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A generalizable 29-mRNA neural-network classifier
for acute bacterial and viral infections
Michael B. Mayhew1, Ljubomir Buturovic1, Roland Luethy1, Uros Midic1, Andrew R. Moore 2,

Jonasel A. Roque 3, Brian D. Shaller3, Tola Asuni3, David Rawling1, Melissa Remmel1, Kirindi Choi1,

James Wacker1, Purvesh Khatri 4,5, Angela J. Rogers3 & Timothy E. Sweeney 1✉

Improved identification of bacterial and viral infections would reduce morbidity from sepsis,

reduce antibiotic overuse, and lower healthcare costs. Here, we develop a generalizable host-

gene-expression-based classifier for acute bacterial and viral infections. We use training data

(N= 1069) from 18 retrospective transcriptomic studies. Using only 29 preselected host

mRNAs, we train a neural-network classifier with a bacterial-vs-other area under the

receiver-operating characteristic curve (AUROC) 0.92 (95% CI 0.90–0.93) and a viral-vs-

other AUROC 0.92 (95% CI 0.90–0.93). We then apply this classifier, inflammatix-bacterial-

viral-noninfected-version 1 (IMX-BVN-1), without retraining, to an independent cohort (N=
163). In this cohort, IMX-BVN-1 AUROCs are: bacterial-vs.-other 0.86 (95% CI 0.77–0.93),

and viral-vs.-other 0.85 (95% CI 0.76–0.93). In patients enrolled within 36 h of hospital

admission (N= 70), IMX-BVN-1 AUROCs are: bacterial-vs.-other 0.92 (95% CI 0.83–0.99),

and viral-vs.-other 0.91 (95% CI 0.82–0.98). With further study, IMX-BVN-1 could provide a

tool for assessing patients with suspected infection and sepsis at hospital admission.
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Severe acute infections and sepsis are globally associated with
substantial mortality (nearly half of all inpatient deaths) and
dollars spent ($24 billion annually in the US)1–3. While

early antibiotics for patients with sepsis saves lives, inappropriate
use of antibiotics can cause morbidity, increased costs, and
antimicrobial resistance4,5. Thus, current sepsis guidelines and
mandates emphasize antibiotic treatment within 1 h, but this has
led to significant concern about overtreatment and a need for
improved diagnostics6,7. Microbiological cultures are the gold
standard for bacterial identification, but they are slow, susceptible
to contamination, and are negative in roughly 40–60% of patients
hospitalized for acute infections and sepsis8,9.

An alternative to testing for pathogens is to examine the host
immune response to infection, and thereby infer the presence and
type of infection10. Recent approaches to multi-mRNA diagnostic
panels have used simple statistical models to integrate multiple
targets into a single diagnostic score11–16. Recent advances in
machine learning and artificial intelligence offer the promise both
of improved generalizability and of solving non-binary problems,
such as distinguishing between bacterial, viral, and non-infectious
inflammation.

Historically, applying machine learning to diagnose acute
infections using transcriptomic data has been confounded by
technical and clinical heterogeneity in attempts to translate to real-
world patient populations. For example, regression and decision
tree classifiers trained using data collected on one type of micro-
array and tested in another type perform poorly, arguably at least
in part due to inadequate cross-platform normalization13,17. Even
models tested in data from the same technical platform can be
prone to overfitting due to the lack of adequate representation of
clinical heterogeneity in the training data18. We have repeatedly
demonstrated that leveraging biological and technical hetero-
geneity across a large number of studies taken from diverse clinical
backgrounds and profiled using different platforms increases
generalizability required for clinical translation11–13,17,19–22. Ide-
ally, a classifier could be trained across multiple representative
clinical studies, in concert with appropriate methods for data co-
normalization, such as COmbat CO-Normalization Using con-
Trols (COCONUT)12,23. However, although such a classifier may
be generalizable, it still has to be adapted to the gene expression
measurements of a purpose-built diagnostic instrument to be
useful in a clinical setting.

