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ABSTRACT Bifidobacterium longum subsp. infantis is a prevalent beneficial bacterium that
colonizes the human neonatal gut and is uniquely adapted to efficiently use human milk
oligosaccharides (HMOs) as a carbon and energy source. Multiple studies have focused on
characterizing the elements of HMO utilization machinery in B. longum subsp. infantis;
however, the regulatory mechanisms governing the expression of these catabolic pathways
remain poorly understood. A bioinformatic regulon reconstruction approach used in this
study implicated NagR, a transcription factor from the ROK family, as a negative global
regulator of gene clusters encoding lacto-N-biose/galacto-N-biose (LNB/GNB), lacto-N-tet-
raose (LNT), and lacto-N-neotetraose (LNnT) utilization pathways in B. longum subsp. infantis.
This conjecture was corroborated by transcriptome profiling upon nagR genetic inactivation
and experimental assessment of binding of recombinant NagR to predicted DNA operators.
The latter approach also implicated N-acetylglucosamine (GlcNAc), a universal intermediate
of LNT and LNnT catabolism, and its phosphorylated derivatives as plausible NagR tran-
scriptional effectors. Reconstruction of NagR regulons in various Bifidobacterium lineages
revealed multiple potential regulon expansion events, suggesting evolution from a local reg-
ulator of GlcNAc catabolism in ancestral bifidobacteria to a global regulator controlling
the utilization of mixtures of GlcNAc-containing host glycans in B. longum subsp. infantis
and Bifidobacterium bifidum.

IMPORTANCE The predominance of bifidobacteria in the gut of breastfed infants is attrib-
uted to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs).
Thus, individual HMOs such as lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT) are
considered promising prebiotics that would stimulate the growth of bifidobacteria and
confer multiple health benefits to preterm and malnourished children suffering from
impaired (stunted) gut microbiota development. However, the rational selection of
HMO-based prebiotics is hampered by the incomplete knowledge of regulatory mecha-
nisms governing HMO utilization in target bifidobacteria. This study describes NagR-medi-
ated transcriptional regulation of LNT and LNnT utilization in Bifidobacterium longum subsp.
infantis. The elucidated regulatory network appears optimally adapted to simultaneous utili-
zation of multiple HMOs, providing a rationale to add HMO mixtures (rather than individual
components) to infant formulas. The study also provides insights into the evolution-
ary trajectories of complex regulatory networks controlling carbohydrate metabolism
in bifidobacteria.

KEYWORDS bifidobacteria, HMO, regulon, comparative genomics, evolution,
prebiotics, transcription factor, carbohydrate metabolism

Bifidobacteria are Gram-positive, anaerobic, saccharolytic microorganisms that colonize
the digestive tracts of humans and various animals (1). Certain Bifidobacterium species,

namely, Bifidobacterium longum subsp. infantis, Bifidobacterium longum subsp. longum,
Bifidobacterium bifidum, and Bifidobacterium breve often predominate the human neonatal
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gut microbiota (GM) during breastfeeding (2–5), and their predominance is directly linked
with the healthy development of the infant (6, 7). The health-promoting effects attributed
to the infant-associated bifidobacteria include protection from enteropathogen coloniza-
tion (8–10) and modulation of the immune system (11, 12).

Decreased Bifidobacterium abundance is characteristic of immature GMs observed in pre-
term infants (13) and children suffering from severe acute malnutrition (14, 15). Therapeutic
approaches aimed at restoring bifidobacterial population in these affected groups include
administering exogenous Bifidobacterium species (e.g., B. longum subsp. infantis) as probiotics
and/or food formulas containing prebiotics that would selectively stimulate the growth of
autochthonous bifidobacteria in the gut and thus confer beneficial properties to the infant
(13, 15–17). Since the prevalence of bifidobacteria in the neonatal gut is often attributed to
their ability to selectively utilize dietary human milk oligosaccharides (HMOs) (18–20), these
milk glycans are considered “natural” prebiotics and added to infant formulas (21).

HMOs are the third most abundant (5 to 20 g/L) component of human milk after lactose
(Lac) and lipids and are not assimilated by the infant (22). HMO building blocks include glu-
cose (Glc), galactose (Gal), N-acetylglucosamine (GlcNAc), L-fucose (Fuc), and N-acetylneura-
minic acid (Neu5Ac); these units formmore than 100 linear or branched oligosaccharide species
(23, 24). Most HMOs contain a Lac core (Galb1-4Glc) at the reducing end. The Lac core can
be elongated at the C-3 position of the galactose residue with a lacto-N-biose (LNB; Galb1-
3GlcNAc) or N-acetyllactosamine (Galb1-4GlcNAc) unit(s) (23, 24). The resulting HMO structures
are denoted as type I and type II chains, respectively, with lacto-N-tetraose (LNT) and lacto-
N-neotetraose (LNnT) as archetypes. Type I/II chains and the Lac core are often decorated by
Fuc and Neu5Ac residues via various a-glycosidic bonds.

Previous studies have revealed substantial variation in HMO utilization strategies
and capabilities within the Bifidobacterium genus (25–29). For example, B. bifidum uses
a set of membrane-attached glycoside hydrolases (GHs) that extracellularly degrade
HMOs to di- and monosaccharides (30–35) and then imports and catabolizes liberated
LNB and Lac (25). In contrast, B. longum subsp. infantis and B. breve import HMOs using
ATP-binding cassette (ABC) transporters and then degrade the oligosaccharides taken
up to monosaccharides intracellularly using a repertoire of exo-acting GHs (36).

B. longum subsp. infantis, which is widely used in probiotic and synbiotic formulations
(8, 15–17, 37), possesses several unique gene clusters (e.g., HMO cluster I or H1) that encode the
most elaborate HMO uptake (38–40) and intracellular degradation machinery (41–44) among
bifidobacteria (Fig. 1A and B). While the molecular mechanisms of HMO utilization by B. longum
subsp. infantis have received considerable attention, the regulatory mechanisms governing this
catabolic process remain poorly understood. Previous studies demonstrated that LNT and LNnT
induce a profound and surprisingly similar transcriptomic response in B. longum subsp. infantis
ATCC 15697, with multiple gene clusters (nag, lnp, H1) (Fig. 1B) being upregulated, pointing to
a possible global regulatory mechanism(s) (45, 46). Uncovering this yet unknownmechanism, in
addition to fundamental importance, has a potential translational value for the rational selection
of individual HMOs for prebiotic and synbiotic formulations.

