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ABSTRACT: In biological organisms, metal ion-binding proteins participate in numerous metabolic activities and are closely
associated with various diseases. To accurately predict whether a protein binds to metal ions and the type of metal ion-binding
protein, this study proposed a classifier named MIBPred. The classifier incorporated advanced Word2Vec technology from the field
of natural language processing to extract semantic features of the protein sequence language and combined them with position-
specific score matrix (PSSM) features. Furthermore, an ensemble learning model was employed for the metal ion-binding protein
classification task. In the model, we independently trained XGBoost, Light GBM, and CatBoost algorithms and integrated the output
results through an SVM voting mechanism. This innovative combination has led to a significant breakthrough in the predictive
performance of our model. As a result, we achieved accuracies of 95.13% and 85.19%, respectively, in predicting metal ion-binding
proteins and their types. Our research not only confirms the effectiveness of Word2Vec technology in extracting semantic
information from protein sequences but also highlights the outstanding performance of the MIBPred classifier in the problem of
metal ion-binding protein types. This study provides a reliable tool and method for the in-depth exploration of the structure and
function of metal ion-binding proteins.

1. INTRODUCTION electrophoresis, metal affinity column chromatography, elec-
trophoretic mobility assays, absorbance spectroscopy, and mass
spectrometry, often involve complex procedures and speci-
alized equipment.”'® These methods are not suitable for
unknown targets and are both time-consuming and labor-
intensive. With the advancement of high-throughput technol-
ogy, protein sequencing has become increasingly accessible. It
is easy to retrieve various metal ion-binding protein sequences
from diverse databases. Consequently, the development of an
accurate and efficient classifier utilizing metal ion-binding
protein sequences has become imperative.

Proteins serve as the executors of cellular functions and play a
crucial role in cell growth." According to their interaction with
metal ions, proteins can be categorized into two major types:
metal ion-binding proteins (MIBP) and nonmetal ion-binding
proteins (NMIBP). Nearly 40% of proteins in the Protein Data
Bank (PDB) have been found to bind to metal ions.”” Metal
ions are essential for maintaining the stability of protein
structures as well as for cellular biological functions such as
enzyme catalysis and gene expression regulation. For instance,
copper ion-binding proteins such as LOX (lysine oxidase),
MAP2K1, and SPARC are associated with promoting the
proliferation and invasion of tumor cells in lung cancer and
breast cancer.”” Therefore, identifying metal ion-binding
proteins and their types is conducive to understanding the
mechanisms of related diseases and designing targeted drugs.”

Unfortunately, methods for identifying metal ion-binding
proteins, such as nuclear magnetic resonance spectroscopy, gel
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In the past, many machine learning methods used for
predicting metal ion-binding proteins have shown outstanding
performance. For example, experts have developed Metal-
Predator and RPCIBP classifiers for predicting proteins related
to iron and sulfur clusters and copper ion-binding proteins,
respectively.ll_13 In addition, some studies have also achieved
favorable results in predicting metal ion-binding sites,
including iron ion-binding sites, zinc ion-binding sites, and
copper ion-binding sites.'*"* However, there is currently no
efficient and stable multimetal ion-binding protein classifier.

Ensemble learning is an excellent strategy for building
predictive models. In ensemble learning, it is essential to first
construct multiple basic learners, which can be parallel or
sequential. Subsequently, these basic learners are combined
and utilized in another machine learning method for
prediction."”~>* Common combination methods include
majority voting for classification problems and weighted
averaging for regression problems. However, we adopted an
innovative approach that utilized support vector machines
(SVMs)**** to automatically learn the voting rules from the
data to handle our prediction problem.”*~**

