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Abstract

Following similar studies of cell wall constituents in the placenta of Phaeoceros and Marchantia, 

we conducted immunogold labeling TEM studies of Physcomitrium patens to determine the 

composition of cell wall polymers in transfer cells on both sides of the placenta. 16 monoclonal 

antibodies were used to localize cell wall epitopes in the basal walls and wall ingrowths in this 

moss. In general, placental transfer cell walls of P. patens contain fewer pectins and far fewer 

AGPs than those of the hornwort and liverwort. P. patens also lacks the differential labeling that is 

pronounced between generations in the other bryophytes. In contrast, transfer cell walls on either 

side of the placenta of P. patens are relatively similar in composition with slight variation in HG 

pectins. Compositional similarities between wall ingrowths and primary cell walls in P. patens 
suggest that wall ingrowths may simply be extensions of the primary cell wall. Considerable 

variability in occurrence, abundance, and types of polymers among the three bryophytes and 

between the two generations suggests that similarity in function and morphology of cell walls does 

not require a common cell wall composition. We propose that the specific developmental and life 

history traits of these plants may provide even more important clues in understanding the basis 

for these differences. This study significantly builds on our knowledge of cell wall composition in 

bryophytes in general and transfer cells across plants.
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1. Introduction

Because the sporophyte of bryophytes is matrotrophic, the placenta is the principal site 

for nutrient uptake that drives the production and dispersal of spores [1,2]. In this 
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intergenerational zone, specialized cells facilitate an intensified unidirectional flow of 

solutes to the sporophyte that is dependent on the persistent gametophyte [3, 4]. Transfer 

cells characterized by localized cell wall ingrowths are common in both generations in 

bryophytes, but they are not universal as they may be absent or restricted to either side 

of the placental junction [1,5]. In transfer cells, wall ingrowths form an elaborate network 

or labyrinths that vastly increases the surface area of the plasmalemma, which enhances 

membrane-mediated nutrient transport in strategically located and specialized cell-cell 

junctions [3,6,4]. Wall ingrowths create a more extensive and presumably specialized 

apoplast and a cell wall/plasma membrane complex that is polarized and produces a 

directional apoplastic/symplastic exchange of solutes [7]. In addition to bryophyte placentae, 

transfer cells are common in tracheophytes in areas of high solute transport such as in 

phloem, vascular parenchyma [8], angiosperm embryos [ 9,10,11,7,12,], secretory glands 

[13], and root nodules [14,15]. In the placenta of mosses, carbon in the form of sucrose 

moves within the gametophyte symplastically and is actively loaded from the apoplast 

into the foot of the sporophyte [16,17]. In Physcomitrium patens, as in most mosses and 

many liverworts, transfer cells with cell wall ingrowths are located on both sides of the 

placenta [1]. Cell wall ingrowths and an abundance of mitochondria and plastids reflect the 

energy-intensive process of transferring nutrients across the extensive surface area and the 

dependence on proximally located sources of ATP [16]. Although the transport pathway at 

the placental interface of P. patens is beginning to be understood, little is known about the 

composition of wall polymers in these unique cells in mosses.

This study aims to fill in gaps in our knowledge concerning the polymer composition in 

bryophytes by examining the placenta of P. patens. Similar studies of placental cell walls 

in the liverwort Marchantia polymorpha [18] and two species of the hornwort Phaeoceros 
[5] allow for comparisons across all three bryophyte groups and across the two generations. 

Phaeoceros has transfer cells restricted to the gametophyte side, while M. polymorpha is 

similar to P. patens in the occurrence of transfer cells on both sides of the placenta. The 

placentae in Phaeoceros and M. polymorpha have AGPs not found in other parts of the 

plant that support signaling functions in this region of transport. In Marchantia, cell wall 

ingrowths are rich in pectins, but arabinogalactan proteins (AGPs) and xyloglucans are 

abundant only on the sporophyte side. In Phaeoceros, pectins are diverse and abundant, 

while AGPs are restricted to the placenta region only.

Two fundamental questions were addressed in this study: 1) How do cell wall constituents 

differ in the two generations of the bryophyte placenta within P. patens? and 2) What 

differences are there in composition between these cell walls and those in transfer cells 

of other plant groups? This comparative approach provides insights into the diversity and 

evolution in cell wall composition of transfer cells among the three bryophyte groups and 

across land plants.

