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Abstract

SHP2, encoded by PTPN11, is required for survival, proliferation and differentiation of various 

cell types1,2. Germ line activating mutations in PTPN11 cause Noonan Syndrome, while somatic 

PTPN11 mutations cause childhood myeloproliferative disease and contribute to some solid 

tumors. Recently, heterozygous inactivating mutations in PTPN11 were found in 

metachondromatosis, a rare inherited disorder featuring multiple exostoses, endochondromas, joint 

destruction and bony deformities3,4. The detailed pathogenesis of this disorder has remained 

unclear. Here, we used a conditional knockout allele (Ptpn11fl) and Cre recombinase (Cre) 

transgenic mice to delete Ptpn11 specifically in monocytes, macrophages and osteoclasts 

(lysozyme M-Cre; LysMCre) or in cathepsin K (Ctsk)-expressing cells, previously thought to be 

osteoclasts. LysMCre;Ptpn11fl/fl mice had mild osteopetrosis. Surprisingly, however, 

CtskCre;Ptpn11fl/fl mice developed features strikingly similar to metachondromatosis. Lineage 

tracing revealed a novel population of Ctsk-Cre-expressing cells in the “Perichondrial Groove of 
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Ranvier” that display markers and functional properties consistent with mesenchymal progenitors. 

Chondroid neoplasms arose from these cells and showed decreased Erk activation, increased 

Indian Hedgehog (Ihh) and Parathyroid hormone-related protein (Pthrp) expression and excessive 

proliferation. Shp2-deficient chondroprogenitors had decreased FGF-evoked Erk activation and 

enhanced Ihh and Pthrp expression, whereas FGFR or MEK inhibitor treatment of chondroid cells 

increased Ihh and Pthrp expression. Most importantly, Smoothened inhibitor treatment 

ameliorated metachondromatosis features in CtskCre;Ptpn11fl/fl mice. Thus, in contrast to its pro-

oncogenic role in hematopoietic and epithelial cells, Ptpn11 is a tumor suppressor in cartilage, 

acting via an FGFR/MEK/ERK-dependent pathway in a novel progenitor cell population to 

prevent excessive Ihh production.

Cartilage tumors, including exostoses, enchondromas and chondrosarcomas, comprise ~20% 

of skeletal neoplasms5. Benign and malignant cartilaginous tumors can arise sporadically, 

but cartilage tumor syndromes, including hereditary multiple exostoses (HME), the multiple 

enchondromatosis disorders (Ollier disease and Maffucci syndrome), and 

metachondromatosis (MC), also exist6,7. The cellular and molecular pathogenesis of most 

cartilage tumors is incompletely understood.

MC is an autosomal dominant tumor syndrome featuring multiple exostoses and 

enchondromas6,7. Recently, heterozygous early frameshift or nonsense mutations in 

PTPN11 were identified in >50% of MC cases3,4. PTPN11 encodes the non-receptor 

protein-tyrosine phosphatase SHP2, which is required for RAS/ERK pathway activation in 

most receptor tyrosine kinase, cytokine receptor, and integrin signaling pathways1,2. Germ 

line activating mutations in PTPN11 cause Noonan syndrome (NS), whereas mutations that 

impair SHP2 catalytic activity cause LEOPARD syndrome (LS), both of which can feature 

skeletal abnormalities8. Somatic activating mutations in PTPN11 are the most common 

cause of juvenile myelomyelogenous leukemia (JMML) and contribute to other leukemias 

and some solid tumors1,2. Although PTPN11 is a well-established human oncogene, it is 

unclear how heterozygous loss-of-function PTPN11 alleles cause cartilage neoplasms.

Global Ptpn11 deletion results in early embryonic lethality9,10, whereas postnatal deletion 

has context-dependent effects1,2. To assess the role of Shp2 in osteoclasts (OC), we crossed 

Ptpn11fl mice10 to mice expressing Cre under the control of the endogenous lysozyme M 

(LysM)11 or cathepsin K12 (Ctsk) promoter. The LysM promoter is active in monocytes, 

macrophages and osteoclast precursors11, whereas the Ctsk promoter reportedly is active 

only in mature OC12,13. These crosses generated Ptpn11fl/+;LysMCre and 

Ptpn11fl/fl;LysMCre (hereafter, LysM-Control and LysM-KO) and Ptpn11fl/+;CtskCre and 

Ptpn11fl/fl;CtskCre (hereafter, Ctsk-Control and Ctsk-KO) mice, respectively (Fig. 1a).