Word2Vec technology is a crucial technique in the field of
natural language processing.”” > It transforms vocabulary into
computable low-dimensional vector representations, solving
the issues of high dimensionality and inaccurate semantic
similarity in traditional methods. In protein research, under-
standing the semantic information and functions of the protein
sequence language is vital for revealing biological processes and
disease mechanisms. Word2Vec technology maps protein
sequences into high-dimensional vector spaces, preserving
semantic relationships between sequence languages and
offering a new avenue for protein research.”™
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In this study, we developed a classifier called MIBPred,
based on Word2Vec and ensemble learning. This classifier
successfully discriminates metal ion-binding proteins from
nonmetal ion-binding proteins and further identifies the
specific type of metal ion-binding proteins. Word2Vec
effectively extracts information from protein sequences,
significantly enhancing the predictive performance of the
model.**** The specific process is illustrated in Figure 1. We
collected sequences of six types of metal ion-binding proteins
and nonmetal ion-binding proteins, divided into training and
independent test sets in a ratio of 9:1. Features were extracted
using Word2Vec and reduced to 512 dimensions through
principal component analysis (PCA).*® Simultaneously, PSSM
matrices were generated for the protein sequences and also
reduced to 512 dimensions through PCA. These two types of
features were then fused. The fused features were individually
input into the XGBoost (extreme gradient boosting),
LightGBM (light gradient boosting machine), and CatBoost
(category boosting) machine learning algorithms.37_41 The
output values of these three algorithms were integrated into
the SVM for ensemble learning. Ultimately, our classifier
demonstrated excellent internal performance, and examination
on the independent test set confirmed the strong general-
ization and robustness of the model. The following section will
introduce the construction procession of the model in details.

2. MATERIALS AND METHODS

2.1. Datasets. In constructing a classifier with strong
predictive performance, the use of diverse and representative
datasets is crucial. We collected data from two widely used
protein databases, PDB and Uniprot,42’43 encompassing seven
distinct protein categories, including six types of metal ion-
binding proteins and nonmetal ion-binding proteins. Specifi-
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cally, metal ion-binding proteins include calcium ion-binding
proteins (4554), copper ion-binding proteins (570), iron ion-
binding proteins (2000), potassium ion-binding proteins
(986), manganese ion-binding proteins (1422), and zinc ion-
binding proteins (6124), while nonmetal ion-binding proteins
totaled 5477. For the purpose of model training, each protein
category was divided randomly into a training set comprising
90% of the samples and a separate independent test set
comprising 10% of the samples. Within this 90% training set, a
random 20% of the data were selected to form a validation set,
which was utilized for parameter fine tuning during the training
of XGBoost, LightGBM, and CatBoost models. Subsequently,
the aforementioned independent test set was further
subdivided into two parts at 7:3 ratio. The initial portion
was employed to train the SVM voting model, while the latter
portion was set aside for the final independent data testing.

2.2. Design of the MIBPred Classifier. We employed the
Word2Vec model to extract semantic features from the protein
sequence language, representing each protein sequence as a
low-dimensional vector of 512 dimensions (after PCA
dimensionality reduction).** Additionally, we utilized PSSM
features to reflect the evolutionary information on each amino
acid, which were also reduced to 512 dimensions through
PCA."" We adopted PCA dimensionality reduction technology
to accelerate the model training speed. By connecting these
two types of features, we obtained a 1024-dimensional feature
vector. This fusion strategy allows our model to comprehen-
sively capture protein feature information.

The fused features are independently trained by three
machine learning algorithms (XGBoost, LightGBM, and
CatBoost), which perform well in classification problems.
These algorithms are capable of handling complex nonlinear
relationships, significantly enhancing the predictive perform-
ance of the model. Each individual model generates a
prediction, and we input the predictions from these three
models into an SVM for voting. For the identification of metal
ion-binding protein types, our SVM adopts a one-vs-one
multiclassification method. Through the voting mechanism of
the SVM, we obtained the final prediction by integrating the
perspectives of each model. This voting fusion method
effectively enhances the accuracy and stability of predictions,
providing reliable results for the identification of metal ion-
binding proteins and their types.

2.3. MIBPred Classifier Parameter Settings. In our
study, we adopted the model of continuous bag of words
(CBOW) as the foundational architecture for Word2Vec. In
the parameter settings, we configured the word vector
dimensions to be 50, the maximum distance between the
current word and the predicted word to be 5, the learning rate
to be 0.0001, and the number of iterations to be S.
Additionally, we meticulously tuned the parameters of the
fundamental classifiers, namely, CatBoost, LightGBM, and
XGBoost, to achieve optimal performance in our predictive
model. For the CatBoost model, we set the number of
iterations to 2500, the learning rate to 0.06, and the maximum
depth to 7. We chose Logloss as the loss function and adjusted
the ’border_count’ parameter to 254 for optimizing feature
split points. In the LightGBM model, we utilized gradient
boosting decision trees as the boosting method, setting the
number of leaf nodes in each tree to 31. The learning rate was
set to 0.06, and the model was trained for 4000 iterations. To
prevent overfitting, we specified a minimum of 20 samples for
each leaf node and randomly selected 90% of the features
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during training. In the configuration of XGBoost, we specified
3000 iterations, a learning rate of 0.03, a maximum tree depth
of 6, a minimum leaf node weight of 1, and Logloss as the loss
function. In the ensemble approach, we employed support
vector machines (SVMs) as the voter, setting the regularization
parameter to 1 and utilizing the radial basis function as the
kernel. We also set the polynomial kernel function degree to 3
and the kernel function coefficient to ’scale’. When predicting
the types of metal ion-binding proteins, we made specific
modifications to certain parameters of the CatBoost model. We
increased the number of iterations to 5000, modified the
maximum depth to 8, and adjusted the learning rate to 0.09.
For the LightGBM model, we fine-tuned the number of
iterations to 2500 and the learning rate to 0.01. In the
XGBoost model, we set the number of iterations to 4500 and
the learning rate to 0.01. These parameter choices were
carefully balanced to achieve the optimal predictive perform-
ance across all models.