We have previously described three non-overlapping host
response-based mRNA scores that could (1) diagnose the pre-
sence of an acute infection (11 mRNAs)11, (2) distinguish it as
bacterial or viral (7 mRNAs)12, and (3) determine the risk of 30-
day mortality from sepsis (12 mRNAs)13. In this work, we
demonstrate that by starting with these preselected variables and
applying a novel co-normalization framework to match tran-
scriptomic data onto a targeted diagnostic platform, we can train
a generalizable machine-learning classifier for diagnosing acute
infections (IMX-BVN-1; IMX—Inflammatix, BVN—bacterial-
viral-noninfected, version 1). Our results could have profound
implications not just in improved clinical care in acute infections
and sepsis, but also more broadly in machine-learning-based
multi-cohort diagnostic development.

Results
Preparation of IMX training data. An overall study schema is
presented in Supplementary Fig. 1. Our search identified 18 studies
(N= 1069 patient samples) which met our inclusion criteria,
comprising adult patients from a wide range of geographical
regions, clinical care settings and disease contexts (Table 1)15,24–38.
The 29 genes of interest from these studies were co-normalized
and then aligned to NanoString mRNA expression values for

40 commercial healthy controls (Supplementary Fig. 2). The
resulting NanoString-aligned dataset, which does not include any
of the healthy controls, was designated “IMX”.

We visualized IMX using t-distributed stochastic neighbor
embedding and principal component analysis39. We observed
broad class separability (bacterial, viral, or noninfected) but also
residual study heterogeneity even after correction for technical
batch effects with COCONUT (Supplementary Fig. 3). Some of
this residual heterogeneity is expected, owing to the clinical
heterogeneity inherent across sepsis cohorts40–42, but highlighted
the need for a robust training procedure43.

Leave-one-study-out (LOSO) cross validation (CV) shows less
bias than k-fold CV. For hierarchical CV (HiCV), we partitioned
the IMX dataset into three folds with similar compositions of
bacterial, viral and noninfected samples, where any given study
appeared in only one fold (Fig. 1a, Supplementary Table 1). We
determined which CV type (k-fold vs. LOSO) and feature type
(29-mRNA vs. 6-GM) to use in our classifier development with
the HiCV schema. Higher average pairwise AUROC (APA) in
inner folds compared to the corresponding outer fold (high bias)
suggest that the given CV method (or input feature type) results
in models prone to overfitting the inner fold data. We found that
k-fold CV APA on the inner folds fell substantially in the outer
folds, while LOSO CV showed a much smaller difference between
inner and outer fold APA for either 6-GM scores or 29-mRNA
inputs (Fig. 1 and Supplementary Fig 4). In most cases, LOSO CV
also produced models with a higher absolute outer-fold APA
(Supplementary Figs. 5–6). These results demonstrate that LOSO
CV may produce classifiers with better generalizability to unseen
data. Further, LOSO CV outer-fold APA was higher using the 6-
GM scores as features rather than the 29-mRNA expression
values (Supplementary Table 2).

Final classifier development. Based on our HiCV analysis, we
used LOSO CV and the 6-GM scores on the whole IMX dataset to
create a final classifier. We performed hyperparameter searches
for logistic regression (LR), support vector machine
(SVM), extreme gradient-boosted trees (XGBoost), and multi-
layer perceptrons (MLP) models. The best LOSO CV APA results
for the full IMX dataset and the four model types were: 0.76, 0.85,
0.77, and 0.87 for LR, SVM, XGBoost, and MLP, respectively. We
selected MLP based on its highest ranking in LOSO CV APA. The
best performing MLP hyperparameter combination was a two-
hidden-layer, four-nodes-per-layer architecture with linear acti-
vations at each hidden layer. The model was trained in 250
iterations, with a learning rate of 1e−5, batch normalization44,
and lasso regularization with a penalty coefficient of 0.1. The
MLP had a bacterial-vs.-other area under the receiver-operating
characteristic curve (AUROC) of 0.92 (95% CI 0.90–0.93), a viral-
vs.-other AUROC of 0.92 (95% CI 0.90–0.93), and a noninfected-
vs.-other AUROC of 0.78 (95% CI 0.75–0.81) in LOSO CV
(Fig. 2a–c).

