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Abstract

By classifying patients into subgroups, clinicians can provide more effective care than using

a uniform approach for all patients. Such subgroups might include patients with a particular

disease subtype, patients with a good (or poor) prognosis, or patients most (or least) likely

to respond to a particular therapy. Transcriptomic measurements reflect the downstream

effects of genomic and epigenomic variations. However, high-throughput technologies gen-

erate thousands of measurements per patient, and complex dependencies exist among

genes, so it may be infeasible to classify patients using traditional statistical models.

Machine-learning classification algorithms can help with this problem. However, hundreds

of classification algorithms exist—and most support diverse hyperparameters—so it is diffi-

cult for researchers to know which are optimal for gene-expression biomarkers. We per-

formed a benchmark comparison, applying 52 classification algorithms to 50 gene-

expression datasets (143 class variables). We evaluated algorithms that represent diverse

machine-learning methodologies and have been implemented in general-purpose, open-

source, machine-learning libraries. When available, we combined clinical predictors with

gene-expression data. Additionally, we evaluated the effects of performing hyperparameter

optimization and feature selection using nested cross validation. Kernel- and ensemble-

based algorithms consistently outperformed other types of classification algorithms; how-

ever, even the top-performing algorithms performed poorly in some cases. Hyperparameter

optimization and feature selection typically improved predictive performance, and univariate

feature-selection algorithms typically outperformed more sophisticated methods. Together,

our findings illustrate that algorithm performance varies considerably when other factors are

held constant and thus that algorithm selection is a critical step in biomarker studies.

Author summary

When a patient is treated in a medical setting, a clinician may extract a tissue sample and

use transcriptome-profiling technologies to quantify the extent to which thousands of

genes are expressed in the sample. These measurements reflect biological activity that may
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influence disease development, progression, and/or treatment responses. Patterns that dif-

fer between patients in distinct groups (for example, patients who do or do not have a dis-

ease or do or do not respond to a treatment) may be used to classify future patients into

these groups. This study is a large-scale benchmark comparison of algorithms that can be

used to perform such classifications. Additionally, we evaluated feature-selection algo-

rithms, which can be used to identify which variables (genes and/or patient characteris-

tics) are most relevant for classification. Through a series of analyses that build on each

other, we show that classification performance varies considerably, depending on which

algorithms are used, whether feature selection is used, which settings are used when exe-

cuting the algorithms, and which metrics are used to evaluate the algorithms’ perfor-

mance. Researchers can use these findings as a resource for deciding which algorithms

and settings to prioritize when deriving transcriptome-based biomarkers in future efforts.

Introduction

Researchers use observational data to derive categories, or classes, into which patients can be

assigned. Such classes might include patients who have a given disease subtype, patients at a

particular disease stage, patients who respond to a particular treatment, patients who have

poor outcomes, patients who have a particular genomic lesion, etc. Subsequently, a physician

may use these classes to tailor patient care, rather than using a one-size-fits-all approach[1–3].

However, physicians typically do not know in advance which class labels are most relevant for

each patient. Thus, a key challenge is defining objective and reliable criteria for assigning indi-

vidual patients to known class labels. When such criteria have been identified and sufficiently

validated, they can be used in medical “expert systems” for classifying individual patients[4].

In this study, we focused on using gene-expression profiles to perform classification. Gene-

expression profiling technologies are relatively mature and are used widely in research[5,6]. In

addition, gene-expression profiling is now used in clinical applications. For example, physi-

cians use the PAM50 classifier, based on the expression of 58 genes, to assign breast-cancer

patients to “intrinsic subtypes”[7–11]. The success of this classifier has motivated additional

research. In breast cancer alone, more than 100 gene-expression profiles have been proposed

for predicting breast-cancer prognosis[12].

Classification algorithms learn from data much as a physician does—past observations

inform decisions about new patients. Thus, the first step in developing a gene-expression bio-

marker is to profile a patient cohort that represents the population of interest. Alternatively, a

researcher might use publicly available data for this step. Second, the researcher performs a

preliminary evaluation of the potential to assign patients to a particular clinically relevant class

based on gene-expression profiles and accompanying clinical information. Furthermore, the

researcher may undergo an effort to select a classification algorithm that will perform relatively

well for this particular task. Such efforts may be informed by prior experience, a literature

review, or trial and error. Using some form of subsampling[13] and a given classification algo-

rithm, the researcher derives a classification model from a subset of the patients’ data (training

data); to derive this model, the researcher exposes the classification algorithm to the true class

labels for each patient. Then, using a disjoint subset of patient observations for which the true

class labels have been withheld (test data), the model predicts the label of each patient. Finally,

the researcher compares the predictions against the true labels. If the predictive performance

approaches or exceeds what can be attained using currently available models, the researcher

may continue to refine and test the model. Such steps might include tuning the algorithm,
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reducing the number of predictor variables, and testing it on multiple, independent cohorts.

In this study, we focus on the need to select algorithm(s).

Modern, high-throughput technologies can produce more than 10,000 gene-expression

measurements per biological sample. Thus instead of a traditional approach that uses prior

knowledge to determine which genes are included in a predictive model, researchers can use a

data-driven approach to infer which genes are most relevant and to identify expression pat-

terns that differ among patient groups[14]. These patterns may be complex, representing sub-

tle differences in expression that span many genes[15]. Due to dependencies among

biomolecules and limitations in measurement technologies, high-throughput gene-expression

measurements are often redundant and noisy[16]. Thus, to be effective at inferring relevant

patterns, classification algorithms must be able to overcome these challenges. One approach is

to perform feature selection using algorithms that identify predictor variables (features) that

are most relevant to the class of interest.

Many machine-learning algorithms and algorithmic variants have been developed and are

available in open-source software packages. These include classification algorithms as well as

feature-selection algorithms. Gene-expression datasets are abundant in public repositories,

affording opportunities for large-scale benchmark comparisons. Furthermore, many of these

datasets are accompanied by clinically oriented predictor variables. To our knowledge, no

benchmark study has systematically compared the ability to classify patients using clinical data

versus gene-expression data—or combined these two types of data—for a large number of

datasets. Moreover, previous benchmarks have not systematically evaluated the benefits of

optimizing an algorithm’s hyperparameters versus using defaults. We address these gaps with

a benchmark study spanning 50 datasets (143 class variables representing diverse phenotypes),

52 classification algorithms (1116 hyperparameter combinations), and 14 feature-selection

algorithms. We perform this study in a staged design, comparing the ability to classify patients

using gene-expression data alone, clinical data alone, or both data types together. In addition,

we evaluate the effects of performing hyperparameter optimization and/or feature selection.

Results

General trends

We evaluated the predictive performance of 52 classification algorithms on 50 gene-expression

datasets. Across the 50 datasets, we made predictions for a total of 143 class variables. We

divided the analysis into 5 stages to assess benefits that might come from including clinical pre-

dictors, optimizing an algorithm’s hyperparameters, or performing feature selection (Fig 1).

In Analysis 1, we used only gene-expression data as predictors and used default hyperpara-

meters for each classification algorithm. S1 Fig illustrates the performance of these algorithms

using area under the receiver operating characteristic curve (AUROC) as a performance met-

ric. As a method of normalization, we ranked the classification algorithms for each combina-

tion of dataset and class variable. Two patterns emerged. Firstly, 15 of the 18 top-performing

algorithms use kernel functions and/or ensemble approaches. Secondly, although some algo-

rithms performed consistently well overall, they performed quite poorly in some cases. For

example, the sklearn/logistic_regression algorithm—which used the LibLinear solver[17], a C
value of 1.0, and no class weighting—resulted in the best average rank; yet for 7 (4.9%) of the

dataset/class combinations, its performance ranked in the bottom quartile. The keras/snn algo-

rithm resulted in the second-best average rank; yet for 4 (2.8%) of dataset/class combinations,

its performance ranked in the bottom quartile.

This study focuses primarily on AUROC because it is widely used and accounts for moder-

ate levels of class imbalance. However, the performance rankings differed considerably
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depending on which evaluation metric we used. For example, in Analysis 1, many of the same

algorithms that performed well according to AUROC also performed well according to classi-

fication accuracy (S2 Fig). However, classification accuracy does not account for class imbal-

ance and thus may rank algorithms in a misleading way. For example, the weka/ZeroR

algorithm was ranked 18th among the algorithms according to classification accuracy, even

though the algorithm simply selects the majority class. (Our analysis included two-class and

multi-class problems.) Rankings for the Matthews correlation coefficient were relatively simi-

lar to AUROC. For example, sklearn/logistic_regression had the 2nd-best average rank accord-

ing to this metric. However, in other cases, the rankings were considerably different. For

example, the mlr/sda algorithm performed 3rd-best according to MCC but 28th according to

AUROC (S3 Fig). The area under the precision-recall curve (AUPRC) is an alternative to the

AUROC. In Analysis 1, AUROC and AUPRC scores and ranks were moderately correlated

(S4,S5, and S6 Figs). AUPRC is recommended over AUROC when class imbalance is extreme

[18,19]. Fig 2 shows the rankings for each algorithm across all metrics that we evaluated,

highlighting that conclusions drawn from benchmark comparisons depend heavily on which

metric(s) are considered important.