Comparative genomic analysis across multiple related genomes is a powerful approach
for reconstructing transcriptional regulatory networks (regulons) controlling carbohydrate
utilization (47–49). Our earlier bioinformatic analysis conducted on a limited set of
Bifidobacterium genomes implicated NagR, a transcription factor (TF) from the ROK
family, as a regulator of nag and lnp clusters (Fig. 1B) encoding GlcNAc and lacto-N-biose/
galacto-N-biose (LNB/GNB) catabolic pathways, respectively, in B. bifidum, B. breve, B. longum
subsp. infantis, and B. longum subsp. longum (48). James et al. further experimentally
confirmed this prediction in B. breve UCC2003 (50). However, it was unclear whether and
how this knowledge translated to the global regulation of the extensive HMO utilization
machinery in B. longum subsp. infantis.

Here, we reconstructed NagR regulons in a substantially larger collection of
Bifidobacteriaceae genomes focusing on HMO-utilizing species. This analysis revealed
multiple putative NagR-binding sites (operators) in the B. longum subsp. infantis ATCC 15697
genome, suggesting the role of NagR as a global negative regulator of LNB/GNB, LNT, LNnT,
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and potentially other HMO utilization in this bacterium. This conjecture was corroborated by
transcriptome profiling of the nagR knockout mutant and by direct assessment of the bind-
ing of recombinant NagR to its predicted operators. The inferred NagR regulon structure in
B. longum subsp. infantis indicates that this microorganism is adapted to simultaneous

FIG 1 Reconstructed NagR regulon in B. longum subsp. infantis ATCC 15697. (A) Schematic representation of LNT, LNnT, and LNB/GNB utilization pathways in B. longum
subsp. infantis ATCC 15697. (Step 1) HMOs and their constituents are transported into the cell by various transport systems. (Step 2) Once inside the cell, HMOs are
degraded from the nonreducing end by a coordinated action of exo-acting GHs. Breakdown of glycosidic bonds by specific GHs is indicated by light orange circles. (Step
3) Released monosaccharides are converted to fructose-6P and enter the bifid shunt. (B) Gene clusters constituting the reconstructed NagR regulon in B. longum subsp.
infantis ATCC 15697. Numbers represent locus tags in the Blon_XXXX format (GenBank accession no. CP001095.1). (C) NagR-binding motif in B. longum subsp. infantis
ATCC 15697 based on 11 predicted operators.
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utilization of multiple HMOs, suggesting the use of rationally formulated HMO mixtures
rather than individual oligosaccharides as prebiotics. The reconstructed NagR regulons also
provide insights into the evolution of complex regulatory networks controlling carbohydrate
metabolism in bifidobacteria.

RESULTS
Genomic reconstruction reveals the complexity of the NagR regulon in B. longum

subsp. infantis. We used a position weight matrix (PWM)-based approach to reconstruct
the NagR regulon in B. longum subsp. infantis ATCC 15697 and identified 11 potential NagR-
binding sites (operators) in promoter regions of genes/operons encoding components of
HMO utilization pathways, including six previously unknown NagR operators within in the H1
cluster (Fig. 1A and B and see Table S3 in the supplemental material). Among the new puta-
tive NagR regulon members were genes encoding (i) LNnT (type II HMO) ABC transporters
(HmoABC, HmoA2B2C2), (ii) substrate-binding components of ABC transporters possibly
involved in HMO uptake (HmoA3, HmoA4, HmoA5, HmoA6), (iii) N-acetylneuraminate lyase
NanA2 and GH33 family a-sialidase NanH2, and (iv) lactose permeases (LacS, LacS2) (Fig. 1A
and Table 1). Overall, the reconstructed regulon contained 29 genes. The inferred NagR-
binding motif had a palindrome structure (Fig. 1C), a common feature of ROK family tran-
scriptional regulators (51).

ROK family TFs can function as transcriptional activators or repressors (51). To infer the
possible mode of action of NagR, we analyzed the position of predicted NagR operators relative
to235 and210 promoter elements recognized by bacterial RNA polymerase holoenzyme. Ten
of 11 predicted NagR operators overlapped with either 210 or 235 sequences (Fig. S1), sug-
gesting that NagR was a potential transcriptional repressor. Therefore, based on the genomic
reconstruction, we hypothesized that NagR was a global negative regulator of gene clusters
involved in LNB/GNB, LNT, and LNnT utilization in B. longum subsp. infantis ATCC 15697.

TABLE 1 Composition of the reconstructed NagR regulon in B. longum subsp. infantis ATCC 15697