To generate a final neural-network model for use in
prospective clinical studies, we trained an MLP on all IMX data
using the best-performing hyperparameter configuration.
Weights and parameter values of this model were fixed after
training on the IMX dataset with no subsequent modification or
NanoString-specific adjustment. We named this final “fixed-
weight” classifier “IMX-BVN-1” (InflaMmatiX Bacterial-Viral-
Noninfected, version 1). IMX-BVN-1 generalizes to independent
Stanford intensive care unit (ICU) cohort.

We next tested the fixed IMX-BVN-1 classifier in an independent
clinical cohort (the Stanford ICU Biobank) run on NanoString
nCounter (Table 2; Supplementary Fig. 7; Supplemental Data).
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Across all patients with unanimous infection adjudications (those
with 3/3 votes for bacterial, viral, or non-infectious status, N= 109),
IMX-BVN-1 had a bacterial-vs.-other AUROC of 0.86 (95% CI
0.77–0.93), a viral-vs.-other AUROC of 0.85 (95% CI 0.76–0.93),
and a noninfected-vs.-other AUROC of 0.82 (95% CI 0.70–0.91)
(Fig. 2d–f). IMX-BVN-1 is intended for use near the time of
suspicion of infection; importantly, in patients enrolled within 36 h
of hospital admission (N= 70), IMX-BVN-1 had a bacterial-vs.-
other AUROC of 0.92 (95% CI 0.83–0.99), a viral-vs.-other AUROC
of 0.91 (95% CI 0.82–0.98), and a noninfected-vs.-other AUROC of
0.86 (95% CI 0.72–0.96). This almost identical AUROC to the IMX
LOSO CV results suggest little-to-no bias/overfitting in IMX-BVN-
1. We further tested IMX-BVN-1 according to the presence of
immuno-compromise, and showed no significant difference in
diagnostic power in this subgroup (Supplementary Table 3).

For many diagnostics, considering multiple thresholds improves
clinical actionability (e.g., procalcitonin thresholds of 0.1, 0.25, and
0.5 ng/ml). Consequently, we evaluated test characteristics for IMX-
BVN-1’s predicted probabilities split into quartiles (Supplementary
Table 4). The bacterial lowest quartile for LOSO CV, Stanford ICU,
and Stanford ICU <36 h subgroup showed negative likelihood ratios
of 0.055, 0.16, and 0.035, respectively, and upper quartile positive
likelihood ratios of 40, 7.24, and 10, respectively. These values
translate to lower-quartile sensitivities of 0.97, 0.91, and 0.98, and
upper quartile specificities of 0.99, 0.95, and 0.96, for the LOSO CV,
Stanford ICU, and Stanford ICU <36 h subgroup, respectively.

IMX-BVN-1 compared with standard clinical biomarkers. We
compared performance of IMX-BVN-1 to that of PCT and CRP
only for microbiology-positive patients, since PCT was used by the
adjudicators in determining bacterial infection status in
microbiology-negative cases. In the 93 patients with available PCT
and CRP, the bacterial-vs.-other AUROCs of PCT, CRP, and IMX-
BVN-1 were 0.83 (95% CI 0.75–0.92), 0.70 (95% CI 0.6–0.81), and
0.87 (95% CI 0.8–0.94), respectively (Supplementary Fig. 8). The
viral-vs.-other AUROC of PCT, CRP, and IMX-BVN-1 were 0.27
(95% CI 0.14–0.39), 0.38 (95% CI, 0.23–0.53) and 0.86 (95% CI
0.74–0.99), respectively. The very low performance of CRP and
PCT in separating viral from non-viral causes is expected but shows
a clinically important aspect of IMX-BVN-1. Further, CRP and
PCT have different courses of concentration in patients. Examining
these 93 patients using typical PCT thresholds and the IMX-BVN-1
quartiles (Tables 3 and 4), the vast majority of noninfected cases
have a PCT > 0.5 ng/ml. Thus, despite a reasonable AUROC, PCT
would be of little clinical utility in this cohort because most non-
infected patients are still above the highest cutoff for bacterial
infections. In contrast, IMX-BVN-1 shows increasing probabilities
of infection across quartiles for both bacterial and viral scores.