Execution times differed substantially across the algorithms. For Analysis 1, Fig 3 catego-

rizes each algorithm according to its ability to make effective predictions in combination with

the computer time required to execute the classification tasks. The sklearn/logistic_regression

algorithm not only outperformed other algorithms in terms of predictive ability but also was

one of the fastest algorithms. In contrast, the mlr/randomForest algorithm was among the

most predictive algorithms but was orders-of-magnitude slower than other top-performing

algorithms. Execution time is a less-critical factor than predictive performance; however, when

the eventual goal is to provide useful tools for clinical applications, execution times may be an

important consideration.

Some classification algorithms are commonly used and thus have been implemented in

multiple machine-learning packages. For example, all three open-source libraries that we used

in this study have implementations of the SVM and random forests algorithms. However,

these implementations differ from each other, often supporting different hyperparameters or

using different default values. For example, mlr/svm and weka/LibSVM are both wrappers for

Fig 1. Overview of analysis scenarios. This study consisted of five separate but related analyses. This diagram indicates which

data type(s) was/were used and whether we attempted to improve predictive performance via hyperparameter optimization or

feature selection in each analysis.

https://doi.org/10.1371/journal.pcbi.1009926.g001
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the LibSVM package[20]; both use a value of 1.0 for the C parameter and use the Radial Basis
Function kernel. However, by default, mlr/svm scales numeric values to zero mean and unit

variance, whereas weka/LibSVM performs no normalization by default. In Analysis 1, the pre-

dictive performance was similar for these different implementations. Their AUROC values

were significantly correlated (r = 0.87; CI = 0.82–0.90; p = 2.2e-16). However, in some

instances, their performance differed dramatically. For example, when predicting drug

responses for dataset GSE20181, weka/LibSVM performed 2nd best, but mlr/svm performed

worst among all algorithms. S7 and S8 Figs illustrate, for two representative datasets, that algo-

rithms with similar methodologies often produced similar predictions; but these predictions

were never perfectly correlated. Execution times also differed from one implementation to

another; for example, the median execution time for weka/LibSVM was 27.9 seconds, but for

mlr/svm it was 114.4 seconds. Overall, the median execution times differed significantly across

the software packages (Kruskal-Wallis test; p-value = 1.1e-06). Overall, the sklearn algorithms

executed faster than algorithms from other packages (Fig 3).

Some classification labels were easier to predict than others. Across the dataset/class combi-

nations in Analysis 1, the median AUROC across all algorithms ranged between 0.44 and 0.97

(S1 Data). For a given dataset/class combination, algorithm performance varied considerably,

though this variation was influenced partially by the weka/ZeroR results, which we used as

controls. To gain insight into predictive performance for different types of class labels, we

Fig 2. Comparison of ranks for classification algorithms across performance metrics. We calculated 14 performance metrics for each classification task.

This graph shows results for Analysis 1 (using only gene-expression predictors). For each combination of dataset and class variable, we averaged the metric

scores across all Monte Carlo cross-validation iterations. For some metrics (such as Accuracy), a relatively high value is desirable, whereas the opposite is true

for other metrics (such as FDR). We ranked the classification algorithms such that relatively low ranks indicated more desirable performance for the metrics

and averaged these ranks across the dataset/class combinations. This graph illustrates that the best-performing algorithms for some metrics do not necessarily

perform optimally according to other metrics. AUROC = area under the receiver operating characteristic curve. AUPRC = area under the precision-recall

curve. FDR = false discovery rate. FNR = false negative rate. FPR = false positive rate. MCC = Matthews correlation coefficient. MMCE = mean

misclassification error. NPV = negative predictive value. PPV = positive predictive value.

https://doi.org/10.1371/journal.pcbi.1009926.g002
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assigned a category to each class variable (S9 Fig); the best predictive performance was attained

for class variables representing molecular markers, histological statuses, and diagnostic labels.

Class variables in the “patient characteristics” category performed worst; these variables

Fig 3. Tradeoff between execution time and predictive performance for classification algorithms. When using gene-expression predictors only (Analysis 1),

we calculated the median area under the receiver operating characteristic curve (AUROC) across 50 iterations of Monte Carlo cross validation for each

combination of dataset, class variable, and classification algorithm. Simultaneously, we measured the median execution time (in seconds) for each algorithm

across these scenarios. sklearn/logistic_regression attained the top predictive performance and was the 4th fastest algorithm (median = 5.3 seconds). The

coordinates for the y-axis have been transformed to a log-10 scale. We used arbitrary AUROC thresholds to categorize the algorithms based on low, moderate,

and high predictive ability.

https://doi.org/10.1371/journal.pcbi.1009926.g003
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represented miscellaneous factors such as the patient’s family history of cancer, whether the

patient had been diagnosed with multiple tumors, and the patient’s physical and cognitive

“performance status” at the time of diagnosis.

Effects of using gene-expression predictors, clinical predictors, or both

In Analysis 2, we used only clinical predictors (for the dataset / class-variable combinations

with available clinical data). Three linear-discriminant classifiers performed particularly well:

mlr/sda, sklearn/lda, and mlr/glmnet (S10 Fig). Two Naïve Bayes algorithms also ranked

among the top performers, whereas these algorithms had performed poorly in Analysis 1.

Only two kernel-based algorithms were ranked among the top 10: weka/LibLINEAR and

sklearn/logistic_regression. Both of these algorithms use the LibLINEAR solver. Most of the

remaining kernel-based algorithms were among the worst performers. As with Analysis 1,

most ensemble-based algorithms ranked in the top 25; however, none ranked in the top 5.

S2 Data shows the performance of each combination of dataset and class variable in Analy-

sis 2. As with Analysis 1, the ability to predict particular classes and categories varied consider-

ably (S11 Fig). For approximately two-thirds of the dataset/class combinations, AUROC

values decreased—sometimes by more than 0.3 (Fig 4A); however, in a few cases, predictive

performance increased. The most dramatic improvement was for GSE58697, in which we pre-

dicted progression-free survival for desmoid tumors. The clinical predictors were age at

Fig 4. Relative predictive performance when training on gene-expression predictors alone vs. using clinical predictors alone or gene-expression

predictors in combination with clinical predictors. In both A and B, we used as a baseline the predictive performance that we attained using gene-expression

predictors alone (Analysis 1). We quantified predictive performance using the area under the receiver operating characteristic curve (AUROC). In A, we show

the relative increase or decrease in performance when using clinical predictors alone (Analysis 2). In most cases, AUROC values decreased; however, in a few

cases, AUROC values increased (by as much as 0.42). In B, we show the relative change in performance when using gene-expression predictors in combination

with clinical predictors (Analysis 3). For 82/109 (75%) of dataset/class combinations, including clinical predictors had no effect on performance. However, for

the remaining combinations, the AUROC improved by as much as 0.15 and decreased by as much as 0.09.

https://doi.org/10.1371/journal.pcbi.1009926.g004
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diagnosis, biological sex, and tumor location. Salas, et al. previously found in a univariate anal-

ysis that age at diagnosis was significantly correlated with progression-free survival [21]. We

focused on patients who experienced relatively long or short survival times and used multivari-

ate methods.

In Analysis 3, we combined clinical and gene-expression predictors. We limited this analy-

sis to the 108 dataset / class-variable combinations for which clinical predictors were available

(S3 Data and S12 Fig). As with Analysis 1, kernel- and ensemble-based algorithms performed

best overall (S13 Fig). For 90 (83.3%) of the dataset/ class-variable combinations, the AUROC

values were identical to Analysis 1 (Fig 4B). Except in three cases, the absolute change in

AUROC was smaller than 0.05, including for GSE58697 (0.026 increase). These results suggest

that standard classification algorithms (using default parameters) may not be well suited to

datasets in which gene-expression and clinical predictors have simply been merged. The abun-

dance of gene-expression variables may distract the algorithms and/or obfuscate signal from

the relatively few clinical variables. Additionally, gene-expression and clinical predictors may

carry redundant signals.

Effects of performing hyperparameter optimization

In Analysis 4, we performed hyperparameter optimization via nested cross validation. Across

all 52 classification algorithms, we employed 1116 distinct hyperparameter combinations

under the assumption that the default settings may be suboptimal for the datasets we evaluated.

When clinical predictors were available, we included them (as in Analysis 3). When no clinical

predictors were available, we used gene-expression data only (as in Analysis 1). Again, kernel-

and ensemble-based algorithms performed well overall (S14 Fig), although the individual

rankings differed modestly from the previous analyses. The weka/LibLINEAR algorithm had

the best median rank, and algorithms based on random forests were generally ranked lower

than in previous analyses. For most dataset / class-variable combinations, the AUROC

(median across all classification algorithms) improved with hyperparameter optimization (Fig

5A); however, in some cases, performance decreased.

The best- and worst-performing class variables and categories were similar to the previous

analyses (S15 Fig and S4 Data). We observed a positive trend in which datasets with larger

sample sizes resulted in higher median AUROC values (S16 Fig); however, this relationship

was not statistically significant (Spearman’s rho = 0.13; p = 0.13). We observed a slightly nega-

tive trend between the number of genes in a dataset and median AUROC (S17 Fig), but again

this relationship was not statistically significant (rho = -0.07; p = 0.43).