Locus tag Gene Annotation Classificationa Reference
Blon_0879 nagK Putative ROK family N-acetylglucosamine kinase EC 2.7.1.59
Blon_0880 nagR Transcriptional regulator of LNB/GNB and HMO utilization ROK family This study
Blon_0881 nagB Glucosamine-6-phosphate deaminase EC 3.5.99.6
Blon_0882 nagA N-Acetylglucosamine-6-phosphate deacetylase EC 3.5.1.25
Blon_0883 gltF LNB/GNB ABC transporter substrate-binding protein TC 3.A.1.1 39
Blon_0884 gltG LNB/GNB ABC transporter permease protein 1 TC 3.A.1.1
Blon_0885 gltH LNB/GNB ABC transporter permease protein 2 TC 3.A.1.1
Blon_2171 lnpD UDP-hexose 4-epimerase EC 5.1.3.2 59
Blon_2172 lnpC UTP-hexose-1-phosphate uridylyltransferase EC 2.7.7.10 59
Blon_2173 lnpB N-Acetylhexosamine 1-kinase EC 2.7.1.162 59
Blon_2174 lnpA 1,3-b-Galactosyl-N-acetylhexosamine phosphorylase EC 2.4.1.211 63
Blon_2175 gltC LNT/LNB/GNB ABC transporter permease protein 2 TC 3.A.1.1.48
Blon_2176 gltB LNT/LNB/GNB ABC transporter permease protein 1 TC 3.A.1.1.48
Blon_2177 gltA LNT/LNB/GNB ABC transporter substrate-binding protein TC 3.A.1.1.48 39
Blon_2331 lacS2 Lactose MFS permease-2 TC 2.A.2
Blon_2332 lacS Lactose MFS permease-1 TC 2.A.2 84
Blon_2341 - Hypothetical protein
Blon_2342 hmoC2 Type II HMO ABC transporter permease protein 2 TC 3.A.1.1
Blon_2343 hmoB2 Type II HMO ABC transporter permease protein 1 TC 3.A.1.1
Blon_2344 hmoA2 Type II HMO ABC transporter-2 substrate-binding protein TC 3.A.1.1 39
Blon_2345 hmoC Type II HMO ABC transporter permease protein 2 TC 3.A.1.1
Blon_2346 hmoB Type II HMO ABC transporter permease protein 1 TC 3.A.1.1
Blon_2347 hmoA Type II HMO ABC transporter-1 substrate-binding protein TC 3.A.1.1 39
Blon_2348 nanH2 HMO cluster a-2,3/6-sialidase GH33 41
Blon_2349 nanA2 N-Acetylneuraminate lyase-2 EC 4.1.3.3
Blon_2350 hmoA3 Putative HMO ABC transporter-1 substrate-binding protein TC 3.A.1.1 39
Blon_2351 hmoA4 Putative HMO ABC transporter-2 substrate-binding protein TC 3.A.1.1 39
Blon_2352 hmoA5 Putative HMO ABC transporter-3 substrate-binding protein TC 3.A.1.1 39
Blon_2354 hmoA6 Putative HMO ABC transporter-4 substrate-binding protein TC 3.A.1.1 39
aTransporter Classification Database (TC) numbers for transporters, the CAZy family for GHs, Enzyme Commission (EC) numbers for downstream catabolic enzymes, and the
TF family for transcription factors are shown.
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Engineered nagR insertional mutant displays comparable yet distinct physio-
logical properties compared to the parental wild-type strain. To experimentally
study the proposed regulatory role of NagR, we generated a nagR knockout (nagR-KO)
mutant of B. longum subsp. infantis ATCC 15697 by insertional mutagenesis and verified
the insertion position using genomic PCR (Fig. S2A and B). The Spr gene insertion at the nagR
locus was maintained in the nagR-KO genome for at least 30 generations without antibiotic
pressure (Fig. S2C). We used empirical area under the curve (AUC) to integrate information
from growth curves of nagR-KO and wild-type (WT) strains cultivated in MRS-CS medium (see
Materials and Methods) supplemented with various carbon sources (Fig. 2A). The AUC values
for nagR-KO and WT strains grown in MRS-CS-Lac or MRS-CS-HMO were not significantly dif-
ferent (Fig. 2B). In contrast, the nagR-KO mutant had significantly lower AUC when grown in
MRS-CS supplemented with sucrose and significantly higher AUC in the medium containing
fructooligosaccharides (FOS) (Fig. 2B).

HMO consumption profiling of the WT and nagR-KO mutant grown in MRS-CS-HMO
revealed that both strains completely salvaged Lac, LNT, LNnT, 29/3-fucosyllactose (FL),

FIG 2 Growth of B. longum subsp. infantis ATCC 15697 WT and nagR-KO strains in MRS-CS supplemented
with various carbon sources (1% [wt/vol]). (A) Growth curves obtained by measuring OD600 at specific time
points. Data represent the mean 6 SD from three biological replicates. Time points where the OD600 values
for WT and nagR-KO strains were significantly different (*, Padj , 0.05) were identified using linear regression.
Bonferroni correction was used to adjust for multiple testing. (B) Empirical AUC calculated by integrating the
areas under growth curves. Data represent the mean 6 SD from three biological replicates. Means were
compared via Student's t test: ns, not significant (P . 0.05); *, P # 0.05; **, P # 0.01; ***, P # 0.01.
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and difucosyllactose (DFL) after 24 h (Fig. S3A). Compared to the WT strain, the nagR-KO mu-
tant consumed more LNT at the 4- and 8-h time points and displayed delayed consumption
of large fucosylated HMOs, namely, lacto-N-fucopentaoses (LNFP) I/II/III, and lacto-N-difuco-
hexaoses (LNDFH) I/II (Fig. S3A). The mutant also expelled less Fuc into the medium
(Fig. S3A). Metabolic profiling of supernatants of the WT and nagR-KO strains cultivated in
MRS-CS-HMO revealed that both strains released similar quantities of acetate (Fig. S3B).
However, the nagR-KO mutant produced significantly more formate and less lactate at the 8-,
12-, and 24-h time points (Fig. S3B). These data demonstrated comparable yet distinct physio-
logical properties of WT and nagR-KO strains, prompting a follow-up transcriptome profiling
to infer genes differentially expressed in the mutant.

Comparative transcriptomics corroborates the role of NagR as a global negative
regulator of LNB/GNB, LNT, and LNnT utilization in B. longum subsp. infantis.We used
transcriptome sequencing (RNA-seq) to compare transcriptomes of nagR-KO and WT
strains of B. longum subsp. infantis ATCC 15697 grown in MRS-CS supplemented with Lac or
LNnT, yielding four experimental conditions (Fig. 3A). The choice of carbon sources was
based on a previous study, where LNnT had induced many HMO utilization genes and Lac
had been used as a comparator (45). Principal component analysis (PCA) of TMM-normalized
(52) counts revealed that each experimental condition formed a distinct cluster (Fig. 3B).
Specifically, PCA separated samples by carbon source (principal component 1 [PC1], 38.8%
of the total variance) and strain (PC2, 21.1% of the total variance).

Linear modeling implemented in the limma framework (53) revealed significant upregu-
lation (fold change [FC] of.2 and adjusted P [Padj] value of,0.01) of multiple nag, lnp, and
H1 cluster genes in the nagR-KO strain grown in MRS-CS-Lac compared to the WT grown in
MRS-CS-Lac (Fig. 3C and Table S2A). Overall, 19 out of 29 genes constituting the recon-
structed NagR regulon were upregulated. These results demonstrate that NagR, in line with
the bioinformatic prediction, functions as a global transcriptional repressor of the nag, lnp, and
H1 loci in B. longum subsp. infantis ATCC 15697. In addition, we observed significant upregula-
tion of themalEFG operon encoding an ABC transport system for maltose (39) and significant
downregulation (FC ,22 and Padj , 0.01) of cscA, cscB, and cscR in the nagR-KO mutant
(Fig. 3C and Table S2A). The latter genes are involved in sucrose uptake and catabolism (54)
and are predicted to be controlled by a local repressor from the LacI family, CscR (48). The
downregulation of the csc genes was consistent with significantly decreased AUC of the nagR-
KO mutant cultivated in the medium supplemented with sucrose (Fig. 2B). No potential NagR
operators were identified in the promoter regions ofmalEFG and csc cluster genes, suggesting
that the effect of the nagR knockout on their expression was indirect.