Uncertain and mixed infection status. Patients with post hoc
non-unanimous adjudications are of great interest. However,
their assigned labels also have a high chance of being incorrect:
only one physician needs to change his or her mind to have the
class switch from noninfected (i.e. 1/3 votes infected) to infected
(i.e. 2/3 votes infected). We plotted IMX-BVN-1 scores across all
adjudication levels (Fig. 3). Generally, IMX-BVN-1 infection
scores rise with increasing certainty of infection, though some
bacterial-infection patients enrolled >36 h after hospital admis-
sion and already on antibiotics have low IMX-BVN-1 bacterial
scores. Still, it is unclear whether this effect arises from disease
progression over time or is due to time on IV antibiotics; IMX-
BVN-1 scores are substantially higher in patients with <24 h of
antibiotics treatment prior to enrollment (Supplementary
Table 5).T
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Clinical descriptions of mixed-infection patients along with
IMX-BVN-1, PCT, and CRP scores are in Supplementary Table 6.
Notably, 5/7 samples with bacterial-viral coinfections in the <36 h
subgroup are in the top two quartiles of IMX-BVN-1 bacterial
score.

Discussion
Despite intense study in multi-mRNA host-response diagnostics
for acute infections and sepsis over the past two decades15,24–38,
no multi-mRNA panel combined with a machine learning algo-
rithm has been successfully applied with fixed weights in external
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data, much less translated to clinical application. Here, we show
that the Inflammatix Bacterial-Viral-Noninfected (IMX-BVN-1)
classifier has high accuracy in an independent cohort profiled
using an entirely different technology. We also demonstrated
advantages over standard-of-care diagnostics such as PCT and
CRP. We overcame several challenges in successfully doing so,
including (1) accounting for and leveraging substantial clinical,
biological, and technical heterogeneity across multiple indepen-
dent cohorts; (2) transferring a fixed-weight model learned using
microarray data to a new diagnostic platform; and (3) learning
from relatively small training data.

In order to be successfully translated to the clinic, a novel
diagnostic must account for the substantial heterogeneity of the
real-world patient population43. IMX-BVN-1 showed excellent,
clinically relevant performance in diagnosing both bacterial and
viral infections across 19 separate clinical studies composed of
more than 1,100 patient samples. This performance arose from
several factors, including: (1) training data from multiple clinical
settings that collectively better represent real-world patient
population, (2) reduced bias in training due to LOSO CV, (3)
feature transformation (geometric mean scores) and (4) char-
acteristics of the MLP. We also note that the Stanford ICU
validation dataset was clinically quite distinct from our training
data, which further demonstrates the generalizability of our
results. Furthermore, compared to PCT and CRP, IMX-BVN-1
showed both an improved stratification of bacterial infections in
the Stanford ICU setting while also identifying viral infections
with high accuracy. We plan to ultimately present both a “bac-
terial-vs.-other” and a “viral-vs.-other” score to clinicians in
tandem. This would allow physicians to both rule in and rule out
bacterial and viral infections simultaneously, providing a com-
bination of capabilities missing from the current clinical toolset.
We also note that we have demonstrated the general training
schema, architecture, and performance of the first version of our
IMX-BVN classifier. We anticipate that future versions of the
model will substantially improve with training on additional data
and architecture enhancements. In contrast, the performance of
PCT and other single-analyte biomarkers are fixed and cannot
improve over time.

Determining which patients have bacterial infections is a daily
challenge across many healthcare practices. The choice of whe-
ther to prescribe empiric antibiotics is essentially an educated
guess, but one that carries serious risk of morbidity and mortality.
Thus, the stringent test characteristics of IMX-BVN-1 for some
patients (i.e., sensitivity of 97% and specificity of 99% for bacterial
infections in the bottom and top quartiles, respectively) is
potentially of high utility. However, such bands need not be based
on quartiles and can be further calibrated to balance actionability
with the number of patients in the band.

