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Abstract: Compost is an important source of airborne fungi that can adversely affect occupational
health. However, the aerosol behavior of fungi and their underlying factors in composting facilities
are poorly understood. We collected samples from compost piles and the surrounding air during the
composting of animal manure and analyzed the aerosolization behavior of fungi and its potential
health effects based on the fungal composition and abundance in two media using high-throughput
sequencing and ddPCR. There were differences in fungal diversity and richness between the air and
composting piles. Ascomycota and Basidiomycota were the two primary fungal phyla in both media.
The dominant fungal genera in composting piles were Aspergillus, Thermomyces, and Alternaria,
while the dominant airborne fungal genes were Alternaria, Cladosporium, and Sporobolomyces.
Although the communities of total fungal genera and pathogenic/allergenic genera were different in
the two media, fungal abundance in composting piles was significantly correlated with abundance in
air. According to the analysis on fungal composition, a total of 69.10% of the fungal genera and 91.30%
of pathogenic/allergenic genera might escape from composting pile into the air. A total of 77 (26.64%)
of the fungal genera and six (20%) of pathogenic/allergenic genera were likely to aerosolize. The
influence of physicochemical parameters and heavy metals on the aerosol behavior of fungal genera,
including pathogenic/allergenic genera, varied among the fungal genera. These results increase our
understanding of fungal escape during composting and highlight the importance of aerosolization
behavior for predicting the airborne fungal composition and corresponding human health risks in
compost facilities.

Keywords: composting facility; airborne fungi; pathogenic/allergenic genera; aerosolization
behaviour; factor analysis

1. Introduction

The increase of centralized animal feeding operations (CAFOS) in many locations
has increased the amount of manure produced [1]. Composting is an important method
for recycling and stabilizing animal manure [2]. This biochemical process involves the
interaction of diverse microbial communities to convert organic wastes into nutrient-rich,
safe, and stable fertilizers and soil amendments [3,4]. Fungi play an important role in
composting due to their ability to use many carbon substrates as a food source and attack
organic residues that are too dry, acidic, or low in nitrogen for bacterial decomposition [5].
However, some operations involving vigorous movement during composting, such as
moving and handling the compost material, are associated with the release of large amounts
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of bioaerosols [5–8]. Exposure to aerosolized microorganisms can have adverse effects on
human health [9]. Fungal bioaerosols consist of spores, mycelium fragments, and debris
which are easily inhaled by workers and cause numerous symptoms including allergies,
irritation, and opportunistic infections. Long-term lung exposure to fungal bioaerosols can
be associated with chronic diseases while the effects of short-term exposure range from
irritation of the eyes and nose to coughing and a sore throat [10,11]. Given the inhalation
of fungi can promote human health issues [10–15], there have been many studies on the
abundance and composition of fungi in the air of composting sites [6,8,14,16].

However, there is little information on airborne fungi generated during the compost-
ing of animal manure [17,18] and this hampers the assessment of the environmental health
risks under these conditions. The occupational health effects of airborne fungi may be un-
derestimated since the worst fungal infections are usually caused by only a few species [19].
Traditional culture-based methods, fluorescence, and scanning electron microscopy cannot
be used to effectively describe the entire fungal profile, and undetected fungal pathogens
make it difficult to establish a definitive link between fungal exposure and respiratory
problems [20]. High-throughput sequencing technologies have been used for the analysis
of airborne fungi since they account for the relative abundance and full diversity of mi-
croorganisms present [17]. Accordingly, with the estimation of absolute abundance (EAA),
we can obtain information on taxa abundance in the microbial communities [21–23]. The
composition and quantification of fungi released from animal manure composting have
not been previously studied, especially with regard to pathogens. This knowledge gap has
prevented the quantitative assessment of human health risks from occupational exposure
to airborne fungi.

Compost piles are important sources of airborne fungi [6]. Some fungi in piles are
more prone to being aerosolized, and this preferential aerosolization could contribute
to its widespread distribution in different air environments [24,25]. The aerosolization
behavior of fungi was studied during the composting of vegetable waste [16] and during
sewage sludge biostabilization [26] by comparing the fungal composition of air and its
contributing sources. The aerosolization behavior of microorganisms in compost may
be affected by their specific morphological, biochemical characteristics [24,27]. Other
contributing conditions in compost piles include temperature, ventilation [28], as well as
physico-chemical parameters [29], including heavy metals, exercising some influence on
the microbial community [30]. However, the relationship between those potential factors
and aerosolization of fungi, or fungal pathogens, is not known.