2. Materials and Methods

2.1. Gametophyte culture

Mature capsules were sterilized using a 10% bleach solution. After three rinses in autoclaved 

distilled water, capsules were ruptured, and the released spores were sown on agar with 
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Parker-Thompson nutrient medium. Following gametophore development, plants were 

transferred to vermiculite and kept in the growth chamber until antheridia and archegonia 

were present. Cultures were then flooded to facilitate fertilization. Plants with green 

capsules were harvested and processed as follows.

2.2. Preparation for transmission electron microscopy

For TEM observation, plants were processed according to the standard fixation protocol 

outlined in Renzaglia et al. 2017 [19]. Excised potions of gametophytic tissue with 

embedded sporophytes were fixed in 2.5% glutaraldehyde in 0.05 M Sorenson’s buffer 

(pH 7.2) for one hour at room temperature and overnight at 4 °C. Following 3 rinses in 

the same buffer for 15 min each, plants were post-fixed in 2% buffered osmium tetroxide 

for 15 minutes and rinsed in autoclaved, distilled water. The specimens were dehydrated 

in progressively higher ethanol to water concentrations and rinsed twice in 100% ethanol. 

Infiltration was achieved by progressively increasing the concentration of LR White resin 

diluted with ethanol from 25%−50%−75% and finally 100%. Specimens were exchanged 

three times in 100% LR White resin, placed in fresh resin in gel capsules, and cured in an 

oven at 60 °C for 48 h. The samples were sectioned on an ultramicrotome until the placenta 

was located. Either thin sections (90–100 nm) were collected on 200 mesh nickel grids for 

immuno-labeling, or thick sections (800 to 1500 nm) were collected on glass slides and 

stained with toluidine blue for light microscopy. Sporophytes with developing spores were 

selected and examined.

2.3. Immunogold labeling

The sixteen monoclonal antibodies (MAbs) in Table 1 were used to probe cell wall polymers 

in the placental cell walls of Physcomitrium patens. Specimens were processed as follows 

and outlined in Lopez et al. 2017 [20]. Grids were placed in BSA/PBS overnight at 14 

°C, and then overnight on a primary antibody specific to the desired wall epitope. Samples 

were then rinsed four times in 0.05 M BSA/PBS for 4 min each. Samples were incubated 

overnight at 4 °C in a secondary antibody with a 10nm gold tag that attaches to the primary 

antibody. Samples were then rinsed in PBS four times at 4 min each and rinsed with a 

jet of sterile H2O. The primary antibody, secondary antibody, and gold tag complex attach 

to the desired wall epitope making the targeted wall polymer visible as a black dot in the 

TEM at 7000 magnification or higher. Control grids were prepared by excluding the primary 

antibodies.

Samples were observed before and after post-staining using lead citrate and uranyl acetate. 

These stains allow for better contrast but may obscure the immuno-gold labels in the TEM. 

Samples were viewed and digital micrographs were collected in a Hitachi H7650.

2.4. Scoring label intensity

Micrographs were opened in the PhotoScapeX editing app. Three counting frames sized at 

100 × 100 pixels were then randomly placed onto the wall in the image. The labels within 

each frame were then counted and recorded. This process was repeated three times per 

image, and, for each MAb, 10 images were counted. The average of all counts was then 

calculated. An average of 1 to 4 labels per frame were assigned a single plus (+). If the 
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average was 5 to 9 labels, two pluses (++) were given. Any averages that were greater than 

10 labels per frame received a triple plus (+++). A few antibodies had scores < 1 but > 0 and 

were assigned a plus/ minus (±).

3. Results

The foot of P. patens is small, typically less than 500μm long, and 6 or 7 cells in 

diameter (Fig. 1a). A ring of gametophytic tissue (vaginula), derived from the archegonium, 

surrounds the foot that is cylindrical and gradually tapers to a pointed tip where it penetrates 

the gametophore. The vaginula ensheaths the foot along most of its length. The foot is 

fully developed when the sporophyte capsule begins to expand, and sporogenous tissue is 

delimited (Fig. 1a). At this stage, the capsule is emerging from beneath the calyptra, and 

stomata are developed. Transfer cells reach maturation and line both sides of the placenta 

by the time meiosis is completed and persist throughout spore differentiation (Figs. 1b, c). 

