster City, CA, USA). The relative gene expression was quantified by ∆∆Ct
method, used to determine the mRNA expression and the fold changes, on the QuantStudio Design &
Analysis cloud software (Thermo Fisher, Waltham, MA, USA). Primers used were designed by using
the Oligoarchitech™ Online software purchased from Sigma-Aldrich (St Louis, MO, USA). For the
primer sequences, see Table S1.

2.6. Immunohistochemical and Immunofluorescent Staining of WAT

Liver and WAT samples, obtained from euthanized animals, were fixed in Z-Fix 10% aqueous
buffered zinc formalin solution (Anatech Ltd., Battle Creek, MI, USA) and stored in 70% ethanol. Before
hematoxylin and eosin (H&E) staining, 5-µm paraffin-embedded sections were prepared from the
samples. Accumulation of collagen fibers in the liver was stained by using Trichrome Stain (Masson)
kit and Weigert’s Iron Hematoxylin set (Sigma-Aldrich, St Louis, MO, USA). The average adipocyte
area in WAT was calculated by using AdipoGauge (AdipoGauge @Moussa Lab, 2020 version), a JAVA
based, in-house developed software [28].

2.7. Osteoarthritis (OA)

Right knee joints were collected from the mice upon euthanization, fixed in 4% paraformaldehyde
for 48 h, and decalcified in 10% EDTA-Na2 for two months at room temperature as previously
described [29]. Following tissue dehydration, the samples were embedded in paraffin, and 5-micron
sections were cut at the joint space. The sections were stained with either H&E or Safranin O. Digital
pictures were then captured at 100 × magnification. Cartilage degradation scoring was primarily
based on Safranin O staining. H&E was used for confirmation. Histopathologic analysis of OA was
assessed by determining the severity of loss at the joint space with Safranin O staining. Loss was
subjectively scored as 0, no loss of cartilage; 1, mild loss of cartilage at the joint space (1–25% loss); 2,
moderate (26–50%); and 3, marked (>50%) by a board certified veterinary pathologist, blinded to the
treatment groups.

2.8. Statistical Analyzes

The experimental data generated for two groups was analyzed with unpaired T test using GraphPad
Prism Software 8.2 (GraphPad, San Diego, CA, USA). Differences were considered significant at p ≤
0.05. Data on graphs are presented as mean ± SEM.

3. Results

3.1. Food Intake and Body Weight

During 14 weeks of dietary intervention, no significant difference in food intake was observed
between the two groups of animals (Figure 1A). Average weekly food consumption during the period
of feeding with diet was 15.4 ± 0.4 g for control mice and 13.8 ± 1.2 g for animals fed with curcumin. At
the same time, beginning from the first week on the diet and further toward the end of the treatment,
the mice that received curcumin supplements gained weight at a slower rate compared to the control
group (Figure 1B). By the end of the study, average mouse weight in the control group was 158%
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compared to their weight at the start of the experiment, and in the curcumin-treated animal group, it
was just 144%.Biomolecules 2020, 10, x 5 of 17 
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Figure 1. Effect of curcumin on food intake and mouse body weight. Mouse food intake and weight 
was measured weekly. (A) Food intake time course. (B) Body weight time course. p value for body 
weight area under the curve is 0.038. n = 10. 
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blood, collected by cardiac puncture during euthanization. CG concentration was determined by 
liquid chromatography mass spectrometry (LC-MS/MS). n = 3–4. 

3.3. Body Adiposity 

Supplementing the VHFD diet with curcumin reduced the average total body fat content in mice 
to 25.9% compared to 30.3% in control animals (Figure 3A). Simultaneously, the average lean body 
weight content in curcumin-treated mice was increased to 70.3% compared to 67.7% in the control 
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Figure 1. Effect of curcumin on food intake and mouse body weight. Mouse food intake and weight
was measured weekly. (A) Food intake time course. (B) Body weight time course. p value for body
weight area under the curve is 0.038. n = 10.