The objectives of this study were to investigate the aerosolization behavior of fungi
and their potential factors during the composting of animal manure. The specific research
goals included: (1) characterizing the concentration, diversity, and composition of fungi and
pathogenic/allergenic genera and their potential health effects in air and composting piles;
(2) describing the aerosol behavior of pathogenic/allergenic genera based on differences
among key fungal genera, and connections of community between two media; (3) exploring
the influence of physicochemical parameters and heavy metals on the aerosol index of
fungal pathogenic/allergenic genera during composting. The present results will help us to
understand the environmental risks and quantitatively assess human health issues posed
by occupational exposure to airborne fungi during animal manure composting.

2. Materials and Methods
2.1. Sample Collection

We collected air and compost pile (C) samples from a commercial composting plant
in Shouguang city, Shandong Province (118.50 N, 36.68 E) during thermophilic phases.
Livestock manure, vegetables, and straws were the main raw materials used for compost
production. In this study, totally 23 air samples and 12 solid samples were collected. Twelve
and 11 air samples were collected from inside (I) (above the composting pile) and outside
(O) the composting workshop, respectively, from 13 to 25 June 2020. Six solid samples were
collected from the compost pile every two days during the same period.
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We used total suspended particulate (TSP) air samplers (2030A, Laoying, Qingdao,
China) to collect air onto a 90 mm (diameter) sterilized quartz-fiber filter (Ahlstrom Munk-
tell, NO. 420065, Falun, Sweden) at a flow of 100 L/min for 24 h. Filters were baked in a
muffle furnace at 500 ◦C for 5 h and stored in a sterilized plastic box until loaded into the
sampler. Regarding each of the solid samples, 5 random samples were collected from the
surface of compost pile using a sterile shovel before air collection. Those samples were
mixed evenly and 100 g was taken for subsequent experiments. After sampling, both filters
and composting piles were placed inside an ice chest, returned to the laboratory, and stored
at −80 ◦C until analysis.

2.2. DdPCR and ITS Sequencing

For the TSP samples, 1/8 filter of each filter was used and cut into small pieces, which
were loaded into Lysing Matrix E. A 0.3 g solid sample was loaded into Lysing Matrix
E directly. DNA was extracted using the FastDNA® SPIN Kit for soil (MP Biomedicals,
Santa Ana, CA, USA) using manufacturer instructions. A Qubit® dsDNA High Sensitivity
Assay Kit (Life Technologies, Carlsbad, CA, USA) was used to measure the concentration
of extracted DNA. All DNA samples were stored at −20 ◦C until analysis.

We used ddPCR to analyze the copy number of ITS in air and solids samples to
determine the absolute abundance of fungi. ddPCR was run on a QX200 Droplet Digital™
PCR System (BioRad, Hercules, CA, USA). Each ddPCR reaction contained 20 µL of QX200
ddPCR EvaGreen Supermix (Bio-Rad), 100 nM of each primer, and 1 µL of sample DNA.
The operating procedures and methods were the same as previously published [7], and the
corresponding primers were ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R
(5′-GCTGCGTTCTTCATCGATGC-3′) [31]. PCR amplification of ITS was performed using
the following conditions (heating rate 2.5 ◦C/s): 95 ◦C for 10 min, 40 cycles of 95 ◦C for
30 s, 55 ◦C annealing temperature for 60 s, and 72 ◦C 30 s at 4 ◦C, 5 min at 90 ◦C. After the
PCR was completed, the 96-well plate was transferred to a Droplet Reader (Bio-Rad) for
data collection. QuantaSoft™ software 1.7.4.0917 (Bio-Rad, Hercules, CA, USA) was used
to automatically measure, record, and analyze the fluorescence per droplet and per well.

The internal transcribed spacer 1 (ITS1) region of the fungal rRNA gene was amplified
using primers ITS1F and ITS2R through polymerase chain reactions (PCRs) [31]. The
ITS sequencing was performed using Illumina MiSeq platform at Novogene Bio-Pharm
Technology Co. Ltd. (Shanghai, China). Operational taxonomic units (OTUs) with a 97%
similarity cutoff were clustered by UPARSE (Uparse v7.0.1001, http://drive5.com/uparse/,
accessed on 24 May 2020) [32]. UCHIME was used to identify and remove chimeric
sequences [33]. QIIME (version 1.9.0) [34] was used to assign taxonomy to OTUs based on
the UNITE fungal ITS reference training data set for taxonomic assignment and to generate
an OTU table.