Cell wall ingrowths are generally more elaborate on the gametophyte side of the placenta 

compared with the foot side, and they are less abundant at the tip of the foot (Figs. 1d, 

e, 2a). Wall ingrowths in both gametophyte and sporophyte transfer cells contain a fibrous 

core (sporophyte side) or vesicular dense core (gametophyte side) and an irregular outer 

electron lucent zone that is bordered by plasmalemma (Fig. 2a). Along the sides of the foot, 

the two generations make contact and the intergenerational zone is obscured (Figs. 1c, d, 

2a). At the foot tip, degenerating gametophyte cells leave a mucilaginous matrix (Fig. 1e). 

Transfer cells of the foot are more isodiametric than those of the gametophyte, and they 

contain numerous small vacuoles and peripheral cytoplasm with numerous mitochondria 

and elongated plastids with dense stroma, few membranes, and no starch (Figs. 1d, 2b). 

Gametophyte transfer cells contain dense cytoplasm with prominent rounded plastids that 

are rich in starch (Figs. 1d, e, 2c)

Label intensity in the sporophyte and gametophyte cell walls for the 16 MAbs used in this 

study is summarized in Table 2. Three of the four MAbs for HG pectins localize epitopes of 

these pectins in the P. patens placenta (Fig. 3). Labeling with JIM7 for methyl-esterified HG 

pectins is light in the gametophyte basal wall layer and wall ingrowths (Fig. 3a). Moderate 

labeling for this MAb occurs in sporophyte transfer cell walls (Fig. 3a). The JIM5 MAb that 

also targets a de-esterified HG epitope shows light labeling in electron dense regions in both 

the basal wall layer and cell wall ingrowths in both generations (Figs. 3 b, c). The LM19 

MAb recognizes de-esterified HG labels throughout the electron dense portions of the cell 

wall ingrowths as well as the basal wall in both generations (Fig. 3 d, e). No labeling was 

observed for the LM20 MAb.

The presence of RG-I pectins was identified by two MAbs (Tables 1 and 2). The LM5 MAb 

lightly labels the basal wall layer and wall ingrowths on the sporophyte side and less so on 

the gametophyte side (Fig. 3f). The LM13 MAb shows very light labeling in the basal cell 

wall and wall ingrowths in both generations (Fig. 3g).

The LM15 hemicellulose MAb targeting xyloglucan sparsely labels cell wall ingrowths 

in both generations (Figs. 4 a, b, Table 2). Galactoxylated xyloglucans as localized with 

the LM25 MAb are found in the basal wall and wall ingrowths in transfer cells in both 
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generations with fewer labels on sporophyte walls (Figs. 4c, d). The LM21 MAb that is 

specific to mannans lightly labels both generations in electron dense areas near the basal 

wall layer and in wall ingrowths near the plasmalemma (Fig. 4e). No labels were detected 

for the LM28 MAb.

Of the four AGP-targeting MAbs, only JIM13 and LM6 localized in the placenta of P. patens 
(Tables 1 and 2). JIM13 epitopes are found along the plasmalemma in wall ingrowths in 

both generations (Figs. 5a, b). Labels for the LM6 MAb targeting AGPs are scattered along 

electron lucent regions of wall ingrowths in both generations with few labels in the basal 

wall layer (Fig. 5c). The JIM8 and LM2 MAbs do not label placental cell walls in P. patens.

Callose, as labeled with the anti-callose MAb, occurs in the sporophyte placental transfer 

cells in electron dense area where the basal wall layer transitions to wall ingrowths (Fig. 

5d, Table 2). Light labeling of anti-callose is seen in clusters throughout the basal wall of 

gametophyte placental cells (Fig. 5e). Extensin, as labeled with the JIM12 MAb, was not 

detected in P. patens placental cell walls.

4. Discussion

The cylindrical foot of P. patens extends only slightly into the gametophyte tissue, forming a 

tapering extension of the short seta. Because the sporophyte takes approximately one month 

to reach maturation after fertilization, the placenta is short-lived compared to most mosses 

in which the sporophyte is long-lived, typically one year [74]. Interestingly, the placenta 

of M. polymorpha is similarly short-lived as the sporophyte also completes development 

in approximately one month. The placenta of both P. patens and M. polymorpha contains 

transfer cells with elaborate wall labyrinths on both the sporophyte and gametophyte sides. 

The massive bulbous foot of Phaeoceros, in turn, persists through the growing season, over 

many months, placing a continuous demand on the gametophyte for nutrient transport across 

generations. The foot side of the placenta in this hornwort is lined in elongated cells that 

lack wall ingrowths. During development, these haustorial cells penetrate and interdigitate 

with gametophytic cells that contain extensive wall ingrowths. These anatomical and 

developmental differences may account in part for the considerable variability in occurrence, 

abundance, and types of polymers across the placental cells of these three bryophyte taxa 

and between the two generations.