Evaluating many hyperparameter combinations enabled us to quantify how much the pre-

dictive performance varied for different combinations. Some variation is desirable because it

enables algorithms to adapt to diverse analysis scenarios; however, large amounts of variation

make it difficult to select hyperparameter combinations that are broadly useful. For some clas-

sification algorithms, AUROC values varied widely across hyperparameter combinations

when applied to a given dataset / class variable (S18 Fig). These variations were often different

for algorithms with similar methodological approaches. For example, the median coefficient of

variation was 0.22 for the sklearn/svm algorithm but 0.08 for mlr/svm and 0.06 for weka/

LibSVM. In other cases, AUROC varied little across hyperparameter combinations. For exam-

ple, the four algorithms with the highest median AUROC—weka/LibLINEAR, mlr/glmnet,

sklearn/logistic_regression, and sklearn/extra_trees—had median coefficients of variation of

0.02, 0.03, 0.01, and 0.03, respectively. For each of these algorithms, we plotted the perfor-

mance of all hyperparameter combinations across all dataset / class-variable combinations

(S19, S20, S21, and S22 Figs). The default hyperparameter combination failed to perform best
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for any of these algorithms. Indeed, for two of the four algorithms, the default combination

performed worst.
Of the 1116 total combinations, 1084 were considered best for at least one dataset / class-

variable combination (based on average performance in inner cross-validation folds).

Effects of performing feature selection

In Analysis 5, we performed feature selection via nested cross validation. We used 14 feature-

selection algorithms in combination with each classification algorithm. Due to the computa-

tional demands of evaluating these 728 combinations, we initially used default hyperpara-

meters for both types of algorithms. The feature-selection algorithms differed in their

methodological approaches (Table 1). In addition, some were univariate methods, while others

were multivariate. Some feature-selection algorithms mirrored the behavior of classification

algorithms (e.g., SVMs or random forests); others were based on statistical inference or

entropy-based metrics.

Once again, kernel- and ensemble-based classification algorithms performed best overall

when feature selection was used (Fig 6). The median improvement per dataset / class-variable

combination was slightly larger for feature selection than for hyperparameter optimization,

and the maximal gains in predictive performance were larger for feature selection (Fig 5B and

S5 Data). Overall, there was a strong positive correlation between AUROC values for Analyses

4 and 5 (Spearman’s rho = 0.73; S23 Fig). Among the 10 dataset / class-variable combinations

Fig 5. Relative predictive performance when using default algorithm hyperparameters and all features vs. tuning hyperparameters or selecting features.

In both A and B, we use as a baseline the predictive performance that we attained using default hyperparameters for the classification algorithms (Analysis 3).

We quantified predictive performance using the area under the receiver operating characteristic curve (AUROC). In A, we show the relative increase or

decrease in performance when tuning hyperparameters within each training set (Analysis 4). In most cases, AUROC values increased. In B, we show the

relative change in performance when performing feature selection within each training set (Analysis 5). AUROC increased for most dataset / class-variable

combinations. The horizontal dashed lines indicate the median improvement across all dataset / class-variable combinations.

https://doi.org/10.1371/journal.pcbi.1009926.g005
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that improved most after feature selection, 8 were associated with prognostic, stage, or patient-

characteristic variables—categories that were most difficult to predict overall (S24 Fig). The

remaining two combinations were molecular markers (HER2-neu and progesterone receptor

status). Generally, the best performance was attained using 100 or 1000 features (S25 Fig).

Across all classification algorithms, the weka/Correlation feature-selection algorithm

resulted in the best predictive performance (S26 Fig), despite being a univariate method. This

algorithm calculates the Pearson’s correlation coefficient between each feature and the class

values, a relatively simple approach that also ranked among the fastest (S27 Fig). Other univar-

iate algorithms were among the top performers. To characterize algorithm performance fur-

ther, we compared the feature ranks between all algorithm pairs for two of the datasets. Some

pairs produced highly similar gene rankings, whereas in other cases the similarity was low (S28

and S29 Figs). The weka/Correlation and mlr/kruskal.test algorithms produced similar feature

ranks; both use statistical inference; the former is a parametric method, while the latter is

nonparametric.

Some classification algorithms (e.g., weka/ZeroR and sklearn/decision_tree) performed

poorly irrespective of feature-selection algorithm, whereas other classification algorithms (e.g.,

mlr/ranger and weka/LibLINEAR) performed consistently well across feature-selection algo-

rithms (S30 Fig). The performance of other algorithms was more variable.

To provide guidance to practitioners, we examined interactions between individual feature-

selection algorithms and classification algorithms (Fig 7). If a researcher had identified a par-

ticular classification algorithm to use, they might wish to select a feature-selection algorithm

that performs well in combination with that classification algorithm. For example, the weka/

Correlation feature-selection algorithm performed best overall, but it was only the 6th-best

algorithm on average when sklearn/logistic_regression was used for classification. In contrast,

a feature-selection algorithm that underperforms in general may perform well in combination

Table 1. Summary of feature-selection algorithms. We evaluated 14 feature-selection algorithms. The abbreviation for each algorithm contains a prefix that indicates

which machine-learning library implemented the algorithm (mlr = Machine learning in R, sklearn = scikit-learn, weka = WEKA: The workbench for machine learning).

For each algorithm, we provide a brief description of the algorithmic approach; we extracted these descriptions from the libraries that implemented the algorithms. In addi-

tion, we assigned high-level categories that indicate whether the algorithms evaluate a single feature (univariate) or multiple features (multivariate) at a time. In some cases,

the individual machine-learning libraries aggregated algorithm implementations from third-party packages. In these cases, we cite the machine-learning library and the

third-party package. When available, we also cite papers that describe the algorithmic methodologies used.

Abbreviation Description Category

mlr/cforest.importance Uses the permutation principle (based on Random Forests) to calculate standard and conditional importance of

features[22–24]

Multivariate

mlr/kruskal.test Uses the Kruskal-Wallis rank sum test[22,25] Univariate

mlr/randomForestSRC.rfsrc Uses the error rate for trees grown with and without a given feature[22,26,27] Multivariate

mlr/randomForestSRC.var.

select

Selects variables using minimal depth (Random Forests)[22,26,27] Multivariate

sklearn/mutual_info Calculates the mutual information between two feature clusterings[28,29] Univariate

sklearn/random_forest_rfe Recursively eliminates features based on Random Forests classification[28,30] Multivariate

sklearn/svm_rfe Recursively eliminates features based on support vector classification[28,31] Multivariate

weka/Correlation Calculates Pearson’s correlation coefficient between each feature and the class[32,33] Univariate

weka/GainRatio Measures the gain ratio of a feature with respect to the class[32,34] Univariate

weka/InfoGain Measures the information gain of a feature with respect to the class[32,34] Univariate

weka/OneR Evaluates the worth of a feature using the OneR classifier[32,35] Univariate

weka/ReliefF Repeatedly samples an instance and considers the value of a given attribute for the nearest instance of the same and

different class[32,36]

Multivariate

weka/SVMRFE Recursively eliminates features based on support vector classification[31,32] Multivariate

weka/SymmetricalUncertainty Measures the symmetrical uncertainty of a feature with respect to the class[32,37] Univariate

https://doi.org/10.1371/journal.pcbi.1009926.t001
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Fig 6. Relative performance of classification algorithms using gene-expression and clinical predictors and performing feature

selection. We predicted patient states using gene-expression and clinical predictors with feature selection (Analysis 5). We used nested

cross validation to estimate which features would be optimal for each algorithm in each training set. For each combination of dataset,

class variable, and classification algorithm, we calculated the arithmetic mean of area under the receiver operating characteristic curve

(AUROC) values across 5 iterations of Monte Carlo cross-validation. Next, we sorted the algorithms based on the average rank across all

dataset/class combinations. Each data point that overlays the box plots represents a particular dataset/class combination.

https://doi.org/10.1371/journal.pcbi.1009926.g006
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Fig 7. Relative classification performance per combination of feature-selection and classification algorithm. For each combination of dataset and class

variable, we averaged area under receiver operating characteristic curve (AUROC) values across all Monte Carlo cross-validation iterations. Then for each

classification algorithm, we ranked the feature-selection algorithms based on AUROC scores across all datasets and class variables. Lower ranks indicate

better performance. Dark-red boxes indicate cases where a particular feature-selection algorithm was especially effective for a particular classification

algorithm. The opposite was true for dark-blue boxes.

https://doi.org/10.1371/journal.pcbi.1009926.g007
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with a given classification algorithm. For example, sklearn/svm_rfe performed poorly overall

but was effective in combination with mlr/svm.

We evaluated two alternatives for performing feature selection. Firstly, for 5 dataset/class

combinations and 7 feature-selection algorithms, we used hyperparameter combinations for

the feature-selection algorithms that differed from the defaults (a total of 59 hyperparameter

combinations). The results were similar to Analysis 5 (S31 Fig and S6 Data), and the median

change in AUROC per dataset/class combination was a decrease of 0.007. Secondly, all of the

feature-selection algorithms are filter based; thus, ranking is performed independently of clas-

sification. As an alternative, wrapper-based approaches evaluate the extent to which features

improve classification performance. We evaluated two classification algorithms (sklearn/svm

and sklearn/knn) and selected the top 0.01%, 0.1% or 1% of features. The median change in

AUROC per dataset/class combination was a decrease of 0.011. Additional benchmarks

involving more algorithms and datasets are warranted in future studies.