2.4. Performance Evaluation. The precision (P), recall
(R), accuracy (ACC), and F1 score were computed to measure
the performance of models across the prediction process.**~>*
According to the definition of these evaluation quantities, they
can be expressed as follows

TP

Pp=— —
TP + FP (1)
TP
R=——
TP + EN ()
TP + FP
ACC = +
TP + FP + TN + FN (3)
F1 — score = 2PR
P+R 4)

where TP, TN, FP, and EN represent the samples’ true
positive, true negative, false positive, and false negative,
respectively.

Above are the computation precision (P), recall (R), and F1
score for binary classing. For multiclass classification, we used a
weighted average calculation. Its specific formula is as follows

6 6
indexweighted = Z (w, X indexi)/z w, )
1 1 N)

where index,igneq represents the weighted average index, w;
represents the weight of the number of samples in each
category, and index; represents the metric of each category
(including P, R, F1 score).

3. RESULTS AND DISCUSSION
3.1. Discriminating MIBP from NMIBP. In biological

organisms, there are numerous metal ion-binding proteins that
are crucial for maintaining vital life activities and many
metabolic processes within the organism. However, there is
still relatively insufficient research on the classification of
various metal ion-binding proteins in this field. To address this
challenge, we designed a high-performance classifier based on
ensemble learning. This classifier can effectively determine
whether a protein binds to metal ions based on its amino acid
sequence. In our experiments, our classifier significantly
outperformed various outstanding machine learning algo-
rithms, including the SVM, decision trees, random forests,
XGBoost, LightGBM, and CatBoost, in identifying metal ion-
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Figure 2. Results of MIBPred for the predictions of metal ion-binding proteins. (A) Compared with other classic machine learning models used to
determine metal ion-binding proteins, MIBPred outperforms other models significantly, and four metrics exhibit greater stability in its performance.
(B) ROC curves were used to measure the prediction performance of MIBPred and other classical machine learning models. (C) Confusion matrix
results of MIBPred show that our model exhibits excellent performance in both positive and negative sample recognition tasks, indicating its

excellent effectiveness.

binding proteins. Specifically, our classifier achieved an ACC of
95.13% in identifying metal ion-binding proteins, with an FI1
score of 0.9663, a recall of 0.9652, and a precision of 0.9674
(Figure 2A and Table 1). The results demonstrate the excellent

Table 1. Comparison of Different Methods on the
Discrimination between MIBP and NMIBP“

classifier ACC P R F1 score
MIBPred 0.9513 0.9674 0.9652 0.9663
LightGBM 0.8791 0.8699 0.9775 0.9206
CatBoost 0.8691 0.8540 0.9869 0.9157
XGBoost 0.8603 0.8472 0.9822 0.9097
SVM 0.8422 0.8349 0.9719 0.8982
DT 0.8348 0.8313 0.9653 0.8933
RF 0.7616 0.7546 0.9888 0.8560

“Note: The bold font indicates the classifiers that work best.

performance of our classifier in terms of ACC, marking a
significant breakthrough. Additionally, the area under the
receiver operating characteristic curve (ROC) of the proposed
classifier was 0.9647, significantly higher than the area under
the ROC (AUC) values of SVM, decision trees (DT), random
forests (RF), XGBoost, LightGBM, and CatBoost (Figure 2B).
The confusion matrix analysis reveals a well-balanced perform-
ance of our model in both positive and negative samples
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(Figure 2C). This result indicates that our model exhibits
higher ACC and reliability in distinguishing positive and
negative samples, making it suitable for specific prediction
tasks related to this particular problem.