2.3. Determination of Heavy Metals and Physical and Chemical Parameters

Concentrations of Cd were measured by a Graphite Furnace Atomic Absorption Spec-
trophotometer (GFAAS, HITACHI Z5000). Other heavy metals were determined using
an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES, PerkinElmer
Optima 5300DV). Total nitrogen (N) was measured using an automatic N meter and Kjel-
dahl determination [35]. Total potassium (TK) and total phosphorus (TP) were measured
according to NYT87-1988 and NYT88-1988 standard experimental methods, respectively.
The organic matter (OM) in composting piles was determined as previously reported [36].
The pH was measured using a pH meter (pHS2F, Shanghai Precision and Scientific Instru-
ment Co., Ltd., Shanghai, China). For air-dried moisture (AD), the solid samples were
baked in a 105 ◦C incubator for about 2 h, moved to a desiccator to cool to room temper-
ature. They were then weighed, and the AD value was calculated. A thermometer was
used to determine the temperature of the compost pile every 48 h (Kedengbao Energy
Technology TM-902C).

http://drive5.com/uparse/
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2.4. Data Analysis

The estimated absolute abundance (EAA) of certain fungal genera was calculated as
the product of its relative abundance multiplied by the corresponding total copy number
of ITS according to previous research on bacteria [21]. The relative abundance (RA) of a
fungal taxon was determined by ITS sequencing and the copy number of airborne fungi
was measured by ddPCR. The aerosolization behavior of microorganisms was quantified
by the Bioaerosolization Index (BI) [24].

BI =
RAaerosol
RAcompost

,

where RA aerosol was the relative abundance (the percentage of a certain fungal genus
among the total fungi) of certain fungi in the air and RA compost was the relative abundance
of the corresponding fungus in the compost piles.

Box plots were drawn using the Origin Pro 8.5. One-way ANOVA was used to analyze
the differences across the sampling settings by SPSS 26.0, and all statistical tests were
considered significant at p < 0.05. A website (Draw Venn Diagram (ugent.be, accessed
on 9 January 2022) was used to draw Venn diagrams. STAMP analysis was conducted
using the Tukey–Kramer test to compare the statistical differences in fungal genera between
different samples [37]. The correlation of fungal communities among the three media
was analyzed using conditioned constrained principal coordinate analysis (CPCoA) and
non-metric multidimensional scaling (NMDS), which were performed by the package “ape”
and “ggplot2” based on the Bray–Curtis distance with R 4.1.2 (http://www.r-project.org/;
accessed on 22 July 2021). The redundancy analysis diagram (RAD) was drawn using
the webpage (http://www.cloud.biomicroclass.com/, accessed on 9 January 2022). Both
Procrustes analysis (“vegan” and “labdsv” packages) and Heatmaps (“pheatmap” package)
were drawn in the R environment.

3. Results and Discussion
3.1. Fungal Abundance and Diversity in Air and Compost Piles

The fungal concentration (copies of ITS) and diversity (OTU number and Shannon
index) in compost piles and air (inside and outside of the composting workshop) are
presented in Figure 1A. The estimation of absolute abundance (EAA) was used for the
quantitative analysis of 30 pathogenic/allergenic genera, and their biological indices are
shown in Figure 1B.

The concentration of fungi in composting pile was 4.71 × 104–2.99 × 103 copies/g,
and the corresponding concentration of airborne fungi from inside and outside compost-
ing workshop were 6.8 × 103 and 9.721 × 103 copies/m3, with concentration ranges of
2.72 × 102–2.57 × 104 and 24.88–3.41 × 104 copies/m3, respectively (Figure 1A). The val-
ues of both richness and diversity of fungi in composting piles were higher than those in
inside and outside composting workshop. Overall, the OTUs number (fungal richness)
ranged from 258 to 458. Although the average value of OTUs observed in composting
piles (385 ± 12.95) was higher than that in inside workshop (357 ± 58.04) and outside
composting working shop (334 ± 42.84), there was no significant difference between the
two air samples. The Shannon index of composting piles (4.31 ± 0.32) was significantly
higher than that of inside (2.73 ± 0.26) and outside composting workshop (3.06 ± 0.21)
(one-way ANOVA, p < 0.05), which is consistent with research on the composting of green
waste (5 ± 0.1) [31].

