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Progresses and challenges in link prediction
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SUMMARY

Link prediction is a paradigmatic problem in network science, which aims at esti-
mating the existence likelihoods of nonobserved links, based on known topology.
After a brief introduction of the standard problem and evaluation metrics of link
prediction, this review will summarize representative progresses about local simi-
larity indices, link predictability, network embedding, matrix completion, ensemble
learning, and some others, mainly extracted from related publications in the last
decade. Finally, this review will outline some long-standing challenges for future
studies.
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INTRODUCTION

Network is a natural and powerful tool to characterize a huge number of social, biological, and information

systems that consist of interacting elements, and network science is currently one of the most active inter-

disciplinary research domains (Barabasi, 2016; Newman, 2018). Link prediction is a paradigmatic problem

in network science that attempts to uncover missing links or predict future links (Lü and Zhou, 2011), which

has already foundmany theoretical and practical applications, such as reconstruction of networks (Squartini

et al., 2018; Peixoto, 2018), evaluation of evolving models (Wang et al., 2012; Zhang et al., 2015), inference

of biological interactions (Csermely et al., 2013; Ding et al., 2014), online recommendation of friends and

products (Aiello et al., 2012b; Lü et al., 2012), and so on.

Thanks to a few pioneering works (Liben-Nowell and Kleinberg, 2007; Clauset et al., 2008; Zhou et al., 2009;

Guimerà and Sales-Pardo, 2009), link prediction has been one of the most active research domains in

network science. Early contributions were already summarized by a well-known survey article (Lü and

Zhou, 2011), and this review will first define the standard problem and discuss some well-known evaluation

metrics and then introduce most representative achievements in the last decade (mostly published after

(Lü and Zhou, 2011)), including local similarity indices, link predictability, network embedding, matrix

completion, ensemble learning, and some others. Lastly, this review will show limitations of existing studies

as well as open challenges for future studies.

EVALUATION

Consider a simple networkGðV ;EÞ, where V and E are sets of nodes and links, the directionalities and weights

of links are ignored, and multiple links and self-connections are not allowed. We assume that there are some

missing links or future links in the set of nonobserved links U E, where U is the universal set containing all

jV jðjV j �1Þ=2 potential links. The task of link prediction is to find out those missing or future links. To test

the algorithm’s accuracy, the observed link, E, is divided into two parts: the training set ET is treated as known

information, while the probe set EP is used for algorithm evaluation, and no information in EP is allowed to be

used for prediction. The majority of known studies applied ‘‘random division’’, namely EP is randomly drawn

from E. In the case of predicting future links, ‘‘temporal division’’ is usually adopted where EP contains most

recently appeared links (Lichtenwalter et al., 2010). In some real networks, missing links have different

topological features from observed links. For example, missing links are more likely to be associated with

low-degree nodes since interactions between hubs are easy to be known. In such situations, we may apply

‘‘biased division’’ to ensure that EP is consisted of links with similar topological features to missing links (Zhu

et al., 2012).

Performance evaluation metrics can be roughly divided into two categories: threshold-dependent metrics (e.g.,

fixed threshold accuracy) and threshold-independent metric (e.g., area under threshold curve). Precision and

recall are the two most widely used metrics in the former category. Precision is defined as the ratio of relevant

items selected to the number of items selected. That is to say, if we take the top-L links as the predicted ones,
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amongwhich Lr links are correctly predicted; then, the Precision equals Lr=L. Recall is defined as the ratio of rele-

vant items selected to the total number of relevant items, say Lr=
��EP

��. An obvious drawback of threshold-depen-
dent metrics is that we generally do not have a reasonable way to determine the threshold, like the number of

predicted links L or the threshold score for the existence of links. A widely adopted way is setting L =
��EP

��, at
which precision = recall (Lü and Zhou, 2011; Liben-Nowell and Kleinberg, 2007). Although

��EP
�� is generally un-

known, an experiential and reasonable setting is
��EP

��= 0:1jEj because 10% of links in the probe set are usually

enough for us to get statistical solid results while the removal of 10% of links will probably not destroy the struc-

tural features of the target network (Lü et al., 2015).