3.2. Predicting the Types of MIBP. We further
investigated the application of the MIBPred model in
predicting the types of metal ion-binding proteins, including
six common and important metal ions: Ca, Cu, Fe, K, Mn, and
Zn. Through testing, we found that our classifier outperformed
various classical machine learning models, such as SVM,
decision trees, and random forests. Specifically, our model
achieved satisfactory results in predicting the types of metal
ion-binding proteins, with an ACC of 85.19%, an F1 score of
0.8520, a recall of 0.8519, and a precision of 0.8571 (Figure 3A
and Table 2). Confusion matrix analysis revealed that our
model has excellent predictive performance for each metal
type, indicating that it performs well in distinguishing true
positive rates and false positive rates in various tasks related to
metal ion-binding proteins (Figure 3B). Our model provides a
powerful tool for the prediction task of metal ion-binding
protein types. This is of significant importance for under-
standing protein functions in living organisms, drug design,
disease research, and other fields. By accurately predicting the
types of metal ion-binding proteins, we can delve deeper into
the biochemical processes within living organisms.

https://doi.org/10.1021/acsomega.3c09587
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Figure 3. Results of MIBPred for predicting metal ion-binding protein types. (A) Compared with other classic machine learning models, MIBPred
is significantly superior, and four metrics exhibit highly balanced performance. (B) Confusion matrix reveals that MIBPred performs well in various

metal ion-binding protein recognition tasks.

Table 2. Comparison of Different Methods on the
Predictions of Metal Ion-Binding Protein Types”

classifier ACC P R F1 score
MIBPred 0.8519 0.8571 0.8519 0.8520
CatBoost 0.8137 0.8076 0.8091 0.8075
LightGBM 0.8137 0.8121 0.8137 0.8122
RF 0.8119 0.8101 0.8119 0.8102
XGBoost 0.8091 0.8120 0.8137 0.8119
DT 0.8007 0.8042 0.8007 0.8011
SVM 0.5690 0.5659 0.5690 0.5617

“Note: The bold font indicates the classifiers that work best.

3.3. Evaluation on the Data with Different Ratios. We
further examined the performance of our proposed model by
gradually decreasing training set proportions from 90% down
to 10% and compared it with the machine learning algorithms
mentioned earlier, including SVM, decision trees, random
forests, and others. The results demonstrate that our model
exhibited significantly higher ACC (Figure 4A,C) and AUC
(Figure 4B) values compared to other algorithms at data ratios
from 90 to 10%. This highlights the robustness and stability of
our model across varying training data sizes. Usually, as the
proportion of the training set decreases, the performance of the
model tends to deteriorate. However, our research indicates
that even with relatively small datasets, our model can still
extract valuable information, maintaining superior ACC and
predictive capability, significantly outperforming other classical
machine learning models. This outcome holds significant
practical relevance; especially, in situations where data are
limited or data collection scenarios are challenging, our model
can provide reliable predictive results.

3.4. Effectiveness of Word2Vec for Protein Sequence
Feature Extraction. In the data extraction phase, we
employed Word2Vec for semantic feature extraction of protein
sequences and fused it with PSSM features using a
concatenation strategy. Experimental results demonstrate that
the feature extraction method, which combines Word2Vec
with PSSM features, is superior to using PSSM features alone
(Figure SA,B and Table 3). Word2Vec technology can convert
protein sequences into low-dimensional vectors while preserv-
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ing the semantic relationships of the sequence language. By
integrating this structural information with PSSM features, our
model can more accurately capture valuable protein features,
thus improving the prediction performance. This data fusion
strategy not only enriches the feature space but also enhances
the model’s deep understanding of protein sequence
information, resulting in more accurate and reliable final
predictions.

3.5. Discussion. In this study, we presented MIBPred, a
novel computational model for predicting metal ion-binding
proteins and their types. By combining structural features
extracted using Word2Vec with PSSM features, our model
exhibits exceptional performance. The robustness and stability
of the model are particularly pronounced across varying data
proportions, highlighting its reliability in situations of limited
data availability, which is a common challenge in the field of
bioinformatics research.”**~%

The integration of Word2Vec structural features significantly
enhances the predictive capabilities of our model. By
transformation of protein sequences into low-dimensional
vectors, Word2Vec preserves intricate semantic relationships,
potentially capturing crucial information about interactions
between amino acids. The combination of these features with
PSSM provides a comprehensive perspective on protein
sequence analysis, enabling precise predictions with our
model. This innovative feature fusion method can be applied
to various bioinformatics tasks and holds the potential to
advance our understanding of complex biological phenomena
in the field.