The EAA value of airborne pathogenic/allergenic genera had a similar trend
with the total fungi. A higher value was detected outside the composting workshop
(2.05 × 103 ± 0.92 × 103 copies/m3) compared to the value inside (1.25 × 103 ±
0.31 × 103 copies/m3) (Figure 1B), but the difference was not statistically significant. The
EAA of airborne pathogenic/allergenic genera was similar to biochemical and culture
method test data from other composting facilities [18,38]. Our results confirmed the ex-

ugent.be
http://www.r-project.org/
http://www.cloud.biomicroclass.com/
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posure risk of pathogenic/allergenic genera in the surrounding air environment during
composting of animal manure. The number of pathogenic/allergenic genera from inside
composting workshop (18) was slightly higher than that in composting piles (17) and
outside composting workshop (16). No significant difference was detected on the Shannon
index of pathogenic/allergenic genera among the three sampling settings in this study.
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Figure 1. Abundance and diversity of fungal genera and pathogenic/allergenic genera in composting
piles (C), inside air (I), and outside air (O) of composting workshop. (A) Concentration, OTU number,
and Shannon indices of total fungal genera; (B) the estimation of absolute abundance (EAA), detected
number, and Shannon indices of pathogenic/allergenic genera. (There is a significant difference
between “a” and “b” above the box diagram; p < 0.05).

We analyzed the dominant fungal phyla in the air (inside and outside air of com-
posting workshop) and composting piles (Figure S1) and found that Ascomycota and
Basidiomycota were consistently the two primary phyla in all three sample settings dur-
ing thermophilic phases (Figure S2). The same dominant fungal phyla were detected
in the composting of pig carcasses [6] and green waste [8], as well as sewage sludge
biostabilization [26]. Given that Ascomycetes are major contributors to the degradation
of holocellulose [39], they are commonly found in other composting processes as well as
in this study due to the presence of straw in the raw materials. The relative abundance of
Ascomycota in compost piles (86.96 ± 4.56%) was higher than their abundance in the air
(61.77 ± 26.85%). However, a higher relative abundance of Basidiomycota was detected
in the air (23.43 ± 22.29%) compared with abundance in compost piles (3.83 ± 2.75%).
We analyzed the dominant fungal genera in 29 samples from compost piles, inside and
outside the composting workshop (Figure S3). The average values of dominant fun-
gal genera by relative abundance (heat map) and concentration (radar map) are shown
in Figure 2A. The dominant fungi in compost piles were Aspergillus (45.28 ± 16.64%),
Thermomyces (14.98 ± 11.27%), Alternaria (13.98 ± 11.27%), Diutina (10.30 ± 21.70%), and
Cladosporium (1.26± 0.56%), while the dominant airborne fungal genes were from Alternaria
(47.41 ± 9.62%), Cladosporium (11.57 ± 2.67%), Sporobolomyces (7.47 ± 1.37%), Schizophyl-
lum (6.78 ± 1.44%), and Aspergillus (1.25 ± 0.42%). Distinctive distributions of airborne
fungal compositions compared to those in compost have been previously reported [6,26].
The differences may be due to the different aerosolization behavior of fungi and different
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environmental pressures in the two media [40]. This difference may also be caused by
differences in the biological mechanisms of spore ontogeny and spore release [41,42].
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Figure 2. The dominant fungi and pathogenic/allergenic genera in compost piles (C), inside (I),
and outside air (O) of composting workshop. (A), the relative abundance (Log value) of the top
30 dominant fungi by heat map and the estimation of absolute abundance (EAA) of 10 dominant
fungi by radar map; (B), the relative abundance (Log value) of 30 pathogenic/allergenic genera by
heat map and the EAA of 10 dominant pathogenic/allergenic genera by radar map.