As in other bryophytes, cell wall constituents in the P. patens placenta include diverse 

polymers that include pectins, hemicelluloses, AGPs, and callose (Table 2). In general, 

placental transfer cell walls of P. patens contain fewer pectins and far fewer AGPs than those 

of M. polymorpha and Phaeoceros (Fig. 6). Transfer cell walls on either side of the placenta 

of P. patens are relatively similar in composition with slight variation in HG pectins. In the 

other two bryophytes, cell walls are more variable in abundance and type of polymers across 

generations, which is especially evident in M. polymorpha (Fig. 6).

Pectins are GalA-containing polysaccharides that often account for a large portion (~30%) 

of the primary cell wall of most angiosperms [75,76,77]. The pectin composition imparts 

porosity, permeability, and flexibility to primary walls [78] (Table 3), cell wall properties 
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important to the development and directional transport of placental walls [18]. In the 

placenta of P. patens, pectins are diverse in both generations (Fig. 6). Pectins show variable 

distribution and are particularly abundant on the sporophyte side of the Phaeoceros placenta 

(Fig. 6), which is likely related to the unique intrusive growth of the foot cells and the 

requirement of haustorial cells to elongate unidirectionally [5].

HG pectins play significant roles in cell wall properties and mechanics, and thus affect 

functions such as apoplastic transport [78] (Table 3). HG is laid down in the methyl-

esterified form, which is stretchable, porous, lower apoplastic pH which facilitates nutrient 

uptake by membrane transport proteins [79]. These properties are consistent with the 

function of transport in placental transfer cell walls, which explains the widespread 

occurrence of JIM7 epitopes in these bryophytes (Table 3, Fig. 6). The LM20 MAb that also 

recognizes methyl-esterified pectins was not detected in P. patens, but epitopes of this MAb 

occur in both generations in Marchantia and on the sporophyte side only in Phaeoceros. 

LM20 epitopes are found in other bryophyte tissues, including the developing gametophore 

apex and rhizoids of P. patens [80, 68]. The more rigid un-esterfied HG epitopes (LM19, 

LM5 MAbs) are common across both generations in the three bryophytes, with higher 

abundance in the gametophyte than sporophyte cell walls in P. patens, and the reverse in 

Phaeoceros (Fig. 6). Methyl-esterified HGs also occur in the wall ingrowths on both sides of 

the placenta in Ceratopteris [81], in epidermal transfer cell walls of Vicia [82], and the basal 

wall layers (but not wall ingrowths) in transfer cells of Elodea [83]. In Elodea, un-esterfied 

HG epitopes were not detected in transfer cell wall ingrowths but do occur in other wall 

layers [83].

In contrast to HG pectins that are long-chain polymers, RG-I and RG-II have complex 

side-chain configurations associated with them. The absence of antibodies to RG-II pectins 

and the low levels of their occurrence in bryophytes (estimated to 1% of the amount 

in angiosperm cell walls [84]) has limited our understanding of where they occur in 

bryophytes. MAbs that detect RG-I pectin, both (1–5)-α-L-arabinans (LM13) and (1–4)-β-

D-galactans (LM5)-containing, show relatively low levels of labeling in both generations 

in P. patens. In Phaeoceros, the highest level of labeling of LM5 was present in the 

gametophyte transfer cell walls, while in P. patens in the sporophyte transfer cell walls. 

The placenta of M. polymorpha does not label with MAbs (LM5, LM13) for RGI pectins 

(Fig. 6) [18]. Galactan-rich RG-I is also present in the epidermal transfer cell walls of Vicia, 

which sparsely contain LM5 epitopes [82]. However, this MAb does not label transfer cell 

walls in Ceratopteris or Elodea [81,83]. The presence of galactan-rich RG-I pectin domains 

in moss and hornwort placentae is consistent with the hypothesized role of these pectins 

in directional growth as in root epidermal cells of Arabidopsis seedlings, where they are 

thought to act as molecular markers for the cell elongation transition zone [85,40]. Although 

RG-I pectins are not abundant in the primary cell walls of bryophytes and ferns [25,49], 

labeling for the LM5 MAb has been observed in the water-conducting cells in some mosses 

and liverworts [80,86]. These polymers have also been observed in small amounts in P. 
patens rhizoids [68] and protonemal cells, and in the rhizoids of Ceratopteris [87].