Some studies argued that a single value might not well reflect the performance of a predictor (Lichten-

walter et al., 2010; Yang et al., 2015). Therefore, robust evaluation based on threshold-dependent met-

rics should cover a range of thresholds (e.g., by varying L), which is actually close to the consideration of

threshold curves. The precision–recall (PR) curve (Yang et al., 2015) and receiver operating characteristic

(ROC) curve (Hanely and McNeil, 1982) are frequently considered in the literature. The former shows pre-

cision with respect to recall at all thresholds and the latter represents performance trade-off between

true positives and false positives at different thresholds. We say algorithm X is strictly better than algo-

rithm Y only if X’s threshold curve completely dominates Y’s curve (mathematically speaking, a curve A

dominates another curve B in a space is B is always equal or below curve A (Provost et al., 1998)). Davis

and Goadrich (2006) have proved that a curve dominates in ROC space if and only if it dominates in PR

space.

As the condition of domination is too rigid, we usually use areas under threshold curves as evaluation met-

rics. The area under the ROC curve (AUC) can be interpreted as the probability that a randomly chosen link

in EP is assigned a higher existence likelihood than a randomly chosen link inU E. If all likelihoods are gener-

ated from an independent and identical distribution, the AUC value should be about 0.5. Therefore, the de-

gree to which the value exceeds 0.5 indicates how better the algorithm performs than pure chance. Thus far,

AUC is themost frequently usedmetric in link prediction, probably because it is highly interpretable, easy to

be interpolated, and of good visualization. Meanwhile, readers should be aware of some remarkable dis-

advantages of AUC, for example, AUC is inadequate to evaluate the early retrieval performance which is

critical in real applications especially for many biological scenarios (Saito and Rehmsmeier, 2015), and

AUC will give misleadingly overhigh score to algorithms that can successfully rank many negatives in the

bottom while this ability is less significant in imbalanced learning (Yang et al., 2015; Lichtenwalter and

Chawla, 2012). A typical viewpoint in the early studies is that AUC is suitable for imbalanced learning

because AUC is not sensitive to the ratio of positives to negatives and thus can reflect an algorithm’s ability

that is independent to the data distribution (Fawcett, 2006). However, recent perspective in machine

learning and big data is that talking about the performance or ability of a classification algorithm without

specified datasets is meaningless so that this previous advantage gets increasing criticisms (Yang et al.,

2015; Lichtenwalter and Chawla, 2012). Hand argued that AUC is fundamentally incoherent because AUC

uses different misclassification cost distributions for different classifiers (Hand 2009). Hand’s criticism is

deep, but AUC indeed measures relative ranks instead of absolute loss and is irrelevant to misclassification

cost so that to dissect AUC in the narration involving misclassification cost may be unfair. To overcome the

above disadvantages, scientists have proposed a number of alternatives of AUC, such as H measure (Hand

2009), concentrated ROC (Swamidass et al., 2010), and normalized discounted cumulative gain (Wang et al.,

2013). At the same time, the area under the precision-recall curve (AUPR) becomes increasingly popular,

especially for biological studies. Though the AUPR score is less interpretable than AUC, each point in

the PR curve has an explicit meaning, and the absolute accuracy metrics (e.g., precision and recall) are usu-

ally closer to practical requirements than relative ranks.

In summary, empirical comparisons and systematic analyses about evaluation metrics for link prediction are

important tasks in this stage because many publications use AUC as the sole metric, while an ongoing empir-

ical study (by Y.-L. Lee and T. Zhou, unpublished) shows that in about 1/3 pairwise comparisons, AUC and

AUPR give different ranks of algorithms, and a recent large-scale experimental study also shows inconsistent

results by AUC and AUPR (Muscoloni and Cannistraci, 2021). Before a comprehensive and explicit picture

obtained, my suggestion is that we have to at least simultaneously report both AUC and AUPR, and only

if an algorithm can obviously beat another one in both metrics for a network, we can say the former performs

better in this case.
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LOCAL SIMILARITY INDICES

A similarity-based algorithm will assign a similarity score to each nonobserved link, and the one with a

higher score is of a larger likelihood to be a missing link. Liben-Nowell and Kleinberg (2007) indicated

that a very simple index named ‘‘common neighbor’’ (CN), say

SCN
xy =

��GxXGy

��; (Equation 1)

with Gx and Gy being sets of neighbors of nodes x and y, performing very well in link prediction for social

networks. Zhou et al. (2009) proposed the ‘‘resource allocation’’ (RA) index via weakening the weights of

large-degree common neighbors, namely

SRA
xy =

X
z˛GxXGy

1

kz
; (Equation 2)

where kz is the degree of node z. The simplicity, elegance, and good performance of CN, RA, and some

other alternatives (Lü and Zhou, 2011) lead to increasing attention on local similarity indices.