Novel diagnostic tools may have the greatest impact in patients
for which there is greatest equipoise/uncertainty7. When a clin-
ician is uncertain about the infection status of a patient (either 1

or 2 votes for an infection), the IMX-BVN-1 algorithm often
assigns very high or low infection scores, as opposed to only
“intermediate” scores (Fig. 3). We do not know whether IMX-
BVN-1 is correct in these cases, but it certainly deserves further
study. We further note that the certainty of adjudication here
comes only with extensive retrospective chart review; at hospital
admission, there is very often high diagnostic uncertainty
regarding presence and type of infection. To wit, in this cohort,
76% of consensus-noninfected patients, 96% of forced-
adjudicated-noninfected patients, and 100% of viral-infected
patients were on IV antibiotics at study enrollment.

Five late-enrolled, microbiology-positive samples had low
bacterial scores in IMX-BVN-1 (Fig. 3—oval). It is possible that
these samples had a resolution of their immune response due to
antibiotics, and so their IMX-BVN-1 scores fell by the time of
sampling. This pattern is consistent with previous results that
showed reductions in gene expression score following antibiotic
treatment11. Whether such patients would have had higher scores
at admission, and how IMX-BVN-1 responds longitudinally to
antibiotic treatment, requires further study.

IMX-BVN-1 is a MLP with hidden layers with linear activa-
tions, trained using gradient descent with mini-batches. Arguably,
such an architecture could be mathematically represented as
multinomial logistic regression, but multinomial logistic regres-
sion trained using least-squares did not reach nearly the same
level of performance as IMX-BVN-1. These findings indicate that
the model training and selection procedures played an important
role in the discovery of IMX-BVN-1 and will be the subject of
future work. In addition, our finding of improved stability using
geometric mean scores computed from the input mRNAs sug-
gests further research should focus on other feature transforma-
tions, either applied prior to learning or learned as part of a more
general neural-network architecture.

We investigated methods for training machine learning
models for diagnosing acute infections across multiple hetero-
geneous studies. Our results demonstrate that, in this domain, k-
fold CV produces substantially biased estimates of performance.
In fact, in some cases the top k-fold CV models performed worse
than random on outer-fold HiCV test data. In conventional k-
fold CV, random partitioning of the training data would likely
result in the appearance of samples from the same study in both
the learning folds and the corresponding left-out fold (in a way, a
contamination of training data with external validation/test
samples), leading to higher CV performance estimates. One is
implicitly making the assumption that unseen samples are very
similar to samples seen in the training data. Our results
demonstrate that this assumption does not apply when the
clinical population of interest is not well-represented in the
training dataset and/or when the clinical population is suffi-
ciently heterogeneous. We showed that the LOSO CV approach
is more effective in identifying generalizable models in this
domain.

Fig. 1 HiCV schematic and results. a schematic of hierarchical cross-validation (HiCV). The 18 studies (colored bands) of the IMX dataset are initially
partitioned (first arrow) into three roughly equal groups of studies or folds. To simulate model selection and external validation, two of the three folds
(inner) are grouped (second set of arrows) and used for cross-validation and training with the remaining fold (outer) used as a test set. This procedure is
performed three times, once with each of the partitions of the IMX data treated as a test set. b–m HiCV analysis of bias/overfitting using 6-GM scores.
b–d LR, logistic regression; (e–g) SVM, support vector machine; (h–j) XGBoost, extreme gradient-boosted trees; (k–m) MLP, multi-layer perceptrons. Each
row contains HiCV results for outer folds 1 (b, e, h, k), 2 (c, f, i, l) or 3 (d, g, j, m). The x-axis is the difference between outer fold APA and inner fold CV
APA. The blue density plots correspond to this difference for the top 50 models ranked by LOSO CV on the inner fold. Orange density plots show this
difference for the top 50 models ranked by 5-fold CV on the inner fold. The vertical dashed line indicates equality between inner fold and outer fold APA
(low bias), and density plots closer to this line highlight CV methods that potentially result in classifiers with lower generalization bias. Negative values
indicate that inner fold APA was higher than outer fold APA, suggesting overfitting during training.
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Our work has several limitations. First, the Stanford ICU
validation dataset is relatively small compared to the IMX
training data. Thus, the confidence intervals are much wider on
the validation cohort, pointing to the need for further valida-
tion. Second, we excluded patients with two or more types of
positive microbiology from analysis, owing to uncertain adju-
dication. Third, test samples were assayed by NanoString,
which may not be fast enough for most clinical applications.
However, we are developing a rapid version of IMX-BVN-1,
called “HostDx™ Sepsis”, on a purpose-built diagnostic instru-
ment. Fourth, while IMX-BVN-1 shows great promise, the
model was specifically tuned to our previously identified set of
29 markers. As such, the generalizability of our machine
learning methodology has not been established for other dis-
eases or other gene sets within acute infection. Finally, we
restricted our analyses to adults; inclusion of pediatric samples
in training and validation will be part of future studies. In
general, further clinical studies with larger sample sizes are
needed to confirm the diagnostic performance of IMX-BVN-1
in multiple clinical settings. Furthermore, as more “validation”
studies are completed, we may be able to add them into
“training” studies for future versions of IMX-BVN.