RNA-seq of the WT strain revealed that 25 out of 29 genes constituting the predicted
NagR regulon were upregulated during growth in MRS-CS-LNnT compared to MRS-CS-Lac
(Fig. 3D and Table S2B). The expression of nag, lnp, and H1 cluster genes was higher in the
WT strain cultured in the presence of LNnT than in the nagR-KO mutant cultured in MRS-
CS-Lac (Fig. S4). These observations point to the presence of additional transcriptional
activation mechanism(s) that may contribute to the upregulation of these gene clusters
during the growth of B. longum subsp. infantis in the medium containing LNnT. In addi-
tion, we observed a significant upregulation of malK (Fig. S4 and Table S2B), encoding a
shared ATPase component that potentially energizes multiple carbohydrate-specific ABC
transporters in B. longum subsp. infantis (48). The upregulation of malK is likely tied with
the enhanced energetic needs associated with the induction of genes encoding multiple
ABC transport systems (GltFGH, GltABC, HmoABC, HmoA2B2C2, HmoA3 to A5).

Overall, the obtained transcriptomic data are consistent with the bioinformatic regulon
reconstruction and demonstrate that NagR regulates LNB/GNB, LNT, and LNnT utilization in
B. longum subsp. infantis by repressing genomic loci encoding (i) transporters of respective
glycans and (ii) GlcNAc and LNB/GNB catabolic pathways.

Interaction of NagR with predicted operators is dependent on GlcNAc and its
phosphorylated derivatives. To test the interaction between NagR and its predicted
binding sites, we cloned the nagR gene from B. longum subsp. infantis ATCC 15697 and
expressed the recombinant protein as a fusion with an N-terminal His tag in Escherichia
coli BL21(DE3). The electrophoretic mobility shift assay (EMSA) demonstrated that NagR
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specifically bound DNA fragments (probes) containing candidate NagR operators located
upstream of nagK, nagB, gltA, hmoA, hmoA2, and hmoA3 genes (Fig. 4A and B and Fig. 5).
Titration with increasing concentrations of NagR revealed that probes nagK, nagB_I, hmoA,
hmoA2 had a high affinity for NagR (50% effective concentration [EC50], 13 to 23 nM),
whereas probes gltA and hmoA3 had a moderate one (EC50, 140 to 180 nM) (Fig. 5). Reactions

FIG 3 RNA-seq of WT and nagR-KO strains grown in MRS-CS supplemented with Lac or LNnT. (A) Schematic representation
of the experimental design; (B) PCA of TMM-normalized count data. Each data point represents one sample. (C and D)
Volcano plots depicting the log2 FC of gene expression versus the 2log10 Padj. Panel C compares nagR-KO and WT strains
grown in MRS-CS-Lac, whereas panel D compares the WT strain grown in MRS-CS-LNnT and MRS-CS-Lac. Criteria for calling
differentially expressed genes were as follows: Padj , 0.01 and absolute FC . 2. Genes constituting the reconstructed NagR
and CscR regulons are colored in orange and purple, respectively.

HMO Utilization in B. longum subsp. infantis mSystems

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00343-22 7

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00343-22


with probes nagB_II and hmoA6 did not manifest in robust shifts even at high (.500 nM) pro-
tein concentrations (Fig. S5A). These results demonstrate that NagR exhibits different affinities
to its various operators. We also observed a significant negative correlation (Pearson R =20.84,
P , 0.05) between calculated EC50 values for probes and expression FCs for corresponding
genes in the RNA-seq experiment (nagR-KO mutant versus WT grown in MRS-CS-Lac) (Fig. 3C
and 4C), indicating themore tightly NagR bound to an operator, the stronger was the observed
upregulation of a respective gene in the nagR-KO strain.

To identify potential NagR effector molecules, we used a probe with a high affinity to
NagR (hmoA) and added various GlcNAc metabolism intermediates (GlcNAc, GlcNAc-6P,
GlcN-6P, GlcNAc-1P) to the binding reaction mixture. GlcNAc, GlcNAc-6P, and GlcNAc-1P,
but not GlcN-6P, disrupted the NagR-DNA complex at a saturating (10 mM) concentration
(Fig. 4D). Titration of the effectors revealed that GlcNAc-6P lost its complex-disrupting
effect at 1 mM, whereas GlcNAc and GlcNAc-1P lost their effect at 0.1 mM (Fig. S5B). The
calculated effector EC50 values were 0.33 6 0.05 mM for GlcNAc and 0.49 6 0.06 mM for
GlcNAc-1P (Fig. 4E).

Overall, the EMSA results demonstrate that (i) NagR binds its predicted operators with vari-
ous affinities, and (ii) multiple GlcNAc metabolism intermediates disrupt NagR-DNA interactions
in vitro and thus serve as plausible NagR transcriptional effectors in B. longum subsp. infantis.

The NagR regulon was a subject of evolutionary expansion in Bifidobacteriaceae.
We used the PWM-based approach to identify NagR binding motifs and reconstruct regu-
lons in 25 genomes representing various phylogenetic lineages within the Bifidobacteriaceae
family to trace the potential evolutionary history of this gene regulatory network. Overall,
the sizes and compositions of the reconstructed NagR regulons markedly varied among
the studied genomes (Fig. 6A and Table S3). For instance, early diverged Bifidobacterium