Xyloglucans (LM15), galactoxyloglucan (LM25), and mannans (LM21) are hemicellulose 

constituents of the placental cell wall in P. patens (Table 2). As in Marchantia and 
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Phaeoceros, there is no labeling for glucoronoxylans (LM28) in either generation. 

Galactoxyloglucan is more abundant than xyloglucans in the P. patens placenta, especially 

on the gametophyte side. In Phaeoceros, light labeling for galactoxyloglucan occurs in 

both generations, and in Marchantia, these epitopes are more abundant in the sporophyte 

generation. Using a polyclonal antibody for xyloglucan, Vaughn et al. [82] observed an 

abundance of this polymer in Vicia transfer cell walls. Xyloglucans are common cell wall 

polymers known to associate with both cellulose networks and acidic pectins across land 

plants [85, 88]. A possible function in transfer cell walls is as a regulator of cell wall 

extensibility by weakening the cellulose network to allow slippage during cell growth (46, 

43).

The transfer cell walls of both generations in P. patens have low levels of mannan-containing 

hemicellulose, which is similar to the placenta of Marchantia but differs from that of 

Phaeoceros that lacks mannans. Because mannans also occur in protonemata and rhizoids in 

P. patens, these polymers have been speculated to facilitate nutrient uptake, water sensing, 

and cell wall reinforcement, all of which would be important and useful properties for 

transfer cell walls (Table 3) [49,50,89]. The combination of mannans and small amounts 

of arabinan-containing RG-I pectin in P. patens may enhance water and nutrient movement 

while the small amounts of galactan-containing RG-I may increase rigidity of these walls 

[49,50,89].

AGPs are proteoglycans made of a protein backbone that is heavily O-glycosylated (90% 

of the overall mass). As seen in Figure 6, arabinogalactan proteins (AGPs) are the most 

variable cell wall polymers present in bryophyte placental cell walls. Transfer cell walls 

in the P. patens placenta have lower diversity and amounts of AGPs than in Marchantia 
and Phaeoceros. Gametophyte cell walls in the placenta are only slightly richer in AGPs 

than those of the sporophyte in P. patens. In Marchantia, sporophyte cell wall ingrowths 

show an abundance of AGPs compared with gametophyte wall ingrowths. In gametophyte 

transfer cells, AGP labeling is light in Phaeoceros and even less abundant in Marchantia. 

AGPs are abundant in placental transfer cell walls of the Ceratopteris gametophyte with less 

labeling observed in sporophyte cells [81]. Vaughn et al. (2007) [82] found AGP epitopes in 

Vicia wall ingrowths along the plasmalemma around the outer edges of cell wall ingrowths 

adjacent to an electron-lucent layer that contains callose. AGP epitopes were not detected in 

Eldoea leaf transfer cells [83].

The varied and important roles of AGPs in plant biological processes are increasingly 

becoming clear [90]. These proteoglycans are speculated to be involved in differentiation, 

cell to cell recognition, embryogenesis, programmed cell death, tip-growth, pectin 

plasticization, and pH-dependent signaling by releasing Ca2+ as a secondary messenger that 

regulates development [91,92,93,94,52] (Table 3). The contribution of AGPs to placental 

development and functions is likely varied. Regulated signaling by AGPs would facilitate 

the interaction between generations, and the systematic directional transport of nutrients. In 

angiosperms, cytosolic Ca2+ accumulation is important in the development of reticulate cell 

wall ingrowths that are similar to those in bryophytes [95]. AGPs are also hypothesized to 

act as markers that aid in directing the polarized growth of wall ingrowths [96]. AGPs may 

act as pectin plasticizers by preventing HG domain crosslinking [97].
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Across bryophytes, AGPs have been observed in the walls of water-conducting cells in both 

mosses and liverworts [86], in apical cell extension of protonemata and water balance in P. 
patens [54,98] and in hyaline cell walls in Sphagnum [99]. AGPs have been implicated in 

protonemata differentiation [100], cell wall regeneration of the cultured protoplasts [101], 

and cell plate formation in M. polymorpha [102]. Their significance in sexual reproduction 

has been observed in the process of spermatogenesis in Ceratopteris [46] and the moss, 

Aulacomnium palsutre [103]. The female gametes of Ceratopteris also express AGPs during 

development [55].