In the context of individual model training, we selected
machine learning algorithms including XGBoost, LightGBM,
and CatBoost. Subsequently, we employed a voting mechanism
based on SVM training, which has been demonstrated to be a
successful strategy. Ensemble learning techniques are highly
regarded for their ability to leverage the advantages of multiple
models and compensate for their individual weaknesses. In our
study, this approach not only enhanced ACC but also
bolstered the model’s stability, rendering it highly suitable
for practical application scenarios where reliable predictions
are of paramount importance.

https://doi.org/10.1021/acsomega.3c09587
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Figure 4. Performance evaluation chart of the MIBPred model at different data ratios. (A) In the process of gradually decreasing the proportion of
training sets, we conducted a detailed comparison between the MIBPred model and other classical machine learning algorithms in predicting metal
ion-binding proteins. The results showed that the ACC of the MIBPred model was significantly higher than that of other models. (B) Next, in the
process of gradually reducing the proportion of training sets, we conducted an in-depth comparison between the MIBPred model and other
classical machine learning algorithms in predicting the types of metal ion-binding proteins. The results indicated that the ACC of the MIBPred
model was significantly higher than that of other models. (C) Simultaneously, we evaluated the AUC of this model in predicting metal ion-binding
proteins, and the results similarly demonstrated the superior performance of the MIBPred model compared to other models. These observations
underscore the outstanding performance of the MIBPred model in the task of predicting metal protein binding, even with a reduced training set
proportion.

A B

ACC Result Comparison Chart (2) ACC Result Comparison Chart (6)
1 0.9
0.95 Word2Vec+PSSM Word2Vec+PSSM
PSSM 0.85 PSSM
0.9
0.8
0.85
0.75
0.8
0.7
0.75
o7 0.65
0.65 0.6
0.6 0.55
0.55 0.5
0.5 0.45
MIBPred SVM DT RF XGBoost LightGBM CatBoost MIBPred SVM DT RF XGBoost LightGBM CatBoost

Figure S. Effectiveness evaluation chart of Word2Vec in protein sequence feature extraction. (A) By comparing the ACC results of the MIBPred
model with and without Word2Vec technology in the task of identifying metal ion-binding proteins, we observed that the classification performance
of various models was significantly enhanced when using Word2Vec technology. (B) In the task of classifying metal ion-binding protein types,
further validation of the ACC results of MIBPred with and without Word2Vec technology demonstrated that the classification performance was
significantly improved when Word2Ver technology was also used in various models.
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Table 3. Performance Comparison of the Fusion Features (Word2Vec+PSSM) and PSSM Alone”

feature MIBPred SVM

MIBP-NMIBP Word2Vec + PSSM 0.95 0.84
PSSM 0.87 0.81

MIBP types Word2Vec + PSSM 0.85 0.57
PSSM 0.78 0.47

DT RF XGBoost LightGBM CatBoost
0.83 0.76 0.86 0.88 0.87
0.79 0.76 0.84 0.84 0.83
0.80 0.81 0.81 0.81 0.81
0.75 0.77 0.77 0.77 0.77

“Note: The bold font indicates the classifiers that work best. “MIBP-NMIBP” represents metal ion-binding protein and nonmetal ion-binding
protein results. “MIBP types” represents the identification result of the metal ion-binding protein type.

Our model has the ability to predict the metal ion-binding
proteins and their types, providing valuable insights into their
sequence characteristics. This knowledge holds profound
implications for targeted therapy development and novel
drug design concerning diseases related to metal ion-binding
proteins. Despite the significant progress achieved in our
research, avenues for further investigation are present.
Exploring additional feature engineering techniques, integrat-
ing diverse biological data sources such as structures,®** ™% and
exploring alternative machine learning architectures may
enhance the predictive capabilities of the model.

4. CONCLUSIONS

This study established a powerful tool called MIBPred to
accurately predict metal ion-binding proteins and their types.
The Word2Vec structural features were proposed to combine
with the PSSM features to formulate protein samples.
Subsequently, an innovative learning strategy based on
ensemble learning techniques was employed that could provide
a reliable model for understanding complex biological
phenomena. This model is of great significance for disease
treatment and drug design. The source code has been
uploaded to GitHub and can be accessed at https://github.
com/ZhangHongqi215/MIBPred.
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