In the recent decade, probably, the most impressive achievement on local similarity indices is the proposal

of the local community paradigm (Cannistraci et al., 2013a), which suggests that two nodes are more likely

to link together if their common neighbors are densely connected. Accordingly, Cannistraci et al. (2013a)

proposed the CAR index where the CN index is multiplied by the number of observed links between com-

mon neighbors, as follows:

SCAR
xy = SCN

xy ,
X

z˛GxXGy

jgz j
2

; (Equation 3)

where gz is the subset of z’s neighbors that are also common neighbors of x and y. Analogously, RA index

can be improved by accounting for the local community paradigm as follows:

SCRA
xy =

X
z˛GxXGy

jgz j
kz

: (Equation 4)

By integrating the idea of Hebbian learning rule, the above index is further extended and renamed as Can-

nistraci-Hebb (CH) index (Muscoloni et al., 2018):

SCH
xy =

X
z˛GxXGy

1+ kðiÞz
1+ kðeÞ

z

; (Equation 5)

where k
ðiÞ
z is the internal degree of z, say the number of z’s neighbors that are also in GxXGy , and k

ðeÞ
z is the

external degree of z, say the number of z’s neighbors that are not in GxXGyXfx;yg. The core idea of CH

index is to consider the negative impacts of external local community links (see Muscoloni et al. (2020)

for more CH indices according to the core idea). Extensive empirical analyses (Muscoloni et al., 2020;

Zhou et al., 2021) indicated that the introduction of local community paradigm and Hebbian learning

rule could considerably improve the performance of routine local similarity indices.

In most known studies, the presence of many 2-hop paths between a pair of nodes is considered to be the

strongest evidence indicating the existence of a corresponding missing link or future link. Although in local

path index (Lü et al., 2009) and Katz index (Katz, 1953) longer paths are taken into account, they are consid-

ered to be less significant than 2-hop paths. Surprisingly, some recent works have argued that 3-hop-based

similarity indices perform better than 2-hop-based indices. Pech et al. (2019) assumed that the existence

likelihood of a link is a linear sum of all its neighbors’ contributions. After some algebra, Pech et al.

(2019) obtained a global similarity index called linear optimization (LO) index, as follows:

SLO = aA
�
aATA+ I

��1
ATA=aA3 � a2A5 +a3A7 � a4A9 +/; (Equation 6)

where A and I are adjacency matrix and identity matrix, respectively. Clearly, the number of 3-hop paths A3

can be interpreted as a degenerated index of LO. Indeed, Daminelli et al. (2015) have already applied

3-hop-based indices to predict missing links in bipartite networks, while almost no one at that time has tried

3-hop-based indices on unipartite networks. Kovács et al. (2019) noted the bipartite nature of the protein-

protein interaction networks (not fully bipartite, but of high bipartivity (Holme et al., 2003)) and indepen-

dently proposed a degree-normalized index (called L3 index) based on 3-hop paths as follows:
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SL3
xy =

X
u;v

axuauvavyffiffiffiffiffiffiffiffiffi
kukv

p : Equation (7)

They showed its advantage compared with 2-hop-based indices in predicting protein-protein interactions.

Muscoloni et al. (2018) further proposed a theory that generalized 2-hop-based indices to n-hop-based

indices with n > 2 and demonstrated the superiority of 3-hop-based indices over 2-hop-based indices

on protein-protein interaction networks, world trade networks, and food webs. For example, in their frame-

work (Muscoloni et al., 2018), the n-hop-based RA index reads as follows:

SRAðnÞ
xy =

X
z1 ;z2 ;/;zn�1˛LðnÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz1kz2/kzn�1

n�1
p ; (Equation 8)

where LðnÞ is the set of all n-hop simple paths connecting x and y, and z1; z2;/; zn�1 are the intermediate

nodes on the considered path. Accordingly, the L3 index is exactly the same to the 3-hop-based RA index.