Finally, we note that feature selection can be used to provide biological insight. Features

that are consistently ranked highly for a given disease may be more likely to play a role in dis-

ease development or progression. For GSE10320 and GSE46691, we identified the 50 top-

ranked genes, averaged across all algorithms (S7 Data), and used the Molecular Signatures

Database to quantify the overlap between these gene lists and a curated “hallmark” set of gene

sets known to play a role in tumorigenesis[38]. Three and four gene sets, respectively, signifi-

cantly overlapped with the top-ranked genes (S8 and S9 Data). More extensive analysis and lab

work would be required to validate these insights.

Discussion

The machine-learning community has developed hundreds of classification algorithms, span-

ning diverse methodological approaches[39]. Historically, most datasets available for testing

had fewer than 100 predictor variables, so most algorithms were created and optimized for

that use case[40]. Consequently, the execution time and predictive performance of many clas-

sification algorithms may be unsatisfactory when datasets consist of thousands of predictor

variables–the algorithms may have difficulty identifying the most informative features in the

data[41,42].

This benchmark study is considerably larger than any prior study of classification algo-

rithms applied to gene-expression data. When gene-expression microarrays became common

in biomedical research in the early 2000s, researchers began exploring the potential to make

clinically relevant predictions and overcome these challenges[43–47]. As a result of data-shar-

ing policies, gene-expression datasets were increasingly available in the public domain, and

researchers performed benchmark studies, comparing the effectiveness of classification algo-

rithms on gene-expression data[14,48–50]. Each of these studies evaluated between 5 and 21

algorithmic variants. In addition, the authors typically used at least one method of feature

selection to reduce the number of predictor variables. The studies used as many as 7 datasets,

primarily from tumor cells (and often adjacent normal cells). The authors focused mostly on

classical algorithms, including k-Nearest Neighbors[51], linear discriminant analysis[52], and

the multi-layer perceptron[53]. Pochet, et al. also explored the potential for nonlinear Support

Vector Machine (SVM) classifiers to increase predictive performance relative to linear meth-

ods[49,54]. Later benchmark studies highlighted two types of algorithm—SVM and random

forests[30]—that performed relatively well on gene-expression data[42,55–57]. Statnikov, et al.

examined 22 datasets and specifically compared the predictive capability of these two algo-

rithm types. Overall, they found that SVMs significantly outperformed random forests,

although random forests outperformed SVMs in some cases[42]. Perhaps in part due to these
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highly cited studies, SVMs and random forests have been used heavily in diverse types of bio-

medical research over the past two decades[58].

Community efforts—especially the Sage Bionetworks DREAM Challenges and Critical

Assessment of Massive Data Analysis challenges[59–61]—have encouraged the development

and refinement of predictive models to address biomedical questions. In these benchmark

studies, the priority is to maximize predictive performance and thus increase the potential that

the models will have in practical use. Accordingly, participants have flexibility to use alterna-

tive normalization or summarization methods, to use alternative subsets of the training data,

to combine algorithms, etc. These strategies often prove useful; however, this heterogeneity

makes it difficult to deconvolve the relationship between a given solution’s performance and

the underlying algorithm(s), hyperparameters, and features used.

Our primary motivation is to provide helpful advice for practitioners who perform bio-

marker studies. Identifying algorithm(s) and hyperparameter(s) that perform consistently well

in this setting may ultimately lead to patient benefits. In situations where a biomarker is

applied to thousands of cancer patients, even modest increases in accuracy can benefit hun-

dreds of patients. Accordingly, we questioned whether SVM and random forests algorithms

would continue to be the top performers when compared against diverse types of classification

algorithms. We also questioned whether there would be scenarios in which these algorithms

would perform poorly. Furthermore, relatively little has been known about the extent to which

algorithm choice affects predictive success for a given dataset. Thus, we questioned how much

variance in predictive performance we would see across the algorithms. In addition, we evalu-

ated practical matters such as tradeoffs between predictive performance and execution time,

the extent to which algorithm rankings are affected by the performance metric used, and

which algorithms behave most similarly—or differently—to each other.

Our secondary motivation was to help bridge the gap between machine-learning research-

ers who develop general-purpose algorithms and biomedical researchers who seek to apply

them in a specific context. When selecting algorithm(s), hyperparameters, and features to use

in a biomarker study, researchers might base their decisions on what others have reported in

the literature for a similar study; or they might consider anecdotal experiences that they or

their colleagues have had. However, these decisions may lack an empirical basis and not gener-

alize from one analysis to another. Alternatively, researchers might apply many algorithms to

their data to estimate which algorithm(s) will perform best. However, this approach is time-

and resource-intensive and may lead to bias if the comparisons are not performed in a rigor-

ous manner. In yet another approach, researchers might develop a custom classification algo-

rithm, perhaps one that is specifically designed for the target data. However, it is difficult to

know whether such an algorithm would outperform existing, classical algorithms.

Many factors can affect predictive performance in a biomarker study. These factors include

data-generation technologies, data normalization / summarization processes, validation strategies,

and evaluation metrics used. Although such factors must be considered, we have shown that

when holding them constant, the choice of algorithm, hyperparameter combination, and features

usually affects predictive performance for a given dataset—sometimes dramatically. Despite these

variations, we have demonstrated that particular algorithms and algorithm categories consistently

outperform others across diverse gene-expression datasets and class variables. However, even the

best algorithms performed poorly in some cases. These findings support the theory that no single

algorithm is universally optimal[62]. But they also suggest that researchers can increase the odds

of success in developing accurate biomarkers by focusing on a few top-performing algorithms

and using hyperparameter optimization and/or feature selection, despite the additional computa-

tional demands in performing these steps. However, it is subjective to decide which characteristics

to optimize and whether such optimization will reap rewards.
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We deliberately focused on general-purpose algorithms because they are readily available in well-

maintained, open-source packages. Of necessity, we evaluated an inexhaustive list of algorithms and

hyperparameter combinations. Other algorithms or hyperparameter combinations may have per-

formed better than those that we used. Many studies have proposed algorithm variations designed

for feature selection and/or classification of gene-expression data[63–72]. Some algorithms in our

study had more hyperparameter combinations than others, which may have enabled those algo-

rithms to adapt better in Analysis 4. Additionally, in some cases, our hyperparameter combinations

were inconsistent between two algorithms of the same type because different software libraries sup-

port different options. Despite these limitations, a key advantage of our benchmarking approach is

that we performed these comparisons in an impartial manner, not having developed any of the algo-

rithms that we evaluated nor having other conflicts of interest that might bias our results.

Generally, kernel- and ensemble-based algorithms outperformed other types of algorithms

in our analyses. Other algorithm types—such as linear-discriminant and neural-network algo-

rithms—performed well in some scenarios. Deep neural networks have received much atten-

tion in the biomedical literature over the past decade[73]. This study included three types of

deep neural networks. keras/snn and keras/dnn used fully connected networks; the hyperpara-

meters combinations differed in the number of nodes, number of layers, dropout rate, regular-

ization rate, number of epochs, and whether batch normalization was used. The mlr/h2o.

deeplearning algorithm provided many of the same options. In Analysis 1, the keras/snn andn

keras/dnn algorithms ranked among the top 11; however, their performance dropped in subse-

quent analyses. The mlr/h2o.deeplearning algorithm performed at mediocre levels in all of our

analyses. Custom adaptations to this (or any other) deep-learning algorithm may improve pre-

dictive performance in future studies. Efforts to improve predictive ability might also include

optimizing hyperparameters of feature-selection algorithms, combining hyperparameter-opti-

mized classification algorithms with feature selection, and using multiple classifier systems

[74]. Transfer learning across datasets may also prove fruitful[75].

Our findings are specific to high-throughput gene-expression datasets that have either no

clinical predictors or a small set of clinical predictors. However, our conclusions may have rel-

evance to other datasets that include many features and that include a combination of numeric

and categorical features.

We applied Monte Carlo cross validation to each dataset separately and thus did not evalu-

ate predictive performance on independent datasets. This approach was suitable for our

benchmark comparison because our priority was to compare algorithms against each other

rather than to optimize their performance for clinical use. On another note, comparisons

across machine-learning packages are difficult to make. For example, some sklearn algorithms

provided the ability to automatically address class imbalance, whereas other software packages

did not always provide this functionality. Adapting these weights manually was infeasible for

this study. Accordingly, future research that specifically focuses on under-sampling, over-sam-

pling, and other methods to correct for class imbalance is warranted. In addition, some classifi-

cation algorithms are designed to produce probabilistic predictions, whereas other algorithms

produce only discrete predictions. The latter algorithms may have been at a disadvantage in

our benchmark for the AUROC and other metrics.

Methods

Ethics statement

Brigham Young University’s Institutional Review Board approved this study under exemption

status. This study uses data collected from public repositories only. We played no part in

patient recruiting or in obtaining consent.
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Data preparation

We used 50 datasets spanning diverse diseases and tissue types but focused primarily on can-

cer-related conditions. We used data from two sources. The first was a resource created by

Golightly, et al.[76] that includes 45 datasets from Gene Expression Omnibus[77]. For these

datasets, the gene-expression data were generated using Affymetrix microarrays, normalized

using Single Channel Array Normalization[78], summarized using BrainArray annotations

[79], quality checked using IQRay[80] and DoppelgangR[81], and batch-adjusted (where

applicable) using ComBat[82]. Depending on the Affymetrix platform used, expression levels

were available for 11,832 to 21,614 genes. For the remaining 5 datasets, we used RNA-Sequen-

cing data from The Cancer Genome Atlas (TCGA)[83], representing 5 tumor types: colorectal

adenocarcinoma (COAD), bladder urothelial carcinoma (BLCA), kidney renal clear cell carci-

noma (KIRC), prostate adenocarcinoma (PRAD), and lung adenocarcinoma (LUAD). These

data had been aligned and quantified using the Rsubread and featureCounts packages[84,85],

resulting in transcripts-per-million values for 22,833 genes[86]. All gene-expression data were

labeled using Ensembl gene identifiers[87].