FIG 4 Interactions of recombinant NagR with predicted operators and screening of NagR effectors. (A) Predicted NagR operators identified in the promoter regions
of listed genes. Conserved nucleotides are in boldface. The full sequences of probes used in EMSAs are given in Table S1. (B) EMSA gel showing interactions of
NagR with DNA probes containing predicted operators. The NagR concentration was 25 nM, and probe concentrations were 1 nM. The ybdO probe was used as a
control for nonspecific binding. (C) Correlation between probe EC50 values determined via EMSA and expression FCs of cognate genes in the RNA-seq experiment
(nagR-KO mutant versus WT grown in MRS-CS-Lac). (D) Effect of various GlcNAc metabolism intermediates (10 mM) on the interaction between NagR (25 nM) and
the hmoA probe (1 nM). (E) EC50 values of selected NagR effector molecules. The y axis depicts the ratio % shift with effector/% shift without effector. Calculated
EC50 values are shown as big circles. Concentrations of NagR and the hmoA probe were 25 nM and 1 nM, respectively.
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FIG 5 EMSA gels depicting titration of DNA probes (1 nM) containing predicted NagR operators with recombinant NagR. Gels were
quantified, and the results were approximated by the 4PL equation. The NagR concentration at which half of the probe is shifted (EC50)
is shown. Gray shading depicts 95% confidence intervals. The x axis is in the log10 scale.
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FIG 6 Evolution of the NagR regulon and binding motif within the Bifidobacteriaceae family. (A) NagR regulon composition in 25 Bifidobacteriaceae
strains mapped on a species tree built based on the alignment of 247 core genes. Bootstrap values are shown as purple circles. Black symbols

(Continued on next page)
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species isolated from insects and dairy products possessed concise NagR regulons comprised
of a single genomic locus (nag) encoding GlcNAc and predicted N,N9-diacetylchitobiose cata-
bolic pathways (Text S1). This observation suggests that in ancestral bifidobacteria, the role of
NagR was likely confined to local regulation of the GlcNAc catabolic pathway.

We observed gradual NagR regulon expansion in multiple Bifidobacterium genomes isolated
from mammalian hosts (Fig. 6A, Table S3, and Text S1). The largest and most complex NagR
regulons were identified in strains isolated from the human neonatal gut, namely, B. longum
subsp. infantis ATCC 15697 and B. bifidum PRL2010. While in B. longum subsp. infantis, the
NagR regulon expanded to include multiple HMO transporters encoded within the H1 cluster
(Fig. 1B), in B. bifidum, the reconstructed regulon contained genes encoding multiple GHs
involved in the extracellular degradation of HMOs and mucin O-glycans (Text S1). Additionally,
the NagR regulon expansion was accompanied by minor variations in the NagR-binding motif
(Fig. 6B and Text S1). Taken together, the comparative regulon reconstruction suggests that
NagR evolved from a local regulator of GlcNAc catabolism in ancestral bifidobacteria to a global
regulator of utilization of various host glycans (e.g., HMOs) in species isolated from themamma-
lian neonatal gut.

DISCUSSION
Regulation of HMO utilization in B. longum subsp. infantis. The predominance of

bifidobacteria in the infant gut is linked to their ability to consume and use HMOs as a
carbon source (25, 26, 38, 40, 55, 56). B. longum subsp. infantis possesses a unique gene clus-
ter (H1) that encodes multiple catabolic enzymes and components of ABC transporters that
endow this species with the ability to utilize a multitude of HMOs (25, 36, 38). Previous stud-
ies demonstrated that a pooled HMO mixture and individual HMOs (LNT and LNnT) induce
the expression of H1 and nag cluster genes in B. longum subsp. infantis ATCC 15697, sug-
gesting that H1 acts as an HMO-inducible unit and is coregulated with the GlcNAc cata-
bolic pathway (45, 46). However, the regulatory mechanisms underlying this phenomenon
were not elucidated.

In this study, we have established NagR-mediated repression of H1, lnp, and nag cluster
genes in B. longum subsp. infantis ATCC 15697 by combining PWM-based regulon recon-
struction with transcriptome profiling of the nagR-KO mutant. The composition of the NagR
regulon suggests that this global TF regulates the utilization of LNB/GNB, LNT, LNnT, and
potentially other decorated (e.g., sialylated) type I and II HMOs in B. longum subsp. infantis.
We have also demonstrated the concentration-dependent binding of recombinant NagR to
its predicted operators in vitro. The EC50 values inferred from EMSAs negatively correlated
with fold change values for upregulated genes in the nagR-KO mutant. Thus, the degree of
gene repression by NagR is strongly dependent on the affinity of this TF to its cognate opera-
tors in the promoter regions of corresponding genes.

We identified GlcNAc and its phosphorylated derivatives, GlcNAc-6P and GlcNAc-1P, as
potential NagR transcriptional effectors in B. longum subsp. infantis ATCC 15697. This result is
somewhat unexpected since James et al. previously reported GlcNAc-6P, but not GlcNAc, as
the NagR transcriptional effector in B. breve UCC2003 (50). This discrepancy may reflect a meta-
bolic adaptation to the more global nature of NagR regulon in B. longum subsp. infantis,
although, alternatively, it may be due to the differences in the experimental approach, which in
our case was based on the use of purified recombinant NagR for EMSAs versus crude cell lysate
as in the previous study (50). EMSA data indicated that the acetyl group of these intermedi-
ary metabolites played a crucial role in NagR-effector interactions, whereas phosphoryla-
tion of GlcNAc appeared to be dispensable. While GlcNAc and GlcNAc-6P have been
described as transcriptional effectors of the ROK family TFs (50, 57, 58), the potential effec-
tor role of GlcNAc-1P is novel and unexpected. Although N-acetylhexosamine 1-kinase

FIG 6 Legend (Continued)
indicate strain isolation sources. Regulon members are colored according to their function: catabolic enzymes are green, GHs are orange, and
transporters are blue. (B) NagR-binding motifs mapped on a tree of NagR proteins from 25 Bifidobacteriaceae strains. Bootstrap values are shown as
purple circles. NagR paralogs in B. bohemicum and B. bifidum are denoted by the numbers 1 and 2.

HMO Utilization in B. longum subsp. infantis mSystems

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00343-22 11

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00343-22


(LnpB) can phosphorylate GlcNAc to GlcNAc-1P (59), no enzymes that convert the latter to
GlcNAc-6P and thus shunt it to the GlcNAc catabolic pathway have been described in pro-
karyotes (60). In contrast, GlcNAc-1P can be converted to UDP-GlcNAc by GlcNAc-1P uri-
dyltransferase (GlmU) and enter the peptidoglycan biosynthesis pathway (61). Therefore,
additional studies are required to assess the biological significance of GlcNAc-1P functioning
as a potential NagR transcriptional effector.