We have implemented extensive experiments on 137 real networks (Zhou et al., 2021), suggesting that (i) 3-

hop-based indices outperform 2-hop-based indices subject to AUC, while 3-hop-based and 2-hop-based

indices are competitive on precision; (ii) CH indices perform the best among all considered candidates; and

(iii) 3-hop-based indices are more suitable for disassortative networks with lower densities and lower

average clustering coefficient. Furthermore, we have showed that a hybrid of 2-hop-based and 3-hop-

based indices via collaborative filtering techniques can result in overall better performance (Lee and

Zhou, 2021).
LINK PREDICTABILITY

Quantifying link predictability of a network allows us to evaluate link prediction algorithms for this network

and to see whether there is still a large space to improve the current prediction accuracy. Lü et al. (2015)

raised a hypothesis that missing links are difficult to predict if their addition causes huge structural changes,

and thus, a network is highly predictable if the removal or addition of a set of randomly selected links does

not significantly change structural features of this network. Denote A the adjacency matrix of a simple

network GðV ;EÞ and DA the adjacency matrix corresponding to a set of randomly selected links DE from

E. After the removal of DE, the remaining network GR is also a simple network so that the corresponding

adjacency matrix, AR = A� DA, can be diagonalized as follows:

AR =
XN
k = 1

lkxkx
T
k ; (Equation 9)

where N= jV j and lk and xk are the kth eigenvalue and corresponding orthogonal and normalized eigen-

vector of AR , respectively. Considering DE as a perturbation to AR , which results in an updated eigenvalue

lk +Dlk and a corresponding eigenvector xk +Dxk , then we have the following equation:

�
AR + DA

�ðxk + DxkÞ = ðlk + DlkÞðxk + DxkÞ: (Equation 10)

Similar to the process to get the expectation value of the first-order perturbation Hamiltonian, we neglect

the second-order small terms and the changes of eigenvectors and then obtain the following equation:

Dlkz
xTk DAxk
xTk xk

; (Equation 11)

as well as the perturbed matrix:

~A =
XN
k = 1

ðlk + DlkÞxkxTk ; (Equation 12)

which can be considered as the linear approximation ofA if the expansion is only based on AR . If the pertur-

bation does not significantly change the structural features, the eigenvectors of AR and those of A should

be almost the same, and thus, ~A should be very close to A according to Equation (12). We rank all links in

U ER in a descending order according to their values in ~A and select the top-L links to form the set EL, where

L = jDEj. Links in ER and EL constitute the perturbed network, and if this network is close toG (because ~A is

close to A), EL should be close to DE. Therefore, Lü et al. (2015) finally proposed an index called structural

consistency to measure the inherent difficulty in link prediction as follows:
4 iScience 24, 103217, November 19, 2021
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sc =

��ELXDE
��

jDEj : Equation (13)

The above perturbation method can also be applied to predict missing links, and the resulted ‘‘structural

perturbation method’’ (SPM) is still one of the most accurate methods till far (Muscoloni and Cannistraci,

2021).

Koutra et al. (2015) found that the major part of a seemingly complicated real network can be represented

by a few elemental substructures like cliques, stars, chains, bipartite cores, and so on. Inspired by this study,

Xian et al. (2020) claimed that a network is more regular and thus more predictable if it can be well repre-

sented by a small number of subnetworks. To reduce the tremendous complexity caused by countless sub-

networks, they further set a strong restriction that candidate subnetworks are ego networks of all nodes,

where ego network (also called egocentric network) is a subnetwork induced by a central node (known

as the ego) and all other nodes directly connected to the ego (called alters), see (Wang et al., 2016a)

for example. Obviously, the ego network of node i can be represented by the ith row or ith column of

the adjacency matrix A, and if a network can be perfectly represented by all ego networks, there exists a

matrix Z˛RN3N such thatA=AZ. Intuitively, if a networkG is very regular, the corresponding representation