Advances in high-throughput sequencing and bioinformatics enable the study of
fungal pathogenic/allergenic genera. Alternaria, Aspergillus, Cladosporium, Schizophyllum,
and Thermomyces were the top five fungi with the highest relative abundance among the
target 30 fungal pathogenic/allergenic genera (Figure 2B, heat map). Combined with
the concentration of ITs, the quantitative information (expressed as EAA) of the top five
pathogenic/allergenic genera were also analyzed (Figure 2B, radar map). According to
the EAA, the highest concentration of airborne pathogenic/allergenic genera was detected
from Alternaria (3.43× 103 ± 5.80× 103 copies/m3). The EAA of Cladosporium in the air was
(8.82 × 102 ± 1.08 × 103 copies/m3), which was similar to previous studies [18,38,43,44].
Aspergillus fumigatus was the only specific taxon for which UK legislation requires compost
site testing [45]. A. fumigatus has also been detected in the air of other composting facili-
ties [8,27,31]. Because of infections caused by A. fumigatus [46], the considerable relative
abundance (1.26± 0.86%) and EAA value (0.86× 102 ± 0.98× 102 copies/m3) of Aspergillus
in the compost facility air is a health concern. The quantitative and qualitative data on
pathogenic/allergenic genera in this study reveal possible human health risks from the air
environment during the composting of animal manure.

The physicochemical parameters in the composting piles over 12 days are shown in
Table 1. During this thermophilic stage, the temperature ranged from 68.5 and 72.5 ◦C,
with an average value of 70.5 ± 1.35. The content of total nitrogen (TN) increased from
1.58 ± 0.00% to 2.02± 0.01%. Usually, the variation of TN was caused by the degradation of
organic compounds and the metabolic processes of microorganisms. The similar trend was
also detected in previous research [26]. Meanwhile, the increasing biological metabolism
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during the composting process [47] might also have resulted in the increase of organic
matter as we found that OM% increased from 19.65 ± 0.12% to 30.05 ± 0.04%. Both AD
and pH were relatively stable in the thermophilic stage, with mean values of 1.9 ± 0.10
and 8.72 ± 0.13, respectively. Seven heavy metals in the compost piles were also analyzed
(Table 2). The highest heavy metal concentration was Zn (255.61 ± 1.56 mg/kg) and the
lowest was Hg (0.04 ± 0.00 mg/kg). The concentration of Cu is within the range of the
published literature [30].

Table 1. Physicochemical parameters in composting piles.

Time TK (%) TN (%) TP (%) OM (%) pH AD (%) T (◦C)

2020.06.14 6.49 ± 0.01 1.58 ± 0.00 0.73 ± 0.00 19.65 ± 0.12 8.93 ± 0.03 1.90 ± 0.00 72.50 ± 0.00
2020.06.16 6.31 ± 0.00 1.80 ± 0.01 0.70 ± 0.00 33.70 ± 0.16 8.67 ± 0.03 2.00 ± 0.00 72.00 ± 0.00
2020.06.18 6.16 ± 0.02 1.81 ± 0.01 0.76 ± 0.00 28.85 ± 0.04 8.69 ± 0.00 1.90 ± 0.00 70.00 ± 0.00
2020.06.20 5.98 ± 0.00 1.90 ± 0.00 0.80 ± 0.00 27.30 ± 0.08 8.50 ± 0.02 1.70 ± 0.00 68.50 ± 0.00
2020.06.22 6.48 ± 0.03 2.01 ± 0.01 0.81 ± 0.00 28.10 ± 0.08 8.78 ± 0.04 1.90 ± 0.00 70.00 ± 0.00
2020.06.24 6.01 ± 0.02 2.02 ± 0.01 0.67 ± 0.00 30.05 ± 0.04 8.74 ± 0.03 2.00 ± 0.00 70.00 ± 0.00

Mean value 6.24 ± 0.21 1.85 ± 0.15 0.75 ± 0.05 27.94 ± 4.24 8.72 ± 0.13 1.90 ± 0.00 70.50 ± 0.00

Organic matter (OM); air-dried moisture (AD); Total nitrogen (TN); Total potassium (TK); Total phosphorus (TP);
The organic matter (OM); Air-dried moisture (AD); Temperature (T). “±” stands for “SD”.

Table 2. Concentration of heavy metals in composting piles (mg/kg).

Time Pb Cd Cr Cu Zn Hg As

2020.06.14 18.05 ± 0.58 1.37 ± 0.02 20.42 ± 0.03 41.80 ± 0.08 231.26 ± 4.68 0.06 ± 0.00 2.03 ± 0.07
2020.06.16 14.09 ± 0.87 1.12 ± 0.04 16.66 ± 0.25 44.32 ± 0.24 223.14 ± 0.91 0.06 ± 0.00 1.80 ± 0.01
2020.06.18 14.81 ± 0.81 1.13 ± 0.02 20.60 ± 0.15 49.62 ± 0.04 277.25 ± 0.35 0.03 ± 0.00 1.72 ± 0.06
2020.06.20 15.93 ± 0.12 1.33 ± 0.01 31.56 ± 0.09 49.55 ± 0.18 278.00 ± 2.48 0.03 ± 0.00 1.33 ± 0.01
2020.06.22 14.55 ± 0.58 1.26 ± 0.01 22.83 ± 0.13 48.27 ± 0.01 253.77 ± 0.92 0.03 ± 0.00 1.30 ± 0.02
2020.06.24 13.81 ± 0.99 1.26 ± 0.05 19.36 ± 0.19 46.39 ± 0.19 270.23 ± 0.01 0.01 ± 0.00 1.20 ± 0.01