Based on the obtained data, we propose a model (Fig. 7) in which the release of GlcNAc
during degradation of LNT and LNnT by intracellular GHs results in derepression of nag, lnp,
and H1 clusters, including genes encoding LNT and LNnT transporters. This model explains
the similarity of transcriptomic responses of B. longum subsp. infantis to LNT or LNnT in
batch cultures (45, 46) and gnotobiotic mice (15) and suggests that utilization of any
GlcNAc-containing glycan by this bacterium will result in the upregulation of NagR-con-
trolled genes. Among these glycans might be particular fucosylated HMOs (e.g., LNFP I) and
milk N-glycans imported by other ABC transport systems (15, 40). Consistent with this
notion, a previous study demonstrated that B. longum subsp. infantis upregulates nag and
H1 cluster genes (62) when utilizing N-glycosylated human lactoferrin. The proposed model,
however, does not explain all transcriptional responses observed during HMO utilization by
B. longum subsp. infantis. The transcriptomic profile of the WT strain grown in MRS-CS-LNnT
suggests that additional mechanisms may coactivate the expression of NagR regulon genes
(particularly within the lnp cluster) under physiologically inducing conditions.

The structure of the NagR-mediated transcriptional network in B. longum subsp. infantis
likely reflects the evolutionary adaptation of this bacterium to simultaneous foraging of mul-
tiple distinct HMOs and other milk glycans. This notion suggests that using a mixture of LNT
and LNnT (and potentially other HMOs) rather than individual oligosaccharides as a prebiotic
may be a more efficient solution for selective stimulation of B. longum subsp. infantis growth
in the neonatal gut since it considers the nuanced regulatory mechanisms and physiology
of the target organism.

Evolution of the NagR regulon in bifidobacteria. Evolution of B. longum subsp.
infantis was shaped by its ecological niche, specifically adaptation to the foraging of dietary

FIG 7 Model of NagR-mediated regulation of HMO utilization in B. longum subsp. infantis. (Step 1) GlcNAc-
containing milk glycans (e.g., LNT and LNnT) are taken up into the cell by various ABC transporters. (Step 2) Once
inside the cell, the glycans are degraded by intracellular GHs, and GlcNAc is released. (Step 3) Released GlcNAc
interacts with NagR and disrupts the NagR-operator complex, leading to derepression of NagR-controlled genes.
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milk glycans (e.g., HMOs) abundantly present in the gut of breastfed infants (38). This adap-
tation led to the emergence of several unique gene clusters, such as H1 (38), controlled by a
complex NagR regulatory network. However, other Bifidobacterium species inhabiting the
neonatal gut, such as B. breve and B. longum subsp. longum, do not harbor the H1 cluster
and have less complex NagR regulons (48, 50). Thus, to elucidate the plausible evolutionary
history of the NagR regulon, we reconstructed its content in 25 representative genomes
spanning 18 Bifidobacterium species and one Alloscardovia species isolated from various
hosts and environments.

The regulon structure in early diverged Bifidobacterium species (e.g., B. asteroides and
B. aquikefiri) suggests that NagR potentially functioned as a local regulator of a single
gene cluster involved in GlcNAc and possibly N,N9-diacetylchitobiose catabolism in ancestral
bifidobacteria. Bifidobacteria colonizing mammalian hosts have acquired various gene clusters
encoding the catabolic machinery involved in host glycan utilization. For example, most bifi-
dobacteria isolated from mammals (including humans) harbor the lnp cluster encoding a
transporter and a catabolic pathway for LNB and GNB, structural components of various milk
(HMOs and glycolipids) and intestinal (mucin O-glycans) glycans, respectively (59, 63–65). The
involvement of the lnp cluster in the reconstructed NagR regulons suggests transitioning from
a local to a multilocus-controlling TF. Bifidobacterium pseudocatenulatum and two closely
related species lacking the lnp genes have NagR regulons potentially expanded to control the
LNB/LNT utilization machinery (gltABC-nagK-hex1-nagB-nagA and bga42A genes). The structure
of the reconstructed NagR regulon in B. pseudocatenulatum is consistent with a recently pub-
lished transcriptomic data set in which the expression of these genes was induced by LNFP I
(66). Although the import of LNFP I is mediated by an ABC transport system for fucosylated
HMOs (55, 66) and not GltABC, the GlcNAc released during the degradation of this oligosac-
charide was likely responsible for the derepression of NagR-controlled genes.

Independent NagR regulon expansion events potentially occurred in prevalent infant-
associated species with the highest HMO utilization potential: B. longum subsp. infantis
and B. bifidum. In two closely related strains of B. longum subsp. infantis, the reconstructed
regulon includes multiple HMO transporter genes from the H1 cluster, whereas in B. bifidum,
NagR potentially regulates extracellular GHs involved in HMO and mucin O-glycan degrada-
tion. These observations provide a fascinating example of how catabolic machinery correspond-
ing to two distinct strategies of HMO utilization (intracellular in B. longum subsp. infantis ver-
sus extracellular in B. bifidum) may have converged toward transcriptional control by the
same TF. The structure of the reconstructed NagR regulon in B. bifidum PRL2010 partially
explains the upregulation of nag, lnp, and genes encoding extracellular GHs during the
growth of this strain in a mucin-supplemented medium (56).

Potential expansion of regulons for carbohydrate metabolism genes has been previously
described in various bacterial lineages (67, 68), including bifidobacteria (69, 70). However, the
underlying rationale of these expansion events to include specific genes/operons was not
always straightforward. Here, we hypothesize that the NagR regulon expansion to control
genes involved in the catabolism of GlcNAc-containing host glycans in Bifidobacterium might
be linked to the ability of NagR orthologs to sense GlcNAc and/or its phosphorylated deriva-
tives (50). Interestingly, other ROK family TFs have been implicated in regulating the utilization
of GlcNAc-containing glycans in bifidobacteria. For example, in B. breve UCC2003, while NagR
functions as a negative regulator of LNB/GNB and LNT utilization pathways, its paralog, NahR,
represses a gene encoding an LNnT transporter (50). Another NagR paralog in this strain,
AtsR2, represses a gene cluster involved in utilizing GlcNAc-6S, a mucin O-glycan-constituting
saccharide released by 6-sulfo-b-N-acetylglucosaminidase BbhII (71, 72). Different GlcNAc
derivatives were reported as effector molecules of these TFs: GlcNAc for NahR and GlcNAc-6S
for AtsR2 (50, 71). Finally, a recently identified NagR paralog in B. longum subsp. infantis
Bg_2D9, NglR, potentially controls a gene cluster involved in the metabolism of complex
N-glycans (15). These data suggest that the evolution of gene regulatory networks govern-
ing the utilization of GlcNAc-containing glycans in bifidobacteria was not limited to the
NagR regulon expansion. Another scenario might have involved duplication(s) of the
nagR gene after speciation followed by the functional divergence of emerged paralogs.
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Overall, these observations illustrate how bifidobacteria adapted to regulate the foraging
of host glycans during the colonization of mammalian hosts and shed more light on
how complex regulatory networks emerge and evolve.