3.2. Curcumin Bioavailability

Curcumin and curcumin-β-d glucuronide (principal curcumin metabolite produced by gut
bacteria) concentrations were measured in mouse serum. Curcumin itself was not detected in serum
collected from curcumin-treated animals, but all these samples contained the curcumin-β-d glucuronide
at an average of 2.52 ± 0.92 nM concentration (Figure 2).
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Figure 2. Curcumin glucuronide (CG) bioavailability in mouse serum. Serum was obtained from
blood, collected by cardiac puncture during euthanization. CG concentration was determined by liquid
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3.3. Body Adiposity

Supplementing the VHFD diet with curcumin reduced the average total body fat content in mice
to 25.9% compared to 30.3% in control animals (Figure 3A). Simultaneously, the average lean body
weight content in curcumin-treated mice was increased to 70.3% compared to 67.7% in the control
group (Figure 3B).
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Figure 3. Effect of curcumin on mouse fat and lean body weight. Total body adiposity evaluation was
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Analyzer (EchoMRI). * indicates a significant difference at p value ≤ 0.05. (A) Fat body mass. P value
0.041. (B) Lean body mass. p value 0.005. Data represented as mean with standard error of the mean; n
= 10.

3.4. Glucose Metabolism

During the last weeks of dietary intervention, the effects of curcumin on glucose metabolism were
evaluated in GTT and ITT. Animals of both groups had similar fasting blood glucose levels, which was
confirmed by measurements conducted before challenging them with glucose or insulin, respectively
(Figure S2A,C). In the control group, the fasting glucose concentration was between 197 ± 7.9 mg/dL
(ITT) and 231 ± 11.1 mg/dL (GTT). In curcumin-treated mice, these levels were between 220 ± 14.0
mg/dL (GTT) and 228 ± 18.2 mg/dL (ITT). The responses to the glucose and insulin challenges also did
not reveal differences between the control and curcumin-fed mice (Figure S1A–D respectively).

3.5. Adipocyte Cellularity

Adipocyte hypertrophy is an adaptive adipose tissue response to the excess of energy and
correlates positively with metabolic syndrome manifestations [30–33]. Since, in our study, the
curcumin-supplemented diet resulted in body weight and fat mass reduction in mice, we evaluated
the effects of curcumin on adipocyte hypertrophy in white epididymal adipose tissue. Hematoxylin
and eosin (H&E) staining did not show differences between adipocyte cell size overall between the
control and curcumin-treated groups (2873 ± 91 vs. 2738 ± 101 µm2, respectively; Figure 4).

3.6. Lipid Metabolism and Fibrosis Markers in Liver

As feeding mice with VHFD may result in nonalcoholic fatty liver disease (NAFLD), we
evaluated the effect of dietary curcumin on fat deposition in the liver. Despite the decrease of
liver triglycerides by curcumin by 13% (Figure 5B), H&E staining demonstrated similar fat deposition
levels between animals of the two groups (Figure 5A and Figure S2). To ascertain the development
of HFD-associated fibrosis in animal liver and whether it may be improved by supplementing
mouse diet with curcumin, we evaluated the accumulation of collagen fibers and the expression of
fibrosis-related genes. Histopathologic analysis revealed a collagen deposition neither in control nor in
curcumin-treated groups of mice (Figure 6A). Expression of three collagen genes, Col1a2, Col4a1, and
Col6a3, was downregulated in mice that received curcumin (Figure 6B). Expression of such collagen
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and pro-inflammatory genes like Col1a1, Col3a1, Col5a1, Fbn-1, ICAM-1, MMP-9, and TGF-β1 was not
different between groups (Figure S3). Expression of Ctgf, MMP-2, MMP-13, MCP-1, and TIMP-1 was
below the detection level in both groups.Biomolecules 2020, 10, x 7 of 17 
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deposition in the liver. Representative images of H&E stained sections. Magnification 100×; n = 4.
(B) Quantification of triglyceride content. Data of colorimetric assay. * indicates a significant difference
at p value ≤ 0.05. p value 0.005; n = 9–10.
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depicting collagen accumulation in the liver. Representative images of Trichrome Stains (Masson)
sections. Magnification 100×; n = 4. (B) Expression of collagen genes in curcumin-fed animals compared
to control group. Target gene expression is normalized to TATA box binding protein gene. * indicates a
significant difference at p value ≤ 0.05. p value 0.010, 0.047 and 0.007 respectively; n = 5–6.

3.7. Knee Joint Pathology Assessment

Safranin O staining did not demonstrate significant cartilage tissue degradation of either group
(Figure 7A,B). Cartilage loss was not significantly less in the control group than of animals that received
the curcumin supplement (Figure 7B). The expression of Col1α2, Col2α1, Col3α1, Col4α1, Col5α1, Col6α3,
Col22α1, and NF-κB p65 genes was also similar between control and curcumin-treated mice (Figure 7C
and Figure S4). The expression of Col8α1, Gln3, Gltd8, IL-1β, Pla2g, and Ptgs2 inflammation- and
OA-related genes was below the detection level.
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Figure 7. Effects of curcumin on mouse knee cartilage integrity. (A) Photomicrograph of mouse joint.
Cartilage is shown red on the image. Representative images of Safranin O with the counterstain and
H&E stained sections. Cartilage—crimson; collagen—green/blue; nuclei—black. Magnification 200×; n
= 5. (B) Cartilage loss severity score. (C) Cartilage gene expression in curcumin-fed animals compared
to control group. Target gene expression is normalized to TATA box binding protein gene. p value
0.241, 0.490 and 0.381 respectively; n = 5–6.