Callose occurs in both generations of P. patens along the electron-dense base of wall 

ingrowths. Callose labeling does not occur in the Marchantia placenta, and in Phaeoceros 
it is restricted to the gametophyte generation around plasmodesmata. In contrast, callose 

is more prominent in Vicia and P. sativum cell wall callose where it is localized in the 

electron-dense areas of wall ingrowths and basal wall [83,104].

As has been observed in tracheophytes, unique cell wall compositions characterize transfer 

cells across taxa, and the variability in the placentae of the three bryophytes may be 

explained in part by differences in the developmental and physiological interactions between 

the generations, and the longevity of the sporophyte and associated protective structures. 

It is logical to link the differential polymer composition in the placenta of Phaeoceros to 

differences in development and function between gametophyte transfer cells and sporophyte 

haustorial cells [5]. Because the placenta of hornworts is long-lived and nutrient demands 

from the growing sporophyte is high, differential cell wall composition would make sense 

for efficient unidirectional transport [5]. Generational differences in cell wall polymers 

are also evident in Marchantia and these also likely reflect directional movement [18]. In 

this liverwort, the foot is small and anchor-shaped and the sporophyte is surrounded by 

three protective structures (calyptra, pseudoperianth and involucre) throughout development 

[105,18]. A constant nutrient transport via the gametophyte would be critical for sporophyte 

development as photosynthetic activity of this generation is limited. Compared to most 

moss sporophytes that persist for approximately one year, the longevity of the P. patens 
sporophyte is highly abbreviated. The sporophyte is green throughout development with 

significant autonomy. This may explain the lack of generational variability in placental 

transfer cell walls in this moss. Although placental cell walls in P. patens are less pectin and 

AGP-rich than those of M. polymorpha and Phaeoceros, the ratios of carbohydrates in these 

transfer cell walls are similar to those described in moss primary cell walls [106, 88, 80]. 

Compositional similarities between wall ingrowths and primary cell walls suggest that wall 

ingrowths may simply be extensions of the primary cell wall in P. patens as hypothesized 

in Vicia by Vaughn et al. [82]. Whether this hypothesis is valid or P. patens placental cell 

walls simply represent an evolutionary reduction in complexity awaits further testing with 

immunolabelling on placentae of mosses with more extended life cycles.

Transfer cells evolved multiple times and are important in directional transport and tissue 

function across algae, fungi and plants [107,15,108,109]. It is therefore surprising that 

transfer cell wall composition is poorly characterized and known only from Elodea, Vicia, 
Pisum and the placenta of three bryophytes. The occurrence, abundance, and types of 

polymers is considerably different among these taxa and between the two generations, 
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suggesting that similarity in function and morphology of cell walls does not require a 

common cell wall composition. We propose that the specific developmental and life history 

traits of plants may provide even more important clues in understanding the basis for 

these differences. Understanding what polymers are present, their abundance and their 

associations with each other is foundational to further work on plant cell walls. Additional 

studies of cell wall polymers on a broad spectrum of tissue types across bryophyte diversity 

are necessary to assess the variability in cell wall composition and its impact on the function 

and evolution of cell walls across plants.
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Figure 1. 
Anatomy of the sporophyte and placenta of Physcomitrium patens. (a). Developing 

sporophyte with expanding capsule containing a central columella (co), sporogenous layer 

(sp), and a zone of stomata (st) at the base. The seta (se) is short and continuous with 

the cylindrical foot (f) that tapers at the tip. The calyptra (ca) was dislodged from the 

capsule, and vaginula (v) disrupted in slide preparation to reveal the region where the foot 

and seta meet (*). Ar, unfertilized archegonium. (b). Spores in the capsule with mature 

placenta showing stage of development examined in (c), (d), and (e). (c). Longitudinal 
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light microscope section of the sporophyte (s) embedded in the gametophyte (g) showing 

the cylindrical foot (f) at its upper limit and adjacent gametophyte transfer cells. The foot 

with peripheral transfer cells connects to the vaginula (v). (d). Along most of its length, 

the placenta consists of abutting sporophyte (s) and gametophyte (g) cells with extensive 

wall ingrowths. Sporophyte cells contain abundant small vacuoles (va) and dense plastids 