Neither Ptpn11fl/+;LysMCre, nor Ptpn11fl/+;CtskCre, mice had a discernible phenotype, so 

we focused all subsequent analyses on LysM-KO and Ctsk-KO mice. Shp2 levels were 

reduced by >80% in bone marrow-derived macrophages (BMM) and OC in LysM-KO and 

Ctsk-KO mice (Fig. S1a and data not shown). LysM-KO and Ctsk-KO mice were born at 

the expected Mendelian ratios and appeared normal for their first 3 weeks post-birth. 

Subsequently, LysM-KO mice developed mild, age-related osteopetrosis (Fig. S1b and data 
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not shown). By contrast, within eight weeks after birth, Ctsk-KO mice exhibited a dramatic 

skeletal phenotype, comprising decreased body length, increased bone mineral density, 

scoliosis, metaphyseal exostoses and markedly decreased mobility (Fig. 1b–d & 

Supplementary video clips 1,2). Sections of hind limb paw and knee joints from 12-week-

old Ctsk-KO mice revealed multiple exostoses and enchondromas at the metaphyses of their 

metatarsals and phalanges (Fig. 1d), tibiae and femurs (Fig. S1c,d), and other bones (data 
not shown), features reminiscent of MC. As heterozygous PTPN11 frameshift mutations 

cause MC3,4, these findings indicate that PTPN11 is a cartilage tumor suppressor gene, and 

suggest that loss (or silencing) of the remaining PTPN11 allele is required for tumor 

formation.

To identify the cells responsible for MC-like disease in Ctsk-KO mice, we first injected 

bone marrow (BM) from 6-week-old Ctsk-KO and Ctsk-Control mice (C57/BL6; CD45.2) 

into lethally irradiated 3-week-old recipients (B6.SJL; CD45.1). Recipient mice exhibited 

high chimerism (Fig. S2a,b), but did not develop cartilage tumors in over 12 months of 

observation. Consistent with the osteopetrosis seen in LysM-KO mice, recipients had 

increased bone mineral density (Fig. S2c). Clearly, though, cartilage tumors in Ctsk-KO 

mice are not due to altered OC development/function.

Next, we performed lineage-tracing studies, using Rosa26LSL-lacZ (R26LSL-lacZ) or 

Rosa26LSL-YFP (R26LSL-YFP) Cre reporter mice. Remarkably, CtskCre, but not LysMCre, 

was expressed in a subset of perichondrial cells within the so-called “Groove of Ranvier” 

(Fig. 2a). Sections from knee joints collected at P10 revealed significant expansion of a 

cluster of Alcian blue/Safranin O-positive cells in this region in Ctsk-KO, mice, but not in 

Controls (Fig. 2b, boxed region and Fig. S1c). By post-natal week 2, the YFP+ cell 

population had expanded and differentiated into ectopic cartilaginous tissue in compound 

Ctsk-KO/YFP reporter mice (Fig. 2c, boxed region). Exostoses were palpable at 6 weeks 

and visible by 8–12 weeks. In compound Ctsk-KO/YFP reporter mice, these lesions 

consisted of YFP+ chondroid cells at various stages of development, including proliferating, 

pre-hypertrophic, and hypertrophic chondrocytes, as revealed by cell morphology and 

Col2α1 and Col10α1 immunostaining (Fig. 2c,d and data not shown). Notably, nearly all 

chondroid tumor cells were YFP+ (Fig. 2c and S2d). Hence, cartilaginous tumors in Ctsk-

KO mice (and, by analogy, most likely in MC) result from cell-autonomous lack of Shp2 in 

Ctsk+ cells from the Perichondrial Groove of Ranvier.