4. Discussion

The anti-obesity effects of curcumin and curcuminoids are being investigated extensively in clinical
and animal model-based studies [12,34,35]. In clinical obesity studies, curcumin intake improved a set
of pivotal body composition parameters, including reducing body weight, body mass index (BMI),
and waist circumference and modulating the adiponectin and leptin levels [34]. Based on the body
surface area normalization method of animal-to-human drug dose conversion [36], and daily food
consumption rate for mice observed in our previous studies, 0.7% w/w curcumin corresponds to 5
g/day curcumin consumption by a 75-kg adult human. This dose is consistent with curcumin doses
used in clinical trials [2] and 0.01%–1.0% w/w doses used in published mouse studies using VHFD
and curcumin [23–25,37]. Consistently with findings from these studies, our curcumin-treated mice
demonstrated lower weight gain and percent body fat than the VHFD control group after 14 weeks
on diets. On the other hand, the reduced fat content in the curcumin group was not accompanied by
reduced adipocyte hypertrophy.

Other studies report rather beneficial morphologic alterations in white adipocyte size in mice
fed curcumin. White adipose tissue hypertrophy was reduced significantly in genetically obese ob/ob
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mice fed a regular diet [38]. A trend toward reducing adipocyte size was observed for white fat in
a study using C57Bl/6 animals fed a 60% fat VHFD [23]. Of note, in one of these publications, the
authors used much higher curcumin dosing compared to our study (3% w/w), and, in another, the
curcumin dosing was much lower (0.08%) than our experiments. Since mechanisms of adipose tissue
hypertrophy and hyperplasia still are not fully understood [39,40], the explanation for this phenomenon
will require special investigation. It is also worth noting that in some other reports [41], as well as
according to our unpublished observations, adding curcumin to HFD and VHFD diets may not affect
animal body weight, which suggests that this outcome may be influenced by certain, still unidentified
experimental conditions such as composition of the diet or length of feeding different diet-induced
obesity models. For instance, Strissel et al. observed cyclic epidydimal fat remodeling dynamics in
C57Bl/6 males fed with 60% fat VHFD used in our experiments [42]. In their study, the epidydimal
adipocyte volume reached its maximal levels by week 12 of dietary intervention and demonstrated a
steep decrease between weeks 12 and 20. It is possible that in our study, VFHD-induced morphologic
alterations in control and curcumin-treated animals followed different time courses, and week 14
was not the best time point for demonstrating the effects of curcumin supplements. Fasting blood
glucose levels, measured towards the end of dietary intervention, did not differ between the two
groups of animals. Glucose and insulin tolerance tests resulted in similar metabolic responses in both
groups. Simultaneously, in other mouse studies, curcumin and curcuminoids had a beneficial effect on
animal health, observed in animals of different genetic backgrounds, which received their treatment
with diet, gavage, or ip injections [37,38,43–46]. At the same time, curcumin’s effects on glycemia
are investigated extensively in rat models [47], and its metabolic outcomes in rats are, to a certain
extent, controversial. In rats of different strains, curcumin supplemented with diet or administered by
prophylactic gastric gavage, reduced fasting blood glucose and improved insulin sensitivity [48,49].
Nevertheless, similar treatments failed to produce an anti-hyperglycemic effect in other published
studies [50,51]. Moreover, curcumin administration in human studies of obese and lean individuals
also results in varying outcomes [15–18,52–54]. This suggests that efficacy of curcumin administration
against manifestations of obesity-associated carbohydrate metabolism disorders in all kinds of studies
is sensitive to the nuances of experimental design. Thus, poorly consistent outcomes of curcumin
treatment between published studies make the translational value of curcumin intervention data,
generated in animal models of dietary obesity, questionable. Special precautions should be taken when
interpreting the VHFD-based data due to the extraordinary high fat content in this type of diet, which
does not recapitulate ideally the composition of human obesogenic foods.