Z should have three properties: (i)G can be well represented by its ego networks so that AZ is close to A; (ii)

G can be well represented by a small number of ego networks so that Z is of low rank since the redundant

ego networks correspond to zero rows in Z; and (iii) each ego network ofG can be represented by a very few

other ego networks so that Z is sparse. Accordingly, the best representation matrix Z� can be obtained by

solving the following optimization problem:

min
Z

rankðZÞ + akZk+ bkA� AZk; (Equation 14)

where a and b are tradeoff parameters. Based on Z�, Xian et al. (2020) proposed an ad hoc index named

structural regularity index, as follows:

sr =
1ffiffiffiffiffiffiffi

n�r
n

p ffiffiffiffi
t
nr

p ; (Equation 15)

where r is the rank of Z�, t is the number of zero entries in Z�, n�r
n denotes the proportion of identical ego

networks, and t
nr characterizes the density of zero entries of the reduced echelon form of Z�. Clearly, a lower

r and a larger t will result in a smaller sr , corresponding to a more predictable network.

Xian et al. (2020) suggested that the structural regularity corresponds to redundant information in the ad-

jacency matrix, which can be characterized by a low-rank and sparse representation matrix. Sun et al. (2020)

proposed a more direct method to measure such redundancy. Their train of thought is that a more predict-

able network contains more structural redundancy and thus can be compressed by a shorter binary string.

As the shortest possible compression length can be calculated by a lossless compression algorithm, they

used the obtained normalized shortest compression length of a network to quantify its structure

predictability.

To validate their methods, Lü et al. (2015) and Xian et al. (2020) tested onmany real networks about whether

sc and sr are strongly correlated with prediction accuracies of a few well-known algorithms. This is rough

because any algorithm cannot stand for the theoretical best algorithm. Sun et al. (2020) adopted an

improved method that uses the best performance among a number of known algorithms for each tested

network to approximate the performance of the theoretically best predicting algorithm. Garcia-Perez

et al. (2020) analyzed the ensemble of simple networks, where each can be constructed by generating a

link between any node pair i and j with a known linking probability pij. For such theoretical benchmark,

the best possible algorithm is to rank unobserved links with largest linking probabilities in the top positions

and the theoretical limitation of precision can be easily obtained. They showed that if the size of DA is too

small in compared with A, the evaluation of predictability by sc is less accurate.

Structural consistence, structural regularity, and compression length are all ad hoc methods. They can be

used to probe the intrinsic difficulty in link prediction but cannot mathematically formulate the limitation

of prediction. Mathematically speaking, there could be a God algorithm that correctly predicts all missing

links, except for those indistinguishable from nonexistent links. A link (i, j) is indistinguishable

from another link (u, v) if and only if there is a certain automorphism f such that f(i) = u and f(j) = v, or
iScience 24, 103217, November 19, 2021 5
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f(i) = v and f(j) = u. This extremely rigid definition from automorphism-based symmetry makes virtually all

real networks have predictability very close to 1, which is indeed meaningless in practice. Using synthetic

networks with known prediction limitation is a potentially promising way to evaluate predictors as well as

indices for predictability (Garcia-Perez et al., 2020; Muscoloni and Cannistraci, 2018b), but the results may

be irrelevant to real-world networks.

All above studies target static networks, while a considerable fraction of real networks are time varying

(named as temporal networks) (Holme and Saramäki, 2012). Temporal networks are usually more predict-

able since one can utilize both topological and temporal patterns. Ignoring topological correlations, the

randomness, and thus predictability of a time series can be quantified by the entropy rate (Xu et al.,

2019). Tang et al. (2020) listed weights of all possible links as an expanded vector with dimension N2

(self-connections are allowed, directionalities are considered), and thus, the evolution of a temporal

network can be fully described by a matrix M˛RN23T , where T is the number of snapshots under consider-

ation. AfterM, the evolution of a temporal network can be treated as a stochastic vector process, and how

tomeasure the predictability of temporal networks is transformed to a solved problem based on the gener-

alized Lempel-Ziv algorithm (Kontoyiannis et al., 1998). An obvious defect is that the vector dimension is

too big, resulting in huge computational complexity. Tang et al. (2020) thus replaced M by a much smaller

matrix where only links occurringR10% of snapshots are taken into consideration. An intrinsic weakness of