The Perichondrial Groove of Ranvier is believed to contain chondroprogenitors responsible 

for circumferential cartilage growth, but these cells are not well-characterized14,15. We used 

flow cytometry to analyze epiphyseal cartilage cells harvested from the distal femurs and 

proximal tibiae of Ctsk-Control/YFP and Ctsk-KO/YFP mice at P10–12. Compared with 

controls, the frequency of YFP+ cartilage cells in Ctsk-KO/YFP mice was increased by ~5-

fold (Fig. 3a). Within the YFP+ cell population, the percentage of cells expressing CD44, 

CD90, and CD166 (mesenchymal progenitor markers), but not CD31 (endothelial cell 

marker), also was increased (Fig. 3b). Staining for Stro1 and Jagged1, markers associated 

with presumptive chondroprogenitors in the groove based on BrdU label retention studies16, 

was more intense in Ctsk-KO mice (Fig. 3c). Moreover, YFP+ cells were capable of multi-

lineage differentiation in vitro, as assessed by Alcian Blue, Oil Red O and Alizarin red 
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staining, respectively (Fig. 3d). These data suggest that Shp2 regulates the proliferation of a 

novel cartilage cell population characterized by Ctsk expression, which we hereafter term 

“Ctsk+ Chondroid Progenitors” (CCPs).

Multiple pathways control cartilage development and homeostasis17. Indian hedgehog (IHH) 

and Parathyroid hormone-related protein (PTHRP) signaling are particularly important, and 

aberrant regulation of these pathways causes developmental defects and skeletal tumors18,19. 

We examined chondrogenic gene expression in cartilage tumors from Ctsk-KO mice by 

quantitative reverse-transcription PCR (qRT-PCR). Consistent with our immunostaining 

data (Fig. 2d), Col2α1 and Col10α1 transcripts were increased. Furthermore, Ihh and Pthrp 

levels were elevated substantially (Fig. 4a, S3a).

These findings prompted us to ask whether Shp2 regulates Ihh and Pthrp production, and if 

so, how. During development, cells within the perichondrium make Fgf18, which can signal 

to adjacent cells via Fgfr3 to suppress Ihh expression20,21. As Shp2 is required for Fgfr 

signaling in other cell types1,2, we suspected that Shp2 might be required for Fgfr3-induced 

suppression of Ihh expression. We therefore examined the status of Fgfr3 signaling 

components and Ihh expression in CCPs. Erk activation, as assayed by Tyr204Thr202 

phosphorylation, was compromised in the absence of Shp2, whereas Akt (p-Ser473) and 

Stat1/3 (p-Tyr807) activation were unaffected (Fig. 4a, S3b & data not shown). 

Furthermore, consistent with our qRT-PCR data, Ihh mRNA and protein were elevated in 

Shp2-deficient CCPs (Fig. 4a). Ihh antibody specificity was confirmed by immunostaining 

of growth plate cartilage (Fig. S3c).

CCPs are rare, rendering their detailed biochemical analysis unfeasible. We therefore tested 

the effects of Shp2 depletion in ATDC5 chondroid cells by stably expressing either of two 

shRNAs targeting mouse Ptpn11. As in Ctsk-KO mice (Fig. 4a), Fgf18-evoked Erk 

activation was decreased, while Ihh and Pthrp levels were increased in Shp2-deficient cells 

(Fig. 4b). Conversely, FGFR (PD173074) or MEK (UO126) inhibition led to enhanced Ihh 

and Pthrp expression in parental ATDC5 cells (Fig. 4c).

Ihh signaling evokes Pthrp production22. Our data, and previous studies23, suggested that 

increased Ihh levels might be pathogenic in MC. If so, then blocking or attenuating Ihh 

signaling might slow and/or prevent the disease. To test this hypothesis, Control (wild type) 

and Ctsk-KO mice (9/group) were gavaged daily with the Smoothened inhibitor 

PF-04449913 (SMOi, 100μg/g body weight) or vehicle control (0.5% methylcellulose), 

beginning at 5 weeks of age (when early lesions were present) and continuing for the 

succeeding 4 weeks. Skeletal phenotype was assessed by X-ray, μ-CT, and histology. 

Remarkably, SMOi treatment significantly reduced the number of exostoses in Ctsk-KO 

mice (Fig. 4d, S4–7), and dramatically improved their mobility (Supplemental Video clips 

1,2), without apparent effects on overall growth rate (Fig. S8). Importantly, SMOi levels in 

treated mice were adequate to suppress Ihh target gene expression in exostoses (Fig. S7b).