Mean value 15.20 ± 0.66 1.25 ± 0.02 21.90 ± 0.14 46.66 ± 0.12 255.61 ± 1.56 0.04 ± 0.00 1.56 ± 0.03

3.2. Connection and Difference of the Fungal Community and Abundance between Composting
Piles and Air

We examined microbial community correlations between air and composting piles by
total fungal genera and pathogenic/allergenic genera (Figure 3A,B).

Fungal populations in different sampling settings were clustered using non-metric mul-
tidimensional scaling (NMDS) analysis at the genus level based on the Bray–Curtis dissimi-
larity coefficient. Both the community of total fungal genera and pathogenic/allergenic gen-
era in the compost piles were distinguished from those in the two air samples (Figure 3A).
CPCoA also demonstrated the significance of this difference (p = 1 × 10−4 in Figure S4).
The airborne fungal communities of air sampling settings were clustered closer compared
with those in the compost piles. A similar distribution of clusters was also observed in
pathogenic/allergenic fungal communities from the three sampling settings. This dissimi-
larity in fungal communities between air and compost was confirmed using Procrustes and
Mantel analyses (Figure 3B).
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Figure 3. Relation of fungal community between composting piles and air by total fungal genera
and pathogenic/allergenic genera. (A), fungal lineages used non-metric multidimensional scaling
analysis (the orange point represents compost piles, the green represents the inside, and the blue
represents outside air of composting workshop); (B), fungal community correlation used Procrustes
and Mantel analysis (the triangle represents compost piles, and the circle represents the air sample).

Our study data suggest that the aerosol process of fungal communities is not a syn-
chronized behavior of the overall fungi, and the aerosolization behavior of specific fungal
genera may vary. In addition, the environmental stresses to which fungi are exposed in
air and compost piles might also contribute to their different abundances and composi-
tions [40]. Since the composition in compost piles was not sufficiently accurate to predict
the escaped airborne fungal community and subsequent potential health risk, it is crucial
to develop a targeted assessment of the aerosolization behaviors of specific fungi.

To explain the above distinguishing community, we analyzed specific fungal genera
between air and compost piles, including the number of common and endemic fungal
genera (Venn diagram in Figure 4A), and specific differences among fungal genera (Stamp
analysis in Figure 4B).
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composting piles (Mucor). Consistent with fungal genera, the number of shared patho-
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Figure 4. Common and endemic fungi in air and compost piles. (A) Number of common and endemic
total fungi and pathogenic/allergenic genera in composting piles (C), inside (I), and outside air (O)
of composting workshop using a Venn diagram, (B) Identification of different pathogenic/allergenic
genera between C and I, or C and O using Stamp analysis. The bar chart shows the average proportion
of differential pathogenic/allergenic genera predicted using Picrust 2. The difference in proportions
between any two groups is presented with 95% confidence intervals. Only p < 0.05 (Welch’s t test,
FDR adjusted) are depicted.

A total of 78 endemic genera were detected in composting piles, followed by inside
(43), and outside of composting workshop (35), with corresponding proportions (ratio of
endemic genera to the total fungal genera) of 27%, 12%, and 11%, respectively. A total
of 165 airborne fungal genera were shared across the three sampling settings. Compost
piles shared more common fungal genera with inside (199) than outside workshops (176),
and the most common fungal genera were detected in the two air sampling areas (273).
Based on the fungal composition, 69.10% of fungal genera in compost piles could become
airborne. Among the pathogenic/allergenic genera, only one endemic genus was de-
tected in composting piles (Mucor). Consistent with fungal genera, the number of shared
pathogenic/allergenic genera between composting piles and I was greater than between
composting piles and O. Most (91.30%) of the pathogenic/allergenic genera in composting
piles were shared with inside air, suggesting that most could aerosolize and emit into
the air.