For the microarray datasets, we used the class variables and clinical variables identified by

Golightly, et al. (2.8 class variables per dataset)[76]. For the RNA-Sequencing datasets, we

identified a total of 16 class variables. When a given sample was missing data for a given class

variable, we excluded that sample from the analyses. Some class variables were continuous in

nature (e.g., overall survival). We discretized these variables to enable classification, taking

into account censor status where applicable. To support consistency and human interpretabil-

ity across datasets, we assigned a standardized name and category to each class variable; the

original and standardized names are available in S10 Data.

For most of the Golightly, et al. datasets, at least one clinical variable had been identified as a

potential predictor variable. For TCGA datasets, we selected multiple clinical-predictor vari-

ables per dataset. Across all datasets, the mean and median number of clinical predictors per

dataset were 3.1 and 2.0, respectively (S10 Data). We avoided combinations of clinical-predictor

variables and class variables that were potentially confounded. For example, when a dataset

included cancer stage as a class variable, we excluded predictor variables such as tumor grade or

histological status. In some cases, no suitable predictor variable was available for a given class

variable, leaving only gene-expression variables as predictors; this was true for 35 class variables.

Algorithms used

We used 52 classification algorithms that were implemented in the ShinyLearner tool, which

enables researchers to benchmark algorithms from open-source machine-learning libraries

and is redistributed as software containers[88,89]. We used implementations from the mlr R

package (version 2; R version 3.5)[22], sklearn Python module (versions 0.18–0.22)[28], Weka
Java application (version 3.6)[32], and keras Python module (2.6.0). Table 2 lists each algo-

rithm, along with a description and methodological category for each algorithm. Furthermore,

it indicates the open-source software package that implemented the algorithm, as well as the

number of unique hyperparameter combinations that we evaluated for each algorithm. A full

list can be found in S11 Data. Among the classification algorithms was Weka’s ZeroR, which

predicts all instances to have the majority class. We included this algorithm as a sanity check

[90] and a baseline against which all other algorithms could be compared. Beyond the 52 clas-

sification algorithms that we used, additional algorithms were available in ShinyLearner. We

excluded algorithms that raised exceptions when we used default hyperparameters, required

excessive amounts of random access memory (75 gigabytes or more), or were orders of magni-

tude slower than the other algorithms.
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Table 2. Summary of classification algorithms. We compared the predictive ability of 52 classification algorithms that were available in ShinyLearner and had been

implemented across 4 open-source machine-learning libraries. The abbreviation for each algorithm contains a prefix indicating which machine-learning library imple-

mented the algorithm (mlr = Machine learning in R, sklearn = scikit-learn, weka = WEKA: The workbench for machine learning; keras = Keras). For each algorithm, we

provide a brief description of the algorithmic approach; we extracted these descriptions from the libraries that implemented the algorithms. In addition, we assigned high-

level categories that characterize the algorithmic methodology used by each algorithm. In some cases, the individual machine-learning libraries aggregated algorithm

implementations from third-party packages. In these cases, we cite the machine-learning library and the third-party package. When available, we also cite papers that

describe the algorithmic methodologies used. Finally, for each algorithm, we indicate the number of unique hyperparameter combinations evaluated in Analysis 4.

Abbreviation Description Category Combos

keras/dnn Multi-layer neural network with Exponential Linear Unit activation[91,92] Artificial neural network 54

keras/snn Multi-layer neural network with Scaled Exponential Linear Unit activation[91,92] Artificial neural network 54

mlr/C50 C5.0 Decision Trees[22,93] Tree- or rule-based 32

mlr/ctree Conditional Inference Trees[22,94] Tree- or rule-based 4

mlr/earth Multivariate Adaptive Regression Splines[22,95] Linear discriminant 36

mlr/gausspr Gaussian Processes[22,96] Kernel-based 3

mlr/glmnet Generalized Linear Models with Lasso or Elasticnet Regularization[22,97] Linear discriminant 3

mlr/h2o.deeplearning Deep Neural Networks[22,92,98] Artificial neural network 32

mlr/h2o.gbm Gradient Boosting Machines[22,98,99] Ensemble 16

mlr/h2o.randomForest Random Forests[22,30,98] Ensemble 12

mlr/kknn k-Nearest Neighbor[22,100] Miscellaneous 6

mlr/ksvm Support Vector Machines[22,54,96] Kernel-based 40

mlr/mlp Multi-Layer Perceptron[22,53,101] Artificial neural network 14

mlr/naiveBayes Naive Bayes[22,102] Miscellaneous 2

mlr/randomForest Breiman and Cutler’s Random Forests[22,103] Ensemble 12

mlr/randomForestSRC Fast Unified Random Forests for Survival, Regression, and Classification[22,26,27] Ensemble 108

mlr/ranger A Fast Implementation of Random Forests[22,104] Ensemble 12

mlr/rpart Recursive Partitioning and Regression Trees[22,105,106] Tree- or rule-based 1

mlr/RRF Regularized Random Forests[22,107] Ensemble 24

mlr/sda Shrinkage Discriminant Analysis[22,108] Linear discriminant 2

mlr/svm Support Vector Machines[20,22,102] Kernel-based 28

mlr/xgboost eXtreme Gradient Boosting[22,109] Ensemble 3

sklearn/adaboost AdaBoost[28,110] Ensemble 8

sklearn/decision_tree A decision tree classifier[28] Tree- or rule-based 96

sklearn/extra_trees An extra-trees classifier[28] Ensemble 24

sklearn/gradient_boosting Gradient Boosting for classification[28,99] Ensemble 6

sklearn/knn k-nearest neighbors vote[28,51] Miscellaneous 12

sklearn/lda Linear Discriminant Analysis[28] Linear discriminant 3

sklearn/logistic_regression Logistic Regression[28,111] Kernel-based 32

sklearn/multilayer_perceptron Multi-layer Perceptron[28,53] Artificial neural network 24

sklearn/random_forest Random Forests[28,30] Ensemble 24

sklearn/sgd Linear classifiers with stochastic gradient descent training[28,112] Linear discriminant 36

sklearn/svm C-Support Vector Classification[28,54] Kernel-based 32

weka/Bagging Bagging a classifier to reduce variance[32,113] Ensemble 32

weka/BayesNet Bayes Network learning using various search algorithms and quality measures[32,114] Miscellaneous 2

weka/DecisionTable Simple decision table majority classifier[32,115] Tree- or rule-based 6

weka/HoeffdingTree Hoeffding tree[32,116] Tree- or rule-based 32

weka/HyperPipes HyperPipe classifier[32] Miscellaneous 1

weka/J48 Pruned or unpruned C4.5 decision tree[32,117] Tree- or rule-based 96

weka/JRip Repeated Incremental Pruning to Produce Error Reduction[32,118] Tree- or rule-based 12

weka/LibLINEAR LIBLINEAR—A Library for Large Linear Classification[17,32] Kernel-based 16

weka/LibSVM Support vector machines[20,32] Kernel-based 32

weka/NaiveBayes A Naive Bayes classifier using estimator classes[32,119] Miscellaneous 3

(Continued)

PLOS COMPUTATIONAL BIOLOGY Large-scale benchmark comparison of classification algorithms on gene-expression data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009926 March 11, 2022 17 / 34

https://doi.org/10.1371/journal.pcbi.1009926


For feature selection, we used 14 algorithms that had been implemented in ShinyLearner

[89]. Table 1 lists each algorithm, along with a description and high-level category for each

algorithm. S12 Data lists hyperparameters evaluated for these algorithms.

For all software implementations that supported it, we set the hyperparameters so that the

classification algorithms would produce probabilistic predictions and use a single process/

thread. Unless otherwise noted, we used default hyperparameter values for each algorithm, as

dictated by the respective software implementations. For feature selection, we used n_feature-
s_to_select = 5 and step = 0.1 for the sklearn/random_forest_rfe and sklearn/
svm_rfe methods to balance computational efficiency with the size of the datasets. For

sklearn/random_forest_rfe, we specified n_estimators = 50 because execution failed

when fewer estimators were used.

To analyze the benchmark results, we wrote scripts for Python (version 3.6)[126] and the R

statistical software (version 4.02)[127]. We also used the corrplot[128], cowplot[129], ggrepel

[130], and tidyverse[131] packages.

Analysis phases

We performed this study in five phases (Fig 1). In each phase, we modulated either the data

used or the optimization approach. In Analysis 1, we used gene-expression predictors only

and default hyperparameter values for each classification algorithm. In Analysis 2, we used

clinical predictors only and default hyperparameter values for each classification algorithm. In

Analysis 3, we used gene-expression and clinical predictors and default hyperparameter values.