Our findings strongly suggest that MC results from loss of SHP2 specifically in CCPs, a 

heretofore poorly characterized population within the Perichondrial Groove of Ranvier, 

which is believed to function as a stem cell niche for joints16 and a reservoir for the 
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germinal layer cells of the growth plate24. Cells within the Groove of Ranvier express high 

levels of FGFR325, and their removal prevents longitudinal bone growth26. Emerging 

evidence shows that Groove of Ranvier cells can migrate into articular cartilage16, 

implicating them in maintaining cartilage homeostasis and possibly in degenerative joint 

diseases, such as osteoarthritis. Indeed, in lineage tracing studies of normal mice, we noticed 

YFP+ cells migrating towards articular cartilage (Fig. S9, arrows, and data not shown). 
Based on our mouse MC model, we propose that SHP2, acting downstream of FGFR3 and 

upstream of the RAS/ERK pathway, regulates CCP proliferation and chondrogenic 

differentiation. Consequently, PTPN11 deficiency in these cells promotes excessive 

proliferation, chondrogenic differentiation, and cartilage tumors.

MC is associated with heterozygous inactivating mutations in PTPN11, yet 

Ptpn11fl/+;CtskCre mice are normal, whereas Ctsk-KO mice exhibit MC-like features. 

Although PTPN11 gene dosage effects could differ in mouse and man (and thus 50% 

reduction in SHP2 level might cause MC in humans but not in mice), we think it is more 

likely that loss of the remaining PTPN11 allele (e.g., by LOH or silencing) is required to 

cause cartilage tumors in MC. If so, then unlike its oncogenic role in JMML, other 

hematologic malignancies and solid tumors1,2, PTPN11 is a tumor suppressor in cartilage. 

Liver-specific Ptpn11 deletion reportedly results in hepatocellular carcinoma27. However, 

we have not seen liver tumors in our Ptpn11 conditional knockout mice crossed to the same 

Cre line (F. H. and B.G.N., manuscript in preparation), nor is PTPN11 mutated in human 

hepatocellular carcinoma. Moreover, our biochemical and pharmacological analysis, 

together with previous studies, provide a parsimonious and attractive explanation for the 

apparently paradoxical pro- and anti-oncogenic effects of PTPN11. In both cases, SHP2 is a 

critical regulator of ERK. The activating PTPN11 mutations associated with cancer promote 

proliferation and survival, at least in part via increased ERK activation. Similarly, over-

expression or increased activation of normal SHP2 binding proteins such as GAB2, or the 

presence of pathologic SHP2 binding proteins such as H. pylori CagA28, can hyperactivate 

ERK and contribute to various malignancies. Conversely, SHP2 deficiency is oncogenic in 

CCPs because in these cells, ERK normally represses the expression of the growth 

stimulator IHH (which in turn, stimulates PTHRP production). Future studies should focus 

on better defining the properties of CCPs, determining whether PTPN11 also acts as a tumor 

suppressor in other cartilage neoplasms, including chondrosarcoma, and most importantly, 

on testing the effects of Smoothened inhibition in MC patients. Finally, given our proposed 

mechanism of MC pathogenesis, our results argue for caution in the long term use of MEK 

or ERK inhibitors.

Methods

Antibodies and Reagents

The following antibodies were purchased: monoclonal anti-phospho(p)-tyrosine (4G10) was 

from Millipore; polyclonal antibodies against phospho(p)-Erk1/2, Erk2, p-Akt(Ser473), Akt, 

Shp2, p-Stat1(Tyr701) and Stat1 were from Cell Signaling; antibodies against Ihh, Col2α1, 

and Col10α1 were from Santa Cruz Biotechnology and Abcam, respectively; fluorescence-

labeled antibodies against CD31, CD44, CD45, CD90, and CD166 were purchased from 
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eBioscience; and antibodies against Stro1 and Jagged1 were purchased from Invitrogen and 

Epitomics, respectively. Alexa488-labeled goat anti-rabbit IgG and Alexa594-labeled anti-

rabbit and anti-mouse IgG were purchased from Invitrogen. FGF18 was purchased from 

Peprotech. UO126 and PD173074 were from Calbiochem and Selleckbio, respectively. 

PF-04449913 was kindly provided by Pfizer, Inc. Alcian blue, Alizarin red S, and Oil red O 

staining solutions were purchased from Poly Scientific.