The key fungal genera driving the significantly different proportions between com-
posting piles and I (Figure S5), and composting piles and O (Figure S6) were analyzed using
Stamp analysis. More different genera were detected between composting piles and inside
air (38) than between composting piles and outside air from composting workshop (33).
Stamp analysis on the key pathogenic/allergenic genera (Figure 4B) showed that the key
fungal genera from composting piles to inside air was slightly higher than that to outside
air. Most of the critical genera were identical, except for Schizophyllum with significantly
high relative abundance in inside air of workshop.

To quantitatively assess fungal aerosolization behavior, we analyzed the correlation
of fungal concentrations and relative abundances in compost piles and air using linear
regression analysis. The total fungal concentration in air was significantly correlated
with that in composting workshop (R2 = 0.102, p < 0.01) (Figure 5). We also detected
significant correlations between pathogenic/allergenic genera in air and compost media
based on EAA values (R2 = 0.35, p < 0.01). The relative abundance of both total fungi and
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pathogenic/allergenic genera in the air also increased with the increase of the corresponding
value in compost piles (p < 0.01). Most research on fungal aerosolization behavior has
focused on the relative abundance of specific fungal genera between air and compost [6,26]
Based on concentrations and relative abundances, we established a link between the
biomass of airborne fungi (including the pathogenic/allergenic genera) and its potential
source (compost). This can help predict the quantitative trends of airborne fungi according
to their levels in compost piles.
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3.3. Potential Factors Affecting the Aerosolization Behavior of Airborne Fungi and
Pathogenic/Allergenic Genera

The aerosolization behavior of each specific fungal phylum or genus was described us-
ing the Bioaerosolization Index (BI). A log BI value greater than 0 indicates that the fungus is
more likely to spread from the compost into the air and vice versa. The aerosolization behav-
ior of fungal phyla was analyzed and the results are shown in Figure S7. Although the As-
comycota and Basidiomycota were the most dominant fungal phyla in both air and compost
piles, they have different aerosolization behaviors. Basidiomycota (log BI = 0.798 ± 0.42)
had preferential aerosolization while Ascomycota (log BI = −0.16 ± 0.22) represented pas-
sively aerosolized microorganisms. A similar trend in the aerosolization behavior of the
same fungal phyla was observed during the composting of vegetable waste [16] and sewage
sludge biostabilization [26].
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The results on aerosolization behavior of fungal genera (Figure S8) indicated that
26.64% of all fungi were easily spread from composting piles into the surrounding air with
log BI value being higher than zero. The highest value of log BI (Sporobolomyces of 3.94)
was comparable to previous studies [16,26]. The number of preferential fungus genera
(77) was higher than that in the composting of vegetable waste (7) [16] and sewage sludge
biostabilization (11) [26], suggesting that a greater number of fungi genera in manure
compost are likely to aerosolize. The five most easily aerosolized fungi were Sporobolomyces
(BI = 3.52 ± 1.24), Dioszegia (BI = 2.97 ± 0.89), Pyrenophora (BI = 2.77 ± 0.51), Tilletiopsis
(BI = 2.53 ± 0.24), and Coprinopsis (BI = 2.53 ± 0.24). Similar to the results of fungal phyla,
the five dominant fungal genera (Figure 2) were not completely consistent with the top five
genera with preferential aerosolization (Figure 6) (except Sporobolomyces). This discrepancy
here, as well as in previous studies [16,26], indicates that detailed studies are needed to
determine the underlying mechanisms of fungal aerosolization behavior.
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Figure 6. Bioaerosolization Index (BI) of the 30 top fungal genera (A) and pathogenic/allergenic
genera (B) (BI value was t log-transformed).

The aerosolization behavior of pathogenic/allergenic genera is shown in Figure 6B.
Among the 30 target pathogenic/allergenic genera, the log BI values of six genera (20%) were
greater than 0. There was species-specific aerosolization behavior in the pathogenic/allergenic
genera (Figure 6B). Although the enrichment of Aspergillus in the air was reported in
both animal and domestic composting facilities [6,16], its log BI (log BI = −1.56 ± −1.53)
value here was lower than 0. This result indicates that, in addition to the characteristics
of the fungus itself, other factors might play a non-ignored role on fungal aerosolization
behavior. Extensive exposure to mycotoxins produced by Fusarium may cause respiratory
symptoms in humans [48]. Fusarium (log BI around 3) was the most preferred fungal
genus for aerosolization during biostabilization [26]. In this study, we found it to be a
passively aerosolized microorganism with log BI = −0.17 ± 0.093. Our results suggest
that the aerosolization behavior of some fungal genera might differ between different
composting facilities.