Lempel-Ziv algorithm is that it tends to overestimate the predictability, and thus, in many situations the esti-

mated values are very close to 1 (Xu et al., 2019; Song et al., 2010). Tang et al. (2020) proposed a clever

method that compares the predictability of the target network with the corresponding null network, and

thus, the normalized predictability is able to characterize the topological-temporal regularity in addition

to the least predictable one.
NETWORK EMBEDDING

A network embedding algorithm will produce a function g : V/Rd with d � N so that every node is rep-

resented by a low-dimensional vector (Cui et al., 2018). Then, the existence likelihood of a nonobserved link

(u, v) can be estimated by the inner product, the cosine similarity, the Euclidean distance, or the geomet-

rical shortest path of the two learned vectors gðuÞ and gðvÞ (Cui et al., 2018; Cannistraci et al., 2013b). Early
methods cannot handle large-scale networks because they usually rely on solving the leading eigenvectors

(Tenenbaum et al., 2000; Roweis and Saul, 2000).

Mikolov et al. (2013a, 2013b) proposed a language embedding algorithm named SkipGram that represents

every word in a given vocabulary by a low-dimensional vector. Such representation can be obtained by

maximizing the co-occurrence probability among words appearing within a window t in a sentence, via

some stochastic gradient descent methods. Based on SkipGram, Perozzi et al. (2014) proposed the so-

called DeepWalk algorithm, where nodes and truncated randomwalks are treated as words and sentences.

Grover and Leskovec (2016) proposed the node2vec algorithm that learns the low-dimensional represen-

tation by maximizing the likelihood of preserving neighborhoods of nodes. Grover and Leskovec argued

that the choice of neighborhoods plays a critical role in determining the quality of the representation.

Therefore, instead of simple definitions of the neighborhood of an arbitrary node u, such as nodes with dis-

tance no more than a threshold to u (like the breadth-first search) and nodes sampled from a random walk

starting from u (like the depth-first search), they utilized a flexible neighborhood sampling strategy by

biased random walks, which smoothly interpolates between breadth-first search and depth-first search.

Considering a randomwalk that just traversed link (z, v) and now resides at node v, the transition probability

from v to any v’s immediate neighbor x is pvx=
P

y˛Gv
pvy . The node2vec algorithm sets the unnormalized

probability as follows:

pvx = apqðz; xÞ,wvx ; (Equation 16)

where wvx is the weight of link (v, x) and

apqðz; xÞ =
8<
:

1
�
p; dzx = 0

1; dzx = 1
1
�
q; dzx = 2

: (Equation 17)

Obviously, the sampling strategy in DeepWalk is a special case of node2vec with p = 1 and q = 1. By tuning

p and q, node2vec can achieve better performance than DeepWalk in link prediction.
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Tang et al. (2016) argued that DeepWalk lacks a clear objective function tailored for network embedding

and proposed the LINE algorithm that learns node representations on the basis of a carefully designed

objective function that preserves both the first-order and second-order proximity. The first-order proximity

is captured by the observed links and thus can be formulated as follows:

O1 = �
X

ðu; vÞ˛E
wuv log p1ðu; vÞ; (Equation 18)

where wuv is the weight of the observed link (u, v) and

p1ðu; vÞ = 1

1+ exp½ � gðuÞ,gðvÞ� (Equation 19)

describes the likelihood of the existence of (u, v) given the embedding g. Of course, one can adopt other

alternatives of Equation (19). The second-order proximity assumes that nodes sharing many connections to

other nodes are similar to each other. Accordingly, each node is also treated as a specific context and no-

des with similar distributions over contexts are assumed to be similar. Then, the second-order proximity

can be characterized by the objective function:

O2 = �
X

ðu; vÞ˛E
wuv log p2ðujvÞ; (Equation 20)

where p2ðujvÞ denotes the probability that node v will generate a context u, namely

p2ðujvÞ = exp½g0ðuÞ,gðvÞ�P
z˛Vexp½g0ðzÞ,gðvÞ�; (Equation 21)

with g0ðuÞ being the context representation of u. Clearly, O2 is naturally suitable for directed networks. By

minimizing O1 and O2, LINE learns two kinds of node representations that, respectively, preserve the first-

order and second-order proximity and takes their concatenation as the final representation.