Cell isolation and culture

To isolate YFP+ cartilage cells (CCPs), epiphyseal cartilage was dissected from 2-week-old 

Ctsk-Control/YFP and Ctsk-KO/YFP mice, and digested with hyaluronidase (2.5 mg/ml, 

Sigma) and Trypsin-EDTA (0.25%, Invitrogen) to remove soft tissues, and then with 

collagenase D (2.5 mg/ml, Roche) for 4–6 hours to release all cartilage cells. After washing 

in PBS, cells were stained with fluorescence-labeled antibodies (using concentrations 

recommended by the manufacturers), and analyzed by flow cytometry, or YFP+ cells were 

purified by FACS and placed in short-term cultures (3–4 days) in murine mesenchymal 

culture medium (StemCell Technologies) containing 10% FBS.

Parental ATDC5 cells were obtained from Dr. Chanika Phornphutkul (Brown University) 

and cultured in complete DMEM/F12 medium (1:1) (Invitrogen), as described31. Short 

hairpin RNAs against mouse Ptpn11 (kd1: 5′-

GATTCAGAACACTGGGGACTTCAAGAGAGTCCCCAGTGTTC TGAATC; kd2: 5′-

GAGTAACCCTGGAGACTTCTTCAAGAGAGAAGTCTCCAGGGTTA CTC), or a 

scrambled control for kd1 (5′-

TAGTACAAGTCCAAGCGGCTTCAAGAGAGCCGCTGGACTTGTACTA), were 

introduced into the retroviral vector pSuper(retro)/puro (Oligoengine). Viral supernatants 

were collected from 293T cells co-transfected with each retroviral vector and Ecopac, and 

used to infect ATDC5 cells, which were then selected with puromycin32.

Differentiation assays

CCPs (~ 2×104), purified by FACS (for YFP) from 10–14 day old Ctsk-R26LSL-YFP 

reporter mice, were cultured in differentiation medium for chondrocytes (DMEM with 10% 

FBS, 0.1μM Dexamethasone, 0.1mM Ascorbic acid, 10mM Glycerol 2-phosphate, TGFβ1 

1ng/ml), adipocytes (DMEM with 10% FBS, 1μM Dexamethasone, 0.5mM IBMX, 10ug/ml 

Insulin), or osteoblasts (DMEM with 10% FBS, 0.1μM Dexamethasone, 0.2mM Ascorbic 

acid, 10mM Glycerol2-phosphate, 10ng/ml rhMBP2), respectively. After culturing for 2 

(adipogenic or chondrogenic differentiation) or 3 weeks (osteogenesis) cells were fixed and 

stained with Alcian blue, Oil red O or Alizarin red to visualize the formation of cartilage, 

fate, and bone tissue, respectively.

Quantitative RT-PCR

RNA was extracted from cultured cells or cartilage lesions enriched by laser-capture using 

the RNeasy kit (Qiagen). cDNA was synthesized using iScript™cDNA Synthesis Kit (Bio-

Rad), and qRT-PCR was performed by using the iQ™SYBR®Green qPCR kit. All values 

were normalized to Gapdh levels, and qRT-PCR data were expressed as fold-increases 
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compared with controls. Primer sequences and PCR conditions are available from W.Y. 

upon request.

Flow Cytometry and FACS

Epiphyseal cartilage cells were stained with fluorescence-labeled antibodies, as described,33 

and analyzed on a BD™ LSR II flow cytometer. YFP+ cells were purified by FACS using a 

BD Influx™ cell sorter (BD Bioscience, San Diego, CA). Flow cytometric data were 

analyzed with FlowJo software (TreeStar).

Histology

Ctsk-Control and -KO mice were euthanized at the indicated ages, and femurs, tibiae, and 

paws were removed and fixed in 4% PFA overnight at 4°C. Postnatal skeletal tissues were 

decalcified in 0.5M EDTA before embedding. Tissue sections (5μm) were stained with 

H&E, Alcian blue, or Safranin O. Immunofluorescence staining was carried out using 

secondary antibodies conjugated to the indicated fluorophores at concentrations 

recommended by their manufacturers. Immunohistochemistry was performed using 

fluorescence- or peroxidase-coupled anti-rabbit, mouse, or -goat secondary antibodies, as 

per the manufacturer’s instructions, with DAB serving as the substrate. X-gal staining was 

performed as described12.