In Analysis 4, we used both types of predictors and selected hyperparameter values via nested

cross-validation. In Analysis 5, we used both types of predictors and selected the most relevant

n features via nested cross validation before performing classification.

In each phase, we used Monte Carlo cross validation. For each iteration, we randomly

assigned the patient samples to either a training set or test set, stratified by class. We assigned

approximately 2/3 of the patient samples to the training set. We then made predictions for the

test set and evaluated the predictions using diverse metrics (see below). We repeated this pro-

cess (an iteration) multiple times and used the iteration number as a random seed when

assigning samples to the training or test set (unless otherwise noted). ShinyLearner relays this

seed to the underlying algorithms, where applicable.

During Analysis 1, we evaluated the number of Monte Carlo iterations that would be neces-

sary to provide a stable performance estimate. For the mlr/randomForest, sklearn/
svm, and weka/Bagging classification algorithms, we executed 100 iterations for datasets

GSE10320 (predicting relapse vs. non-relapse for Wilms tumor patients) and GSE46691

Table 2. (Continued)

Abbreviation Description Category Combos

weka/OneR 1R (1 rule) classifier[32,35] Tree- or rule-based 3

weka/RandomForest Forest of random trees[30,32] Ensemble 18

weka/RandomTree Tree that considers K randomly chosen attributes at each node[32] Tree- or rule-based 2

weka/RBFNetwork Normalized Gaussian radial basis function network[32] Miscellaneous 18

weka/REPTree Fast decision tree learner (reduced-error pruning with backfitting)[32] Tree- or rule-based 16

weka/SimpleLogistic Linear logistic regression models[32,120,121] Linear discriminant 5

weka/SMO Sequential minimal optimization for a support vector classifier[32,122–124] Kernel-based 20

weka/VFI Voting feature intervals[32,125] Miscellaneous 6

weka/ZeroR 0-R classifier (predicts the mean for a numeric class or the mode for a nominal class)[32] Baseline 1

https://doi.org/10.1371/journal.pcbi.1009926.t002
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(predicting early metastasis following radical prostatectomy). As the number of iterations

increased, we calculated the cumulative average of the AUROC for each algorithm. After per-

forming at most 40 iterations, the cumulative averages did not change more than 0.01 over

sequences of 10 iterations (S32 and S33 Figs). To be conservative, we used 50 iterations in

Analysis 1, Analysis 2, and Analysis 3. In Analysis 4 and Analysis 5, we used 5 iterations

because hyperparameter optimization and feature selection are CPU and memory intensive.

When optimizing hyperparameters (Analysis 4), we used Monte Carlo cross validation for

each training set (5 nested iterations) to estimate which hyperparameter combination was

most effective for each classification algorithm; we used AUROC as a metric in these evalua-

tions. When performing feature selection (Analysis 5), we used nested Monte Carlo cross vali-

dation (5 iterations). In each iteration, we ranked the features using each feature-selection

algorithm and performed classification using the top-n features. We repeated this process for

each classification algorithm and used n values of 1, 10, 100, 1000, and 10000. For a given com-

bination of feature-selection algorithm and classification algorithm, we identified the n value

that resulted in the highest AUROC. We used this n value in the respective outer fold. Finally,

when identifying the most informative features across Monte Carlo iterations, we used the

Borda Count method to combine the ranks[74].

While executing each analysis phase, we encountered some situations in which we obtained

no valid results for all combinations of class variable and algorithms, as noted below.

Analysis 1. On iteration 34, the weka/RBFNetwork algorithm did not converge after 24

hours of execution time for one of the datasets. We manually changed the random seed from

34 to 134, and it converged in minutes.

Analysis 2. The mlr/glmnet algorithm failed three times due to an internal error. We limited

the results for this algorithm to the iterations that completed successfully.

Analysis 3. On iteration 34, the weka/RBFNetwork algorithm did not converge after 24

hours of execution time for one of the datasets. We manually changed the random seed from

34 to 134, and it converged in minutes.

Analysis 4. During nested Monte Carlo cross validation, we specified a time limit of 168

hours under the assumption that some hyperparameter combinations would be especially time

intensive. A total of 1022 classification tasks failed either due to this limit or due to small sam-

ple sizes. We ignored these hyperparameter combinations when determining the top-perform-

ing combinations. Most failures were associated with the mlr/h2o.gbm and mlr/ksvm

classification algorithms.

Analysis 5. During nested Monte Carlo cross validation, we specified a time limit of 168

hours. A total of 1408 classification tasks failed either due to this limit or due to small sample

sizes. We ignored these tasks when performing hyperparameter optimization.

Computing resources

We performed these analyses using Linux servers supported by Brigham Young University’s

Office of Research Computing and Life Sciences Information Technology. In addition, we

used virtual servers in Google’s Compute Engine environment supported by the Institute for

Systems Biology and the United States National Cancer Institute Cancer Research Data Com-

mons[132]. When multiple central-processing cores were available on a given server, we exe-

cuted tasks in parallel using GNU Parallel [133].

Performance metrics

In outer cross-validation folds, we used diverse metrics to quantify classification performance.

These included accuracy (proportion of accurate predictions), AUROC[134], AUPRC,
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balanced accuracy (proportion of accurate predictions weighted by class-label frequency),

Brier score[135], F1 score[136], false discovery rate (false positives divided by total number of

positives), false positive rate, Matthews correlation coefficient[137], mean misclassification

error (MMCE), negative predictive value, positive predictive value (precision), and recall (sen-

sitivity). Many of these metrics require discretized predictions; we relied on the machine-

learning packages that implemented each algorithm to convert probabilistic predictions to dis-

cretized predictions.

Supporting information

S1 Fig. Relative performance of classification algorithms using gene-expression predictors

and area under the receiver operating characteristic curve as the metric. We predicted

patient states using gene-expression predictors only (Analysis 1). For each combination of

dataset, class variable, and classification algorithm, we calculated the arithmetic mean of area

under the receiver operating characteristic curve (AUROC) values across 50 iterations of

Monte Carlo cross-validation. Next, we sorted the algorithms based on the average rank across

all dataset/class combinations. Each data point that overlays the box plots represents a particu-

lar dataset/class combination. The top 15 performers (relatively low ranks) were algorithms

that use linear decision boundaries, kernel functions, and/or ensembles of decision trees.

(PDF)

S2 Fig. Relative performance of classification algorithms using gene-expression predictors

and classification accuracy as the metric. We predicted patient states using gene-expression

predictors only (Analysis 1). For each combination of dataset, class variable, and classification

algorithm, we calculated the arithmetic mean of classification accuracy across 50 iterations of

Monte Carlo cross-validation. Next, we sorted the algorithms based on the average rank across

all dataset/class combinations. Each data point that overlays the box plots represents a particu-

lar dataset/class combination.

(PDF)

S3 Fig. Relative performance of classification algorithms using gene-expression predictors

and Matthews Correlation Coefficient as the metric. We predicted patient states using gene-

expression predictors only (Analysis 1). For each combination of dataset, class variable, and

classification algorithm, we calculated the arithmetic mean of the Matthews Correlation Coef-

ficient across 50 iterations of Monte Carlo cross-validation. Next, we sorted the algorithms

based on the average rank across all dataset/class combinations. Each data point that overlays

the box plots represents a particular dataset/class combination.

(PDF)

S4 Fig. Relative performance of classification algorithms using gene-expression predictors

and area under the precision-recall curve as the metric. We predicted patient states using

gene-expression predictors only (Analysis 1). For each combination of dataset, class variable,

and classification algorithm, we calculated the arithmetic mean of area under the precision-

recall curve across 50 iterations of Monte Carlo cross-validation. Next, we sorted the algo-

rithms based on the average rank across all dataset/class combinations. Each data point that

overlays the box plots represents a particular dataset/class combination.

(PDF)

S5 Fig. Comparison of area under the receiver operating characteristic curve (AUROC)

and area under the precision-recall curve (AUPRC) scores for Analysis 1.

(PDF)
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S6 Fig. Comparison of area under the receiver operating characteristic curve (AUROC)

and area under the precision-recall curve (AUPRC) scores for Analysis 1, based on ranks

(relative performance per algorithm).

(PDF)

S7 Fig. Pairwise correlations of sample-level, probabilistic predictions between classifica-

tion algorithms for dataset GSE10320. We used each classification algorithm to make proba-

bilistic predictions of relapse in Wilms tumor patients (GSE10320). Based on these

predictions, we calculated the Spearman correlation coefficient for each pair of algorithms.

These coefficients, averaged across Monte Carlo cross-validation iterations, are illustrated as a

correlation plot, clustered based on similarity.

(PDF)

S8 Fig. Pairwise correlations of sample-level, probabilistic predictions between classifica-

tion algorithms for dataset GSE46691. We used each classification algorithm to make proba-

bilistic predictions of early metastasis following radical prostatectomy (GSE46691). Based on

these predictions, we calculated the Spearman correlation coefficient for each pair of algo-

rithms. These coefficients, averaged across Monte Carlo cross-validation iterations, are illus-

trated as a correlation plot, clustered based on similarity.