Overall, our research demonstrates the feasibility of success-
fully learning accurate, generalizable classifiers for acute bacterial
and viral infections (or sepsis) using multiple heterogeneous
training datasets. We further show that we can maintain high
accuracy when applying the classifier, without retraining, to a new
diagnostic platform. This work provides a potential roadmap for
more general molecular diagnostic classifier development in other
fields by leveraging vast repositories of transcriptomic data in
concert with robust machine learning.T
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Table 3 Bacterial diagnosis by thresholds.

Non-bacterial Bacterial Percent bacterial
in band

IMX-BVN-1
Quartile 1 (lowest) 21 4 16%
Quartile 2 12 8 40%
Quartile 3 2 23 92%
Quartile 4 (highest) 2 21 91%

Procalcitonin (ng/ml)
<0.1 3 2 40%
0.1–0.25 11 1 8%
0.25–0.5 7 3 30%
>0.5 16 50 70%

Numbers of patients split into predicted probability quartiles for IMX-BVN-1 and split per pre-set
thresholds for PCT for microbiology-confirmed Stanford ICU cases that had both scores
available (N= 93).

Table 4 Viral diagnosis by thresholds.

Non-viral Viral Percent viral
in band

IMX-BVN-1
Quartile 1 (lowest) 20 0 0%
Quartile 2 23 1 4%
Quartile 3 23 3 12%
Quartile 4 (highest) 13 10 43%

Procalcitonin (ng/ml)
<0.1 3 2 40%
0.1–0.25 8 4 33%
0.25–0.5 8 2 20%
>0.5 60 6 9%

Numbers of patients split into predicted probability quartiles for IMX-BVN-1 and split per pre-set
thresholds for PCT for microbiology-confirmed Stanford ICU cases that had both scores
available (N= 93).
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Methods
Systematic search for training studies. We compiled the training dataset
(“IMX”; Inflammatix) by identifying studies from the NCBI GEO and EMBL-EBI
ArrayExpress databases using a systematic search12,22. For included studies,
patients (1) had to be physician-adjudicated for the presence and type of infection
(i.e. bacterial infection, viral infection, or non-infectious inflammation), (2) were at
least 18 years of age, (3) had been seen in hospital settings (e.g. emergency
department, intensive care), (4) had either community- or hospital-acquired
infection, and (5) had blood samples taken within 24 h of initial suspicion of
infection and/or sepsis. In addition, each study had to measure all 29 host mRNAs
of interest and have at least five healthy samples. Included studies were individually
normalized from raw data (Supplementary Methods), and then co-normalized
using COCONUT12.