MATERIALS ANDMETHODS
Reagents and bacterial strains. Reagents were purchased from Alfa-Aesar (Tewksbury, MA, USA),

Ambion (Austin, TX, USA), Combi-Blocks (San Diego, CA, USA), Sigma-Aldrich (St. Louis, MO, USA), and
Invitrogen (Carlsbad, CA, USA), unless indicated otherwise. Synthetic LNnT (.95% purity) was generously
donated by DSM (Heerlen, Netherlands). The HMO mixture was prepared from pooled human milk (55). The ex-
perimental protocol was reviewed and approved by the Ethics Committee of Kyoto University (R0046); the study
was performed per the Declaration of Helsinki, and informed consent was obtained from all mothers (all subjects).
Oligonucleotides were synthesized by Integrated Genomic Technologies (Coralville, IA, USA). Phusion high-fidelity
DNA polymerase, restriction enzymes, and Quick Ligase were purchased from New England BioLabs (Ipswich,
MA, USA).

The type strain of B. longum subsp. infantis (ATCC 15697 = JCM 1222) was obtained from Japan
Collection of Microorganisms (RIKEN BioResource Research Center, Tsukuba, Japan). Escherichia coli DH5a
and One Shot TOP10 (Invitrogen) cells were used for genetic manipulations. E. coli BL21(DE3) (New England
BioLabs) was used for recombinant NagR overexpression.

Bioinformatic analysis. A previously established comparative genomics approach was used to identify
putative NagR binding sites and reconstruct regulons in B. longum subsp. infantis ATCC 15697 and other
selected strains (48, 69). For the initial NagR regulon reconstruction, we built a PWM based on data available in
the RegPrecise database (48, 73) using SignalX (74). To improve the identification of NagR operators, we built
additional PWMs representing two different NagR-binding motifs specific for distant bifidobacterial lineages.
Constructed PWMs were used to search for new potential NagR operators using GenomeExplorer (74) with the
following parameters: (i) positions2500 to150 bp relative to the first codon of a gene and (iii) site score thresh-
old of 4.3. Identified sites were screened using the consistency check and phylogenetic footprinting approaches
to filter out false positives (75). NagR-binding motifs were visualized via WebLogo (76). Positions of the 210 and
235 promoter elements were determined via similar PMW-based searches based on data available for B. breve (77)
and B. longum (78). Promoter regions were aligned using Pro-Coffee (79). Details on additional genomic analysis of
Bifidobacterium strains and phylogenetic inference are available in Text S1 in the supplemental material.

Targeted nagR gene disruption in B. longum subsp. infantisATCC 15697. A single-crossover recombi-
nation event was used to inactivate the nagR gene (Blon_0880; UniProt entry B7GQA0) in B. longum
subsp. infantis ATCC 15697. Briefly, a BamHI-digested, 2.0-kb fragment of pBS423 (80) that carries the
pUC ori and a spectinomycin resistance (Spr) gene was self-ligated to generate pTK2051, a plasmid inca-
pable of replicating in bifidobacteria. The internal region of nagR was then amplified by PCR using pri-
mers NagR_I/NagR_II (Table S1) and genomic DNA as a template. The amplified 0.5-kbp fragment was
inserted into the BamHI site of pTK2051 using the In-Fusion Snap Assembly kit (TaKaRa Bio USA, Mountain
View, CA, USA). The resulting suicide plasmid was introduced into B. longum subsp. infantis by electroporation
(40). To prepare electrocompetent cells, B. longum subsp. infantis ATCC 15697 was grown in 50 mL of Gifu an-
aerobic medium (GAM; Nissui Pharmaceutical, Tokyo, Japan) to an optical density at 600 nm (OD600) of 0.2.
Cells were harvested by centrifugation (4,800 � g for 15 min at 4°C), washed with ice-cold 1 mM ammonium
citrate buffer (pH 6.0) containing 50 mM sucrose, and resuspended in 400 mL of the same buffer. An aliquot
(200mL) was mixed with 10mg of the suicide plasmid and then pulsed using a Gene Pulser Xcell system (Bio-
Rad Laboratories, Hercules, CA, USA) with 10 kV/cm, 25 mF, and 200 X. The pulsed cells were immediately
mixed with 800 mL of 1% (wt/vol) Lac-supplemented GAM and incubated at 37°C under anoxic conditions for
3 h before being spread on GAM agar plates containing 1% (wt/vol) Lac and 15 mg/mL spectinomycin (Sp).
Colonies that appeared on the plates were subsequently subjected to a genomic PCR analysis at the nagR
locus using primers NagR_III/NagR_IV (Table S1 and Fig. S2A). The amplicon was directly sequenced to ensure
that the suicide plasmid was integrated into the intended site. The stability of the Spr gene insertion in the ab-
sence of antibiotic pressure was additionally monitored (Text S1).

Culture conditions. B. longum subsp. infantis ATCC 15697 was routinely grown in GAM or Lactobacilli
MRS broth without dextrose (Alpha Biosciences, Baltimore, MD, USA) with 0.34% (wt/vol) sodium ascorbate
and 0.029% (wt/vol) L-cysteine–HCl monohydrate (MRS-CS). The MRS-CS medium was supplemented with Lac,
LNnT, or a mixture of neutral HMOs at a final concentration of 1% (wt/vol). Cultures were incubated at 37°C in
an AnaeroPack system (Mitsubishi Gas Chemical Company, Tokyo, Japan) or a chamber maintained with a gas
mix of 10% H2, 10% CO2, and 80% N2 (Coy Laboratory Products, Grass Lake, MI, USA). Growth was monitored
by measuring either culture turbidity in McFarland units using a DEN-1B densitometer (Grant Instruments,
Shepreth, United Kingdom) or optical density at 600 nm (OD600) using a DU800 spectrophotometer (Beckman
Coulter, Brea, CA, USA). E. coli strains were cultured in Luria-Bertani broth at 37°C with vigorous agitation.
Where appropriate, growth media were supplemented with spectinomycin (15 mg/mL for B. longum subsp.
infantis ATCC 15697 nagR-KO, 75 mg/mL for E. coli DH5a) or kanamycin (50 to 60 mg/mL for all other E. coli
strains). Details on measuring the growth, HMO consumption, and organic acid production are described in
Text S1.