Drug Treatment

Two trials were performed using the Smoothened inhibitor PF-04449913. In a pilot study, 

groups (5 mice/each) of KO mice were treated with SMOi (100μg/g body weight) or vehicle 

control (0.5% methylcellulose), beginning at 5 weeks of age (at which time early lesions 

were present) and continuing for the succeeding 4 weeks. Mice were randomized by 

alternate assignment to control (vehicle) or drug treatment arms. The pilot experiment 

showed a significant difference in number of exostoses (assessed radiographically) in the 

SMOi group, and led to a second study (again involving 5 mice each) to confirm these 

findings and also assess additional parameters (μCT, histology, gene expression). Two mice 

(one each from control and experimental groups, respectively) died for unknown reasons 

during the second trial, and were excluded from the analysis because they were removed 

from cages and could not be recovered. All surviving mice from both studies were included 

in the analyses shown in the text.

Microcomputed Tomography (μ-CT) and X-Ray Analysis

X-ray images of the entire skeleton, knees, metatarsals and phalanges were obtained 

immediately after euthanasia by using a Faxitron X-ray system (Wheeling, Illinois). After 

fixation in 4% PFA, μ-CT images of skeletal tissues were scanned with a desktop 

microcomputer graphic imaging system (μ-CT40, Scanco Medical AG, CH). The number of 

exostoses was measured from these radiographic images, as indicated in the Figure legends. 

For these studies, mice were assigned a code number by the animal technician, and blinded 

quantification was carried out by W.Y.
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Immunoblotting

Cells were lysed in NP-40 buffer (0.5% NP40, 150 mM NaCl, 1 mM EDTA, 50 mM Tris 

[pH 7.4]), supplemented with a protease inhibitor cocktail (1 mM PMSF, 1 mM NaF, 1 mM 

sodium orthovanadate, 10 mg/ml aprotinin, 0.5 mg/ml antipain, and 0.5 mg/ml pepstatin), as 

described10. For immunoblotting, cell lysates (10–50 μg) were resolved by SDS-PAGE, 

transferred to PVDF membranes, and incubated with primary antibodies for 2 hr or 

overnight at 4°C (according to the manufacturer’s instructions), followed by HRP-

conjugated secondary antibodies. Detection was by enhanced chemiluminescence 

(Amersham). Signals were quantified using NIH ImageJ.

Statistical Analysis

Differences between groups were evaluated by Student’s t test. A p value of <0.05 was 

considered significant. For all of these experiments, between groups variances were similar 

and data were symmetrically distributed. All analyses were performed by using Excel 

(Microsoft, Redmond, WA) and Prism 3.0 (GraphPad, San Diego, CA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ptpn11 deletion in Cathepsin K-expressing cells causes metachondromatosis. a, Schemes for 

generating Ctsk-KO, LysM-KO, and Control mice. Gross images (b) and Faxitron/μ-CT 

radiographs (c) of 12 week-old Ctsk-KO mice showing dwarfism and scoliosis (b.ii, white 

arrow; c.ii, black arrow), increased bone mineral density (c.ii,iv) and multiple exostoses of 

knees, ankles, and metatarsals (b.iv; c.ii,iv,vi,viii; arrowheads) with joint destruction. d, 
Sagittal sections of metatarsal joints stained with H&E (i–iii), Safranin O (iv–vi) and Alcian 

blue (vii–ix) showing cartilaginous exostoses and enchondromas (arrows) in Ctsk-KO mice. 

Images in iii, vi and ix are magnified (10X) views of boxed areas in ii, iv and viii, 
respectively. Data shown are representative images; each analysis was performed on at least 

5 mice/genotype.
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Figure 2. 
Skeletal tumors in Ctsk-KO mice originate from Perichondrial Groove of Ranvier cells. a, 

X-gal staining of knee joint sections from 1-week-old R26LSLlacZ;Ctsk-Cre and 

R26LSLlacZ;LysM-Cre reporter mice showing that the Ctsk (but not the LysM) promoter is 

active not only in osteoclasts, but also in a subset of cells from the Perichondrial Groove of 

Ranvier (arrows). b, H&E and Safranin O staining of knee joint sections from P10 Ctsk-

Control (i,iv) and Ctsk-KO (ii,iii,v,vi) mice showing expansion of cells within the 

Perichondrial Groove of Ranvier region in Ctsk-KO mice. Images in iii & vi are magnified 