(PDF)

S9 Fig. Dataset performance by class category when using gene-expression predictors. For

each class variable across all datasets, we assigned a category representing the type of patient

state being predicted. For Analysis 1, we show the predictive performance for each combina-

tion of dataset, class variable, and classification algorithm in each class category. We use area

under the receiver operating characteristic curve (AUROC) as the metric. The dashed, red line

indicates the performance expected by random chance. The top-performing category was

“Molecular Marker,” which includes class variables associated with mutation status, immuno-

histochemistry markers of protein expression, presence or absence of chromosomal aberra-

tions, etc. The lowest-performing category was “Patient Characteristic,” which includes

variables that indicate whether patients had a family history of cancer, had been diagnosed

with multiple tumors, patient performance status, etc.

(PDF)

S10 Fig. Relative performance of classification algorithms using clinical predictors and

area under the receiver operating characteristic curve as the metric. We predicted patient

states using clinical predictors only (Analysis 2). For each combination of dataset, class vari-

able, and classification algorithm, we calculated the arithmetic mean of area under the receiver

operating characteristic curve (AUROC) values across 50 iterations of Monte Carlo cross-vali-

dation. Next, we sorted the algorithms based on the average rank across all dataset/class com-

binations. Each data point that overlays the box plots represents a particular dataset/class

combination (some datasets did not have clinical predictors). The top-performing algorithms

(relatively low ranks) were similar overall to Analysis 1; however, some differences were large.

For example, weka/NaiveBayes performed best overall in Analysis 2 but was ranked 28th in

Analysis 1.

(PDF)

S11 Fig. Dataset performance by class category when using clinical predictors. For each

class variable across all datasets, we assigned a category representing the type of patient state

being predicted. For Analysis 2, we show the predictive performance for each combination of

dataset, class variable, and classification algorithm in each class category. We use area under
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the receiver operating characteristic curve (AUROC) as the metric. The dashed, red line indi-

cates the performance expected by random chance. The top-performing category was “Diag-

nosis,” which includes class variables associated with a particular disease or subtype. The

lowest-performing category was “Patient Characteristic,” which includes variables that indi-

cate whether patients had a family history of cancer, had been diagnosed with multiple tumors,

patient performance status, etc.

(PDF)

S12 Fig. Dataset performance by class category when using gene-expression and clinical

predictors. For each class variable across all datasets, we assigned a category representing the

type of patient state being predicted. For Analysis 3, we show the predictive performance for

each combination of dataset, class variable, and classification algorithm in each class category.

We use area under the receiver operating characteristic curve (AUROC) as a metric. The

dashed, red line indicates the performance expected by random chance. As with Analysis 1 (S9

Fig), the top-performing category was “Molecular Marker,” which includes class variables

associated with mutation status, immunohistochemistry markers of protein expression, pres-

ence or absence of chromosomal aberrations, etc. The lowest-performing category was

“Patient Characteristic,” which includes variables that indicate whether patients had a family

history of cancer, had been diagnosed with multiple tumors, patient performance status, etc.

(PDF)

S13 Fig. Relative performance of classification algorithms using gene-expression and clini-

cal predictors. We predicted patient states using gene-expression and clinical predictors

(Analysis 3). For each combination of dataset, class variable, and classification algorithm, we

calculated the arithmetic mean of area under the receiver operating characteristic curve

(AUROC) values across 50 iterations of Monte Carlo cross-validation. Next, we sorted the

algorithms based on the average rank across all dataset/class combinations. Each data point

that overlays the box plots represents a particular dataset/class combination.

(PDF)

S14 Fig. Relative performance of classification algorithms using gene-expression and clini-

cal predictors and performing hyperparameter optimization. We predicted patient states

using gene-expression and clinical predictors with hyperparameter optimization (Analysis 4).

We used nested cross validation to estimate which hyperparameter combination would be

optimal for each algorithm in each training set. For each combination of dataset, class variable,

and classification algorithm, we calculated the arithmetic mean of area under the receiver

operating characteristic curve (AUROC) values across 5 iterations of Monte Carlo cross-vali-

dation. Next, we sorted the algorithms based on the average rank across all dataset/class com-

binations. Each data point that overlays the box plots represents a particular dataset/class

combination. The algorithm rankings followed similar trends as Analysis 3 (no hyperpara-

meter optimization); however, some differences are notable. For example, the weka/Lib-

LINEAR and mlr/glmnet algorithms were ranked 11th and 16th in Analysis 3 (S13 Fig), but

they were ranked 1st and 2nd in this analysis.

(PDF)

S15 Fig. Dataset performance by class category when using gene-expression and clinical

predictors and performing hyperparameter optimization. For each class variable across all

datasets, we assigned a category representing the type of patient state being predicted. For

Analysis 4, we show the predictive performance for each combination of dataset, class variable,

and classification algorithm in each class category. We use area under the receiver operating

characteristic curve (AUROC) as a metric. The dashed, red line indicates the performance
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expected by random chance.

(PDF)

S16 Fig. Correlation between predictive performance and number of samples per dataset.

The number of patient samples differed by dataset. This scatterplot shows the relationship

between the median area under the receiver operating characteristic curve (AUROC) and the

number of samples in each dataset. We did not observe a significant correlation between these

variables.

(PDF)

S17 Fig. Correlation between predictive performance and number of genes per dataset.

Due to differences in gene-expression profiling platforms, we had data for more genes in some

datasets than in others. This scatterplot shows the relationship between the median area under

the receiver operating characteristic curve (AUROC) and the number of genes in each dataset.

We did not observe a significant correlation between these variables.

(PDF)

S18 Fig. Variation in predictive performance across hyperparameter combinations. In

Analysis 4, we used nested cross validation to evaluate multiple hyperparameter combinations

for each classification algorithm. We assessed the extent to which the area under the receiver

operating characteristic curve (AUROC) varied across the hyperparameter combinations for

each algorithm. For each combination of dataset, class variable, classification algorithm, and

hyperparameter set, we averaged AUROC values across 5 Monte Carlo cross-validation itera-

tions. Then we calculated the coefficient of variation for these averaged values across each

combination of dataset/class and classification algorithm. Relatively low values indicate that

the hyperparameter sets resulted in similar predictive performance. No results are available for

3 algorithms that used only a single hyperparameter option.

(PDF)

S19 Fig. Relative performance of different hyperparameter combinations for the weka/

LIBLINEAR classification algorithm. The ShinyLearner software supports 16 hyperpara-

meter combinations for the weka/LIBLINEAR classification algorithm. In Analysis 4, we used

nested cross validation for hyperparameter optimization. For each combination of dataset and

class variable, we averaged the area under the receiver operating characteristic curve

(AUROC) across all (outer) Monte Carlo cross-validation iterations and then ranked the aver-

ages for each hyperparameter combination. Some combinations consistently outperformed

other combinations, and the default combination performed suboptimally. Using relatively

small cost values appeared to improve the performance more than any other option. This

hyperparameter controls the regularization strength.

(PDF)

S20 Fig. Relative performance of different hyperparameter combinations for the mlr/

glmnet classification algorithm. The ShinyLearner software supports 3 hyperparameter com-

binations for the mlr/glmnet classification algorithm. In Analysis 4, we used nested cross vali-

dation for hyperparameter optimization. For each combination of dataset and class variable,

we averaged the area under the receiver operating characteristic curve (AUROC) across all

(outer) Monte Carlo cross-validation iterations and then ranked the averages for each hyper-

parameter combination. Using an alpha value of 0.5 or 0 resulted in better performance than a

value of 1.

(PDF)
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S21 Fig. Relative performance of different hyperparameter combinations for the sklearn/

logistic_regression classification algorithm. The ShinyLearner software supports 32 hyper-

parameter combinations for the sklearn/logistic_regression classification algorithm. In Analy-

sis 4, we used nested cross validation for hyperparameter optimization. For each combination

of dataset and class variable, we averaged the area under the receiver operating characteristic

curve (AUROC) across all (outer) Monte Carlo cross-validation iterations and then ranked the

averages for each hyperparameter combination. Some combinations consistently outper-

formed other combinations, and the default combination performed suboptimally. Using rela-

tively small cost values appeared to improve the performance more than any other option.

This hyperparameter controls the regularization strength.

(PDF)

S22 Fig. Relative performance of different hyperparameter combinations for the sklearn/

extra_trees classification algorithm. The ShinyLearner software supports 24 hyperparameter

combinations for the sklearn/extra_trees classification algorithm. In Analysis 4, we used nested

cross validation for hyperparameter optimization. For each combination of dataset and class

variable, we averaged the area under the receiver operating characteristic curve (AUROC)

across all (outer) Monte Carlo cross-validation iterations and then ranked the averages for

each hyperparameter combination. Some combinations consistently outperformed other com-

binations, and the default combination performed suboptimally. Using a larger number

(n = 1000) of estimators (trees) appeared to improve the performance more than any other

option.

(PDF)

S23 Fig. Relative predictive performance when using hyperparameter optimization vs. fea-

ture selection. We used as a baseline the predictive performance that we attained using default

hyperparameters for the classification algorithms (Analysis 3). We quantified predictive per-

formance using the area under the receiver operating characteristic curve (AUROC). This

graph shows the increase or decrease in performance when selecting hyperparameters or

selecting features relative to the baseline. Each point represents a particular combination of

dataset and class variable. Generally, the dataset/class combinations that benefitted from

hyperparameter optimization also benefitted from feature selection. However, some dataset/

class combinations that did not benefit from hyperparameter optimization did benefit from

feature selection.