Transcriptome analysis. Overnight cultures of B. longum subsp. infantis ATCC 15697 WT and nagR-
KO strains grown in MRS-CS-Lac (with Sp in the case of nagR-KO) were harvested, washed with sugar-free MRS-
CS, and used to inoculate antibiotic-free MRS-CS medium supplemented with either Lac or LNnT (1% [wt/vol]) at
an OD600 of 0.02. Samples (2 mL, biological triplicates) were collected at the early to mid-exponential phase
(OD600 = 0.35) and immediately pelleted in a prechilled centrifuge at 4,800 � g for 5 min. Cell pellets were snap-
frozen in liquid nitrogen and stored at 280°C until further use. RNA was extracted as described previously (81)
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with minor modifications; the detailed protocol can be found in Text S1. rRNA was depleted with the NEBNext
rRNA depletion kit for bacteria (New England Biolabs). Barcoded libraries were made with NEBNext Ultra II direc-
tional RNA library prep kit for Illumina (New England Biolabs). Libraries were pooled and sequenced (single-end
75-bp reads) on Illumina NextSeq 500 using the High Output V2 kit (Illumina, San Diego, CA, USA). Sequencing
data were analyzed as described previously (82) with certain modifications; the details are described in Text S1.

Cloning, expression, and purification of recombinant NagR. Codon-optimized nucleotide sequence
of nagR (Blon_0880) was synthesized by GeneArt gene synthesis (Thermo Fisher Scientific, Waltham, MA,
USA), PCR amplified using primers NagR_HisN_F and NagR_HisN_R (Table S1), digested by BamHI and SalI, and
ligated into a predigested in-house pET-49b(1) vector conferring resistance to kanamycin. The ligation mixture
was introduced into E. coli One Shot TOP10 cells by chemical transformation, and transformants were then
selected based on kanamycin resistance. The recombinant NagR was expressed as a fusion with the N-terminal
His tag under the control of a T7 promoter in E. coli BL21(DE3). Cells were grown in LB medium (50 mL) at
37°C to an OD600 of ;0.6 and then transferred to 16°C. Protein expression was induced by adding 0.2 mM
IPTG (isopropyl-b-D-thiogalactopyranoside). Cells were grown at 16°C overnight and collected by centrifuga-
tion at 4,800� g for 15 min. Harvested cells were resuspended in a lysis buffer containing 10 mM HEPES buffer
(pH 7.0), 100 mM NaCl, 0.15% Brij-35, and 5 mM b-mercaptoethanol. Cells were lysed by a freeze-thaw cycle,
followed by sonication using Misonix sonicator 3000 (Misonix, Inc., Farmingdale, NY, USA). The cell debris was
removed; the soluble fraction was loaded onto a Ni-nitrilotriacetic acid (NTA) agarose minicolumn (0.2 mL)
(Qiagen, Hilden, Germany). The column was washed with 10 column volumes of At buffer (50 mM Tris-HCl [pH
8.0], 500 mM NaCl, 20 mM imidazole, 0.3% Brij-35, 5 mM b-mercaptoethanol) and 10 column volumes of At
buffer with 1 M NaCl. Captured proteins were eluted with 0.6 mL of At buffer with 300 mM imidazole. The
eluted protein fraction was concentrated and buffer exchanged into 10 mM Tris-HCl (pH 8.0) with 50 mM NaCl
using 30-kDa Amicon Ultra 0.5-mL centrifugal filters (Millipore Sigma, Burlington, MA, USA). The protein con-
centration was determined by a Qubit protein assay kit (Invitrogen).

Electrophoretic mobility shift assay. Oligonucleotides containing predicted 21-bp NagR operators
and surrounding genomic regions (14 bp from each end) were synthesized by Integrated DNA Technologies. The
DNA fragment sequences, sizes, and labels used for testing are given in Table S1. Double-stranded labeled DNA
probes were obtained by annealing IRD700-labeled oligonucleotides with unlabeled complementary oligonu-
cleotides (ratio of 1:5) in a mixture of 4 mM Tris-HCl (pH 8.0), 20 mM NaCl, and 0.4 mM EDTA in a Mastercycler
PRO thermal cycler (Eppendorf) overnight. Binding reactions were carried out with a final volume of 20 mL in
binding buffer containing 10 mM Tris-HCl (pH 7.5), 50 mM KCl, 5 mM MgCl2, 2.25 mM dithiothreitol (DTT),
0.125% Tween 20, and 2.5% glycerol. DNA probes (1 nM) were incubated with increasing concentrations of the
purified NagR (0 to 2,000 nM) for 60 min at room temperature. Reaction mixtures were loaded on a Novex 6%
DNA retardation gel (Thermo Fisher Scientific) and run in 0.5� Tris-borate-EDTA buffer (Thermo Fisher Scientific)
at 100 V and room temperature for 45 min in XCell SureLock minicell electrophoresis system (Thermo Fisher
Scientific). Gels were visualized using Odyssey CLx (Li-COR Biosciences, Lincoln, NE, USA). Bands were quantified
in Image Studio v5.2 (Li-COR Biosciences). The resulting data were imported into R and approximated by a 4PL
equation in the drc package (83) to calculate EC50 values. In the 4PL model, the lower limit was fixed at 0 and the
upper limit at 1. To identify possible NagR effectors, binding reactions were carried out with 25 nM NagR and the
addition of 0.1 to 10 mM GlcNAc or its phosphorylated derivatives (GlcNAc-6P, GlcN-6P, GlcNAc-1P). EC50 values
for effectors were calculated using the 4PL equation, with the upper limit fixed at 1.

Data availability. The RNA-seq data set has been deposited in the Gene Expression Omnibus under
accession no. GSE196064. Raw EMSA gel quantification, growth, HMO consumption, and metabolic profiling data
are available on GitHub (https://github.com/Arzamasov/NagR_manuscript). Code detailing the data analysis steps
is available on GitHub and in Text S2.
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