(10x) views of boxed areas in ii & v respectively; c, H&E-and Safranin O-stained sections 

showing expanding YFP+ population within the Perichondrial Groove of Ranvier (boxed 

region in top panels, magnified below) that also stains with Safranin O, indicative of 

cartilage. Dashed line marks boundary between marrow/growth plate and perichondrial 

groove. d, frozen section of an exostosis from the metatarsal joint of Ctsk-KO/YFP mice 

showing co-localization of YFP reporter with cartilaginous tumor cells (boxed area). Note 

that the lesion is enriched in proliferating and pre-hypertrophic chondrocytes, as shown by 

overlapping Col2α1 and Col10α1 immunostaining. Each panel is a representative image 

from one mouse; each analysis was performed on at least 3 mice/genotype.
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Figure 3. 
Ptpn11 deletion in Ctsk-expressing cells causes expansion of novel chondroprogenitor cell 

population within the Perichondrial Groove of Ranvier. a, Flow cytometric analysis showing 

YFP+ cells from pooled epiphyseal cartilage from 5–7 Ctsk-Control/YFP mice; note 

increased percentage of such cells in 2-week-old Ctsk-KO/YFP mice. CC: Chondroid cells. 

b, Flow cytometric analysis of YFP+ perichondrial cells showing staining for CD31, CD44, 

CD90, and CD166. Data in panels a and b are from a single experiment; similar results were 

obtained in 2 additional experiments. c, Immunofluorescence micrograph showing Stro1 and 

Jagged1 expression in YFP+ perichondrial cells. Nuclei are stained with DAPI. Note 

enhanced intensity of Stro1 and Jagged staining in Ctsk-KO cells. Data shown are from 

single mice of each genotype; two additional mice were analyzed for each genotype with 

similar results. d, CCPs give rise to cartilage, fat and bone. FACS-purified YFP+ cells from 

5–7 mice were subjected to differentiation assays in triplicate. After 2–3 weeks of culture 

(see Methods), cells were fixed and stained with Alcian blue, Oil red, and Alizarin red to 

visualize the formation of cartilage, fat, and bone tissue, respectively.
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Figure 4. 
Shp2 deficiency impairs Erk activation but promotes Ihh and Pthrp expression. a, (Left 

panel) qRT-PCR showing increased Col2α1, Col10α1, Ihh, and Pthrp expression in laser-

captured cartilaginous cells from exostoses in 4 mice/genotype, compared with normal 

articular cartilage cells (mean±S.D; *p<0.05, 2-tailed Student’s t test). (Right panel) 

Immunostaining of representative paraffin sections from Perichondrial Groove of Ranvier 

region of Ctsk-KO and Control mice. Note the decreased number of p-Erk+ cells (75.4% in 

Ctsk-Control vs 32.2% in Ctsk-KO; n=3 mice), but increased Ihh expression in Ctsk-KO, 

compared with Control, mice. b, (Left Panel) Immunoblot showing Shp2 in ATDC5 cells 

stably expressing shRNAs against mouse Ptpn11 (ATDC5-KD1, ATDC5-KD2, 

respectively) or scrambled control hairpin. (Right panels). Representative blot showing that 

Shp2 deficiency decreases Erk activation in response to Fgf18 (top); data from multiple 

experiments (n=3) showing pErk levels (compared with control at 5 minutes, mean±S.D.; 

p<0.05, 2-tailed Student’s t test) are quantified below. qRT-PCR (bottom left) shows 

increased Ihh and Pthrp expression in Shp2-deficient ATDC5 cells (mean ± S.D.; n=3, 

*p<0.05, 2-tailed Student’s t test). c, FGFR (PD173074, 10nM) or MEK (UO126, 1μM) 

inhibitor treatment of parental ATDC5 cells enhances Ihh and Pthrp expression, as shown 

by qRT-PCR (mean±S.D; n=3, *p<0.05, 2-tailed Student’s t test). d, Faxitron radiographs 

showing that Hedgehog pathway blockade following administration of the Smoothened 

inhibitor PF-04449913 (100μg/g body weight) to Ctsk-KO mice ameliorates tumor 

formation, compared with vehicle control (0.5% methylcellulose)-treated mice. Images of 
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representative posterior paws (i–iv) and knees (v–vii) taken pre- (i,iii,v,vii) and post-

treatment with Vehicle (ii,vi) or Smoothened inhibitor (SMOi) (iv,viii) for 4 weeks. Note 

continued development of exostoses and endochromas in Vehicle-treated mice, and their 

amelioration in SMOi-treated group (arrows). Also, see Figs. S4–S7 and Supplemental 

video clips 1,2.
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