To explore the potential factors related to the aerosolization behavior of fungi, we
analyzed the relation of physicochemical parameters (Table 1) and specific heavy metals
(Table 2) with the log BI of preferentially aerosolized fungi using redundancy analysis
(RDA). According to the RDA result on the fungal phylum (Figure 7), AD, TN, TP, and
OM had a positive effect on the aerosolization behavior of most fungal phyla, including
Ascomycota, Basidiomycota, Chytridiomycota, and Neocallimastigomycota. The heavy metals
Cd, Cr, Pb, Zn, and Cu promote the aerosolization behavior of Ascomycota, Basidiomycota,
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Chytridiomycota, and Neocallimastigomycota. The effect of both physicochemical parameters
and heavy metals on the above four fungal phyla were different from the effects on Mu-
coromycota and Mortierellomycota. Although the heavy metals, such as Cu and As, have been
reported to limit the growth and diversity of the microbial communities during manure
composting [30], we found that Cu promotes the aerosolization behavior of certain fungal
phylum. Current results highlight that future study should be conducted regarding the
detailed correlation between heavy metal and specific fungal phylum in composting piles,
as well as their influence on the aerosolization behavior.
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Figure 8 shows the potential influence of physicochemical parameters and heavy
metals on the aerosolization behavior of the five fungal genera with the highest log BI value.
These included Sporobolomyces, Dioszegia, Pyrenophora, Tilletiopsis, and Coprinopsis (Figure 6).
Most previous studies focused on the effects of physicochemical factors on microorganisms
in compost piles [49,50]. To our best knowledge, no studies determined their influences
on aerosolization behavior. We found that the TK or TN was positively correlated with
at least three fungi (Figure 8A), and a similar trend was found in pathogenic/allergenic
genera (Figure 8C). TN is an important nitrogen source that supports microbial activity
and increases the growth of fungal communities in piles [50], which might have a potential
effect on their aerosolization behavior. Although the adjustment of moisture content (AD)
might eliminate the bioaerosol emission of hydrophilic microorganisms (e.g., fungi) [26],
both the positive and negative effect of AD on fungal aerosolization behavior were detected
here and depended on the specific fungal genus. The concentration of airborne bacteria
emissions in the composting of swine manure was positively correlated with the temper-
ature in the compost pile [51]. We also found that temperature facilitated aerosolization
of Tilletiopsis, Coprinopsis, and Epicoccum. The heavy metals Zn and Cu seem to promote
the aerosolization process of Dioszegia, Pyrenophora, Tilletiopsis, and Coprinops (Figure 8B)
as well as the pathogenic/allergenic genera, including Schizophyllum, Cladosporium, and
Exophiala (Figure 8D).
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We found no consistent influence of a specific factor on fungal aerosolization including
physicochemical parameters or heavy metals. This may be because factors other than those
tested here may be involved in fungal aerosolization. Understanding the mechanisms
involved during aerosol emission will require studies on a broader range of potential
factors, including compost age, activity, or material composition [25]. The capability
of fungi to become aerosolized may also depend on their morphological characteristics
(form, structure [52], and size [16]), and on their biochemical characteristics, such as
hydrophobicity, which vary significantly among species [24,25,27]. These factors also need
to be evaluated in future research.

4. Conclusions

Fungi in compost can be aerosolized, resulting in adverse effects on occupational
health. In this study, we analyzed the aerosol behavior of fungi and their underlying
factors in composting facilities. Our results indicate that, due to differences in the com-
munity structure in air and compost, the fungal composition in compost piles could not
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accurately predict the composition of airborne fungi. However, most fungal genera and
pathogen/allergen containing genera in compost might potentially aerosolize into the air,
and about 25% of these are likely to aerosolize. The influence of physicochemical parame-
ters and heavy metals on the aerosol behavior of fungi, including pathogenic/allergenic
genera, varied depending on the fungal genus evaluated. Current results on the com-
positions and abundance of pathogenic/allergenic genera highlight the possible risks to
human health posed by the air environment during animal manure composting. The link
between the biomass of airborne fungi (including the pathogenic/allergenic genera) and
its potential source (compost) can help predict the quantitative trends of airborne fungi
and corresponding health risk according to their levels in compost piles.
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