(p). Gametophyte cells contain rounded plastids (p) with starch grains. (e). At the tip of 

the foot, cell wall ingrowths are few, and an intergenerational zone (iz) is evident from the 

breakdown of gametophyte cells. Gametophyte (g) cells contain starch-filled plastids (p), 

and sporophyte (s) cells have numerous dense plastids (p) around the cell periphery and near 

the nuclei (n). Scale bars = 50 μm (a), 10 μm (b)-(e).
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Figure 2. 
Ultrastructural details of placental cells taken in the TEM. (a). Transfer cells in gametophyte 

(g) and sporophyte (s) are separated by a narrow intergenerational zone (iz) and show 

elaborate cell wall labyrinths. An electron-lucent region is delimited by the plasmalemma 

(pl) and surrounds the dense inner core of cell wall ingrowths that is more vesicular in 

the gametophyte. Mitochondria (m) and plastids (p) are located near wall ingrowths. (b). 

Plastids in sporophyte (s) cells are irregular in shape, dense, vesiculate, and contain few 

thylakoids. Mitochondria (m) and small vacuoles (va) are numerous in sporophyte cells. 
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n, nucleus. (c). Plastids in gametophyte (g) cells contain starch grains (s) surrounded by 

thylakoids. m, mitochondria; n, nucleus. Scale bars = 0.1 μm
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Figure 3. 
TEMs of Physcomitrium patens placenta. Immunogold labeling with monoclonal antibodies 

to pectin epitopes. (a). JIM7 labels sporophyte (s) placental cell walls with more abundance 

than those in the gametophyte (g). Labeling occurs throughout the basal wall (bw) and the 

wall ingrowths (wi) on the sporophyte side. (b). JIM5 labels the basal wall (bw) and wall 

ingrowths (wi) in sporophyte transfer cells. (c). JIM5 labels the basal wall (bw) and wall 

ingrowths (wi) in gametophyte transfer cells. (d). LM19 labels are found in sporophyte basal 

wall (bw) and wall ingrowths (wi). (e). LM19 labels on the gametophyte side are more 
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abundant in both basal walls (bw) and wall ingrowths (wi) compared to the sporophyte cell 

walls. (f). LM5 and (g) LM13 sparsely label the basal wall (bw) and wall ingrowths (wi) in 

both the gametophyte (g) and sporophyte (s) placental cells. Scale bars = 0.5 μm.
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Figure 4. 
TEMs of Physcomitrium patens placenta. Immunogold labeling with monoclonal antibodies 

to hemicellulose epitopes. (a). LM15 does not label the basal wall (bw) and sparsely labels 

(arrows) sporophyte cell wall ingrowths (wi). (b) LM15 does not label the basal wall 

(bw) and sparsely labels (arrows) gametophyte cell wall ingrowths (wi). (c). LM25 labels 

sporophyte placental cell wall ingrowths (wi) and the basal wall (bw). (d). LM25 labels 

gametophyte placental cell wall ingrowths (wi) and the basal wall (bw). (e). LM21 labels 
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sporophyte (s) and gametophyte (g) transfer cell wall ingrowths (wi) and basal walls (bw). 

Scale bars = 0.5 μm.
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Figure 5. 
TEMs of Physcomitrium patens placenta. Immunogold labeling with monoclonal antibodies 

to AGP and callose epitopes. (a) In the sporophyte placental transfer cell, JIM13 labels 

(arrows) occur along the plasma membrane and wall ingrowths (wi) but not in the basal 

wall layer (bw). (b) Labels for JIM13 (arrows) occur in the gametophyte along the plasma 

membrane and wall ingrowths (wi) but not in the basal wall (bw). (c) LM6 labels are 

scattered throughout the wall ingrowths (wi) and basal wall (bw) in the sporophyte (s) 

and mostly in the electron lucent area along the edges of the wall ingrowths (wi) in the 
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gametophyte (g) side, with few labels in the basal wall (bw). (d) Sporophyte and (e) 

Gametophyte. Labels for anti-callose (arrows) appear along the outer edge of the basal wall 

(bw) where it comes into contact with the wall ingrowths with few labels in wall ingrowths 

(wi). Scale bars = 0.5 μm.
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Figure 6. 
Comparative diagrammatic representation of labeling with 14 MAbs to epitopes of cell 

wall polymers in three bryophyte placentae: the moss Physcomitrium patens (this study), 

liverwort Marchantia polymorpha [18], and two species of Phaeoceros [5]. The LM28 and 

LM12 MAbs yielded no labels in any plant. LM13 labeling in Phaeoceros was inconclusive 

and omitted. Pectins, red; hemicellulose, blue; AGPs, green; callose, black. The number of 
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symbols per MAb corresponds to label intensity as follows: three symbols, very strong; two 

symbols, strong; one symbol, weak; underlined symbol, present but rare.
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Table 1.