Iterative COCONUT normalization for platform matching. Diagnostic devel-
opment in microarrays has typically suffered from a “last-mile” problem of clinical
translation: a classifier trained only on gene expression data from microarrays

would not be directly applicable on a rapid clinical diagnostic platform due to
differing measurement types. We hypothesized that a dataset from one technical
background (e.g., microarrays) could be “matched” to another technical back-
ground (NanoString nCounter targeted mRNA quantitation) through an iterative
application of COCONUT, allowing a classifier trained using microarrays to be
directly applied in samples profiled on the NanoString platform, without the need
to train using NanoString data.

We measured the 29 target mRNAs in a set of whole-blood samples from 40
healthy controls collected in PAXgene RNA tubes and taken across four different
sites in the USA. We acquired the healthy control samples commercially
(10 samples through Biological Specialties Corporation, Colmar, PA USA;
30 samples through BioIVT Corporation, Hicksville, NY USA). Donors self-
reported as healthy and received negative test results for both HIV and hepatitis
C. They were not age-matched or sex-matched to either the training or
validation data (further details in Supplement). We then iteratively applied the
COCONUT algorithm12, adjusting the means and variances of the distributions
of expression for the 29 target mRNAs in healthy control samples of the IMX
microarray studies to align with their corresponding distributions in the
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Fig. 3 IMX-BVN-1 predicted probabilities in the Stanford ICU cohort across all clinical adjudication outcomes for bacterial and viral infections. The
gray oval in (a) highlights a small number of patients with low bacterial scores, all of whom received antibiotics and were admitted >36 h prior to
enrollment. X-axis categories indicate adjudicated infection status. Open circles indicate admission timing (black/closed ≤ 36 h, white/open >36 h). For
each boxplot, the box shows the median and 25th–75th quartile range (IQR), and the whiskers extend to the most extreme data point no further from the
box than 1.5 times the IQR. Adj., adjudication; Micro., microbiology.
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commercial healthy controls assayed by NanoString (Supplementary Methods;
Supplementary Fig. 2). These adjustments were then applied to the expression
values of all samples in IMX to enable application of the trained classifier on the
Stanford ICU samples.

mRNA feature sets. Our analysis included 29 mRNA targets (listed in the Supple-
ment) composed of three separate, validated sub-panels: the 11-mRNA “Sepsis
MetaScore”11, 7-mRNA “Bacterial-Viral MetaScore”12, and 11-mRNA “Stanford
mortality score”13. Each score is composed of two geometric mean (GM) modules. We
explored two methods for developing a classifier using these 29 mRNAs as input
features: (1) using the 29 expression values without applying any transformations, and
(2) using GMs of the six original modules as input features to the classifier.

Model selection and hyperparameters. We evaluated four types of classification
models: (1) LR with a lasso (L1) penalty, (2) SVM with radial basis function kernel,
(3) XGBoost and (4) MLPs, a type of feed-forward neural network. We chose these
models because of their prior use in other diagnostic applications and their ability
to accommodate multiclass classification. Hyperparameter search procedures for
each model are described in Supplementary Methods.

Classifier evaluation metrics. The AUROC is a common metric to evaluate
binary classifiers but there is not a widely adopted generalization for a multiclass
problem such as ours (bacterial vs. viral vs. noninfected). We selected our best
classifier based on the APA, defined as the mean of the three one-class-versus-all
AUROCs (i.e., the bacterial-vs.-other, viral-vs.-other, and noninfected-vs.-other
AUROCs), which allowed us to rank models across all three classes. However,
as the bacterial-vs.-other and viral-vs.-other AUROCs are arguably more relevant
metrics to clinical practice, we also report these individual measures of perfor-
mance for our final classifier. In IMX, we computed 95% confidence intervals for
AUROCs based on 5000 bootstrap samples of a given classifier’s predicted prob-
abilities. In the Stanford ICU dataset, we computed AUROC confidence intervals
using the method of Hanley and McNeil due to small sample size.