(PDF)

S24 Fig. Dataset performance by class category when using gene-expression and clinical

predictors and performing feature selection. For each class variable across all datasets, we

assigned a category representing the type of patient state being predicted. For Analysis 5, we

show the predictive performance for each combination of dataset, class variable, and classifica-

tion algorithm in each class category. We use area under the receiver operating characteristic

curve (AUROC) as a metric. The dashed, red line indicates the performance expected by ran-

dom chance. The results are similar to those of Analyses 3 and 4 (S12 and S15 Figs).

(PDF)

S25 Fig. Predictive performance according to the number of features selected via nested

cross-validation. Relative area under the receiver operating character curve (AUROC) values

were calculated by comparing against the mean for each combination of classification algo-

rithm and feature-selection algorithm.

(PDF)
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S26 Fig. Relative performance of feature-selection algorithms. For Analysis 5, we used

nested cross validation to estimate which features would be most informative for each algo-

rithm in each training set. For each combination of dataset, class variable, and classification

algorithm, we ranked the performance of the feature-selection algorithms based on area under

the receiver operating characteristic curve (AUROC) and averaged the rankings across 5 itera-

tions of Monte Carlo cross-validation. Each data point that overlays the box plots represents a

particular dataset/class combination. Relatively low average ranks are considered optimial.

The weka/Correlation feature-selection algorithm performed best overall.

(PDF)

S27 Fig. Execution time per feature-selection algorithm. In Analysis 5, we used nested cross

validation to estimate which features were most informative for each training set. We calcu-

lated the time (in seconds) required by each feature-selection algorithm to rank the features.

Then we averaged these times across all combinations of dataset, class variable, classification

algorithm, and (outer) Monte Carlo cross-validation iteration. Some feature-selection algo-

rithms were much more computationally intensive than others.

(PDF)

S28 Fig. Pairwise correlations of feature ranks between feature-selection algorithms for

dataset GSE10320. We used each feature-selection algorithm to rank the genes based on their

informativeness for discriminating between relapse and non-relapse outcomes in Wilms

tumor patients (GSE10320). After averaging the ranks across cross-validation iterations, we

calculated the Spearman correlation coefficient for the feature ranks produced by each pair of

algorithms. These coefficients are illustrated as a correlation plot.

(PDF)

S29 Fig. Pairwise correlations of feature ranks between feature-selection algorithms for

dataset GSE46691. We used each feature-selection algorithm to rank the genes based on their

informativeness for predicting early metastasis following radical prostatectomy (GSE46691).

After averaging the ranks across cross-validation iterations, we calculated the Spearman corre-

lation coefficient for the feature ranks produced by each pair of algorithms. These coefficients

are illustrated as a correlation plot.

(PDF)

S30 Fig. Absolute classification performance per combination of feature-selection and

classification algorithm. For each combination of dataset and class variable, we averaged the

area under the receiver operating characteristic curve (AUROC) across all Monte Carlo cross-

validation iterations. Then for each combination of feature-selection algorithm and classifica-

tion algorithm, we calculated the median AUROC across all datasets and class variables.

(PDF)

S31 Fig. Relative performance of classification algorithms using gene-expression and clini-

cal predictors and performing feature selection with hyperparameter optimization. We

predicted patient states using gene-expression and clinical predictors with feature selection

and optimization of the feature-selection algorithm hyperparameters (Analysis 6). We used

nested cross validation to estimate which features and hyperparameter combinations would be

optimal for each algorithm in each training set.

(PDF)

S32 Fig. Stability of classification performance for increasing numbers of cross-validation

iterations on dataset GSE10320. When using gene-expression predictors (Analysis 1), we

estimated the number of Monte Carlo cross-validation iterations that would be sufficient to
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characterize algorithm performance. For three classification algorithms, we executed 100

cross-validation iterations on dataset GSE10320 (predicting relapse vs. non-relapse for Wilms

tumor patients). As the number of iterations increased, we calculated the cumulative average

of the area under the receiver operating characteristic curve (AUROC) for each algorithm.

After performing at most 40 iterations, the cumulative averages did not change more than 0.01

over sequences of 10 iterations.

(PDF)

S33 Fig. Stability of classification performance for increasing numbers of cross-validation

iterations on dataset GSE46691. When using gene-expression predictors (Analysis 1), we

estimated the number of Monte Carlo cross-validation iterations that would be sufficient to

characterize algorithm performance. For three classification algorithms, we executed 100

cross-validation iterations on dataset GSE46691 (predicting early metastasis following radical

prostatectomy). As the number of iterations increased, we calculated the cumulative average of

the area under the receiver operating characteristic curve (AUROC) for each algorithm. After

performing at most 22 iterations, the cumulative averages did not change more than 0.01 over

sequences of 10 iterations.

(PDF)

S1 Data. Summary of predictive performance per dataset when using gene-expression pre-

dictors. We predicted patient states using gene-expression predictors only (Analysis 1). For

each combination of dataset, class variable, and classification algorithm, we calculated the

arithmetic mean of area under the receiver operating characteristic curve (AUROC) values

across 50 iterations of Monte Carlo cross-validation. Next, we calculated the minimum, first

quartile (Q1), median, third quartile (Q3), and maximum for these values across the algo-

rithms. Finally, we sorted the algorithms in descending order based on median values. Each

row represents a particular dataset/class combination.

(XLSX)

S2 Data. Summary of predictive performance per dataset when using clinical predictors.

We predicted patient states using clinical predictors only (Analysis 2). For each combination

of dataset, class variable, and classification algorithm, we calculated the arithmetic mean of

area under the receiver operating characteristic curve (AUROC) values across 50 iterations of

Monte Carlo cross-validation. Next, we calculated the minimum, first quartile (Q1), median,

third quartile (Q3), and maximum for these values across the algorithms. Finally, we sorted

the algorithms in descending order based on median values. Each row represents a particular

dataset/class combination. For some dataset/class combinations, no clinical predictors were

available; these combinations are excluded from this file.

(XLSX)

S3 Data. Summary of predictive performance per dataset when using gene-expression and

clinical predictors. We predicted patient states using gene-expression and clinical predictors

(Analysis 3). For each combination of dataset, class variable, and classification algorithm, we

calculated the arithmetic mean of area under the receiver operating characteristic curve

(AUROC) values across 50 iterations of Monte Carlo cross-validation. Next, we calculated the

minimum, first quartile (Q1), median, third quartile (Q3), and maximum for these values across

the algorithms. Finally, we sorted the algorithms in descending order based on median values.

Each row represents a particular dataset/class combination. For some dataset/class combina-

tions, no clinical predictors were available; these combinations are excluded from this file.

(XLSX)
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S4 Data. Summary of predictive performance per dataset when using gene-expression and

clinical predictors and performing hyperparameter optimization. We predicted patient

states using gene-expression and clinical predictors (Analysis 4). For classification algorithms

that included multiple hyperparameter combinations (n = 47), we performed hyperparameter

optimization using the respective training sets. For each combination of dataset, class variable,

and classification algorithm, we calculated the arithmetic mean of area under the receiver

operating characteristic curve (AUROC) values across 5 (outer) iterations of Monte Carlo

cross-validation. Next, we calculated the minimum, first quartile (Q1), median, third quartile

(Q3), and maximum for these values across the algorithms. Finally, we sorted the algorithms

in descending order based on median values. Each row represents a particular dataset/class

combination.

(XLSX)

S5 Data. Summary of predictive performance per dataset when using gene-expression and

clinical predictors and performing feature selection. We predicted patient states using gene-

expression and clinical predictors (Analysis 5). Using each respective training set, we per-

formed feature selection for each of 14 feature-selection algorithms and performed classifica-

tion using n top-ranked features. For each combination of dataset, class variable, and

classification algorithm, we calculated the arithmetic mean of area under the receiver operat-

ing characteristic curve (AUROC) values across 5 (outer) iterations of Monte Carlo cross-vali-

dation. Next, we calculated the minimum, first quartile (Q1), median, third quartile (Q3), and

maximum for these values across the algorithms. Finally, we sorted the algorithms in descend-

ing order based on median values. Each row represents a particular dataset/class combination.

(XLSX)

S6 Data. Summary of predictive performance per dataset when using gene-expression and

clinical predictors and performing feature selection with hyperparameter optimization.

(XLSX)

S7 Data. Top 50 genes according to average rank across feature-selection algorithms for

GSE10320 and GSE46691.

(XLSX)

S8 Data. Gene-set overlap results for top 50 genes according to average rank across fea-

ture-selection algorithms for GSE10320.

(XLSX)

S9 Data. Gene-set overlap results for top 50 genes according to average rank across fea-

ture-selection algorithms for GSE46691.

(XLSX)

S10 Data. Summary of datasets used. This file contains a unique identifier for each dataset,

indicates whether gene-expression microarrays or RNA-Sequencing were used to generate the

data, and indicates the name of the class variable from the original dataset. In addition, we

assigned standardized names and categories as a way to support consistency across datasets.

The file lists any clinical predictors that were used in the analyses as well as the number of sam-

ples and genes per dataset.

(XLSX)

S11 Data. Classification algorithm hyperparameter combinations. This file indicates all

hyperparameter combinations that we evaluated via nested cross-validation in Analysis 4.

(XLSX)
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S12 Data. Feature-selection algorithm hyperparameter combinations. This file indicates all

hyperparameter combinations that we evaluated via nested cross-validation in the follow-up

analysis to Analysis 5.

(XLSX)
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