Primary monoclonal antibodies (MAbs) used to immunogold label carbohydrates and arabinogalactan proteins 

in placental cell walls of Physcomitrium patens.

Antibody Antigen (s)/ Epitope Reference/ Source

JIM7 Homogalacturonan/ Methyl-esterified 21

JIM5 Homogalacturonan/ Un-esterified 22

LM19 Homogalacturonan/ Un-esterified 23

LM20 Homogalacturonan/ Methyl-esterified 23

LM5 Galactan, rhamnogalacturonan-I/(1–4)-β-D-galactan 24

LM13 Arabinan, rhamnogalacturonan-I/(1–5)-α-L-arabinan (linear) 25

LM15 XXXG motif of xyloglucan 26

LM25 Galactoxylated xyloglucans 27

LM21 Mannan/ β-(1,4)-manno-oligosaccharide 28

LM28 Glucuronoxylan 29

JIM13 Arabinogalactan protein (AGP)/β-D-GlcA-(1,3)-α-D-GalpA-(1,2)-l-Rha(glucuronicacid-galacturonicacid-
rhamnose) 30

LM6 Arabinan, rhamnogalacturonan-I/(1–5)-α-L-arabinan(also labels AGP) 31

JIM8 Arabinogalactan protein (AGP)/ unknown 32

LM2 Arabinogalactan protein (AGP)/ β-D-GlcA (glucuronic acid) 33

Anticallose Callose/ (1,3)-β-linked penta-to-hexa-glucan 34

JIM12 Extensin 35
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Table 2.

Relative intensity of immunogold labeling for sporophyte and gametophyte placental cell walls in P. patens 
with 16 monoclonal primary antibodies.

Primary Antibody Sporophyte Gametophyte

JIM7 ++ +

JIM5 + +

LM19 + ++

LM20 - -

LM5 + ±

LM13 ± ±

LM15 ± ±

LM25 ± +

LM21 + +

LM28 - -

JIM13 ± ±

LM6* ± +

JIM8 - -

LM2 - -

Callose + +

JIM12 - -

Notes:

+++,
very strong

++,
strong

+,
weak

±,
present

−,
absent

*
LM6 binds to arabinan residues in RG-I pectins and AGPs.
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Table 3.

Cell wall polymers, the MAbs that target them, their reported properties and the supporting references.

Cell wall polymer MAbs Wall properties References

HG Pectin

Esterified JIM7 , LM20 Porosity and permeability
Expansibility
Elasticity

36,37,38

De-esterified LM19, JIM5 Ca2+ binding
Rigidity
Resistance to mechanical stress
Cell-to-cell adhesion

37,39,38

RG-I Pectin

Arabinan LM13, LM6* Spatial buffer
Flexibility
Expansibility and elasticity
Porosity to wall
Increases water holding capacity
Signaling

37,40,41,39

Galactan LM5 Rigidity
Tip growth

40,37

Hemicellulose

Xyloglucan LM15, LM25 Regulates expansibility and yield threshold
Cell-to-cell adhesion
Cross-linkage/ tethering
Nutrient source
Sexual reproduction

36,42,43,44,45, 46

Mannan LM21 Anchoring
Interacts with soil particles, microorganisms
Nutrient uptake
Hydrated/de-hydrated cycles
Cross-links with cellulose
Nutrient source

47,48,49,50

AGP

JIM13, JIM8, LM2, LM6* Development
Cell identity
Structural integrity to walls
Galactan turnover
Ca2+ regulation/signal transduction
Plasticity — unidirectional deformation
Desiccation tolerance
Membrane integrity
Tip growth
Sexual reproduction

51,40,52,53,46,55

Extensin
JIM12 Cell wall assembly and growth

Tip growth
Cell wall/cytoplasm communication

56,57,58,59

Callose

Anticallose Stress response
Sieve plate/ sieve areas
Scaffolding for cell plate formation
Plasmodesmata
Developmental processes
Tip growth/ Pollen tube
Spore wall development/structure
Sperm cell differentiation
Desiccation tolerance

60,61,62,63,64,
65,66,67,68,69,

70,71,72,73

*
LM6 detects arabinan sidechains in both AGPs and pectin.
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