Methodological evaluation of cross-validation and input features. Our final
classifier development depended on choices of (1) the CV method used for
model selection and (2) the type of input features used for classifier training. We
considered two types of CV strategies (traditional k-fold vs. LOSO) and two
types of input features (6-GM scores vs. 29-mRNA expression values) for clas-
sifier training (Supplementary Methods). To decide which combination of CV
strategy and input features to use for our classifier development, we performed a
third type of cross-validation called hierarchical CV (HiCV). HiCV simulates the
process of machine learning classifier development and independent testing by
partitioning training data into pairs of (inner, outer) folds (Fig. 1a), and is
reliable in small sample size scenarios45,46. Each inner fold is used to simulate
the entire modeling process (i.e. hyperparameter search via CV followed by
training of the best selected model). The corresponding outer fold is then used to
test each classifier. The process is repeated for each inner/outer fold pairing. To
draw conclusions robust to variability in how the data were partitioned, we split
the IMX data into three folds for HiCV.

We based our decision of which CV method and input feature type to use in
classifier development on both the performance on the outer fold (i.e. performance
in “external validation”) and the bias (i.e. difference between inner fold CV and
outer fold performance). We hypothesized that modeling choices resulting in
higher outer-fold performance and lower bias may be more likely to produce
generalizable models in formal classifier development.

Stanford ICU Biobank. We collected blood into PAXgene RNA tubes from
163 patients enrolled in the Stanford University Medical ICU Biobank from
2015-2018 after written informed consent (Stanford IRB approval #28205).
Adult subjects enriched for acute respiratory distress syndrome risk factors (e.g.
sepsis, aspiration, trauma) were recruited at admission to the Stanford ICU
from either the hospital wards or the emergency department as part of an
existing biobanking study. Patients eligible for inclusion were consecutive adults
(>= 18 years) admitted to Stanford ICU with at least one ARDS risk factor (e.g.
sepsis, pneumonia, trauma, aspiration). We excluded routine post-op patients,
those admitted for a primary neurologic indication, and those with anemia
(hemoglobin <8). Screening of consecutive new admissions via electronic
medical records review of all ICU subjects was performed by a study coordi-
nator and the study PI (AJR). Screening occurred on weekdays with a goal
enrollment in <24 h of admission to ICU, and included patients admitted to the
ICU from the wards or the emergency room. Patients or their surrogates were
approached for consent to participate in the Stanford ICU biobank, and the
PAXgene tubes used for this study were collected between October 2015 to April
2017. We excluded two samples from analysis; one was collected >72 h after ICU
admission, and one was excluded due to incomplete phenotype data at the time
of mRNA analysis. Clinical samples were shipped frozen to Inflammatix, total
RNA was isolated, and NanoString analysis performed by technicians blinded to
clinical outcomes (Supplementary Methods). Our final classifier trained on the

IMX dataset was then directly applied to the NanoString data, without any
additional training.

Infection status was adjudicated by three physicians who had access to the
entire electronic medical record for the admission (including physician notes,
imaging, final culture data from blood and other specimens, clinical procalcitonin
when drawn, start time and duration of antibiotics, and discharge summary). Each
case was adjudicated as (1) Infected, (2) Probable infection, (3) Uncertain infection,
(4) Not infected. All subjects were classified as noninfected, bacterial, viral, fungal,
or mixed infection, and each vote for the presence of infection was weighted
equally. Every case that was adjudicated as probable or possible infection was
reviewed by three physicians (AJR, BS, ARM) using all electronic medical record
data as above. Probable infections were all culture negative but adjudicated
unanimously as infected by all three physicians. The uncertain cases underwent
forced adjudication, with 0/3 or 1/3 voting for infection deemed “uninfected” and
2/3 or 3/3 voting for infection deemed “infected”. Across three reviewers, this
yielded four classes for each infection type, from zero to three votes for the
presence of an infection. Adjudicators were blinded to the gene expression data.
Clinical procalcitonin data within 24 h of admission was available for ~1/4 of the
cohort and may have influenced both clinical treatment (e.g. antibiotic duration)
and adjudication of infection status. Mixed infections were not included in the
main performance analyses.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Gene expression data are publicly available at their stated accession IDs (Table 1). The
normalized NanoString data is available as Supplementary Data 1.

Code availability
The core software used in developing IMX-BVN-1 is described in the Supplementary
Methods, including open source software tools. Further details are available on request.
The proprietary portions of the code are owned by Inflammatix and are not available.
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