Fat-enriched diets providing 32–45% [55–58] or 60% kcal fat [59–63] are a well-established approach
to NAFLD in rodents. However, in our model, evaluating the anti-NAFLD effects of curcumin was
problematic. The triglyceride concentration in liver tissue was reduced, but neither visually detectable
differences in fat accumulation in the liver nor signs of liver fibrosis were observed in mouse tissues.
Interestingly, in studies using “regular” HFD, a period of 9–16 weeks of dietary intervention sufficed
to induce NAFLD in mice, but the investigators using 60% fat VHFD treated their mice with the
experimental diet for at least 20 weeks [63] and even for 50–80 weeks [59,62]. In the publication, which
reports a time course of hepatic steatosis progression in mice fed with VHFD [42], the first signs of
disease were observed at week 12 of dietary intervention, with further enhancement of symptoms
between week 12 and 20. The modified choline-deficient HFD enriched with methionine produced
disease in mice after 14 weeks of treatment [64]. Moreover, in this study, the HFD induced liver fibrosis
after 6 weeks in C57BL/6 but not A/J male mice. In Sprague-Dawley rats, VHFD induced hepatic
steatosis and inflammation after 16 weeks [60]. All suggests that a more extended period of dietary
intervention may be required to develop the robust liver pathology in our model.

OA is a common joint disease associated with chronic pain and disability, bone sclerosis, and
degradation of joint tissues [65]. Obesity is one of the principal risk factors of OA etiology [66,67].
Chronic low-grade inflammation is an inalienable co-morbidity of obesity [68,69]. Adipose tissue
of obese individuals produces elevated amounts of numerous mediators of inflammation [70–72].



Biomolecules 2020, 10, 1368 11 of 16

Articular cartilage matrix tissue destruction by metalloproteinases, observed in OA, may result from
chronic activation of obesity-induced pro-inflammatory intracellular signaling in joints [73–75]. A set
of clinical studies demonstrated curcumin, curcuminoid, and curcumin-based therapeutics to improve
the extremity function and reduce pain and treatment in OA patients [76–79]. In animal studies
using spontaneous and surgical OA models, curcumin treatment protected the chondrocytes against
apoptosis and autophagy via activation of Akt/mTOR pathway, reduced collagen accumulation in
joints, and inhibited the production of inflammatory mediators [80–82]. We evaluated the potential of
our model for use in OA-centered mouse studies. However, after 13 weeks on diets, the control mice
developed only moderate symptoms of a disease. We did not observe a significant difference in the
severity of knee joint cartilage histopathology or expression of OA-associated genes in cartilage tissue
between the groups. The VHFD, used in our experiments, was used to induce the disease in several
other published OA-focused studies [83–85].

Nevertheless, in two of these studies, dietary intervention was not 13 weeks but 20 or 32
weeks [83,84]. Moreover in these papers, as well as in the studies by Griffin et al. and Gu et al. [29,85],
the control groups were fed with low-fat diets (LFD), providing 10–13% kcal fat, which facilitated
revealing a disease severity difference between groups. In contrast, in our study, the control group
of animals was fed with VHFD. Our data suggests that the experimental design used in our study
cannot be considered for projects aiming to study the effects of protective bioactives. A comparison
against control animals fed with plain obesogenic OA-inducing diets is necessary for evaluating the
therapeutic potential of investigated bioactives. Therefore, a time of dietary intervention significantly
longer than 13 weeks may be required for OA-centered studies using VFHD to develop the symptoms
of robust disease, which may be significantly ameliorated by bioactive food supplements.

5. Conclusions

We conclude that, under the experimental conditions used in our study, feeding mice with
VHFD for 13 weeks did not result in expected robust manifestations of the targeted pathophysiologic
conditions. Our attempt to evaluate the versatile protective effects of curcumin against insulin resistance,
liver pathophysiology, and osteoarthritis in VHFD-fed B6 mice encountered essential methodologic
limitations. The algorithm for elaborating a model which would develop robust manifestations of
metabolism- and immune-status-related pathology in response to 60% kcal fat VHFD requires the
optimization of diet composition, length of dietary intervention, and age of animals. Moreover,
additional factors not assessed in this paper, must be taken into account (i.e., differences in gut
microbiome composition between genetically identical animals housed in different facilities [86]).
We recognize that this study produced a limited amount of novel data and that further research
is required to unravel the mechanisms underlying the observed pattern of physiologic responses.
Nevertheless, we believe that publishing negative data, like those generated in our experiments, may
save time and resources for investigators in the field and promote better coordination of efforts in the
scientific community.
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