In addition to DeepWalk, LINE, and node2vec, other well-known network embedding algorithms that have

been applied in link prediction include DNGR (Cao et al., 2016), SDNE (Wang et al., 2016b), HOPE (Ou

et al., 2016), GraphGAN (Wang et al., 2018), and so on. On the one hand, embedding is currently a very

hot topic in network science and thought to be a promising method for link prediction. On the other

hand, some very recent empirical studies (Muscoloni et al., 2020; Mara et al., 2020; Ghasemian et al.,

2020) involving more than a thousand networks showed negative evidence that network embedding algo-

rithms perform worse than some elaborately designed mechanistic algorithms. This is not a bad news

because one can expect that some link prediction algorithms will enlighten and energize researchers in

network embedding and thus make contributions to other aspects of network analyses like community

detection, classification, and visualization.

Another notable embedding method is based on the hyperbolic network model (Krioukov et al., 2010; Pa-

padopoulos et al., 2012), where each node is represented by only two coordinates (i.e., d = 2) in a hyper-

bolic disk. The hyperbolic network models are very simple yet can reproduce many topological character-

istics of real networks, such as sparsity, scale-free degree distribution, clustering, small-world property,

community structure, self-similarity, and so on (Krioukov et al., 2010; Papadopoulos et al., 2012; Muscoloni

and Cannistraci, 2018a). Papadopoulos et al., (2014) applied the hyperbolic model to the Internet at Auton-

omous Systems (AS) level and showed better performance than traditional methods (e.g., CN index and

Katz index) in predicting missing links associated with low-degree nodes (see again (Zhu et al., 2012) for

biased sampling preferring low-degree nodes). Wang et al. (2016c) proposed a link prediction algorithm

for networks with community structure based on hyperbolic embedding, showing good performance for

community networks with power-law degree distributions. Alessandro and Cannistraci proposed the so-

called nonuniform popularity-similarity-optimization (nPSO) model as a generative model to grow random

networks embedded in the hyperbolic space (Muscoloni and Cannistraci, 2018a), and they leveraged the

nPSO model as a synthetic benchmark for link prediction algorithms, showing that the algorithm only ac-

counting for hyperbolic distance does not perform well at the presence of communities (Muscoloni and

Cannistraci, 2018b). They further proposed a variant of geometric embedding named minimum curvilinear

automata (MCA) (Muscoloni and Cannistraci, 2018c), whose link prediction accuracy is higher than the sim-

ple hyperbolic distance (Muscoloni and Cannistraci, 2018b) but lower than coalescent embedding in hyper-

bolic space (Muscoloni et al., 2017). Kitsak et al. (2020) proposed an embedding algorithm named
iScience 24, 103217, November 19, 2021 7
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HYPERLINK in hyperbolic space, whose goal is to obtain more accurate prediction of missing links, so that

HYPERLINK performs better than previous hyperbolic embedding algorithms (most of these algorithms are

designed to reproduce topological features, not to predict missing links). HYPERLINK is often competitive

to other well-known link predictors, and it is in particular good at predicting missing links that are really

hard to predict.
MATRIX COMPLETION

Matrix completion aims to reconstruct a target matrix, given a subset of known entries. Since links can be

fully conveyed by the adjacency matrix A, it is natural to regard link prediction as a matrix completion task.

Denote Ek the set of node pairs corresponding to known entries in A that can be utilized in the matrix

completion task. In most studies, Ek = ET , while we should be aware of that Ek can also contain some known

absent links. The matrix completion problem can be formulated in line with supervised learning, as follows:

min
w

1��Ek
��
X

ði;jÞ˛Ek

[
�
aij; ~aijðwÞ

�
+UðwÞ; (Equation 22)

where w is the parameter vector, ~aij is the predicted value of the model, [ð ,; ,Þ is a loss function, and U is a

regularization term preventing overfitting. The most frequently used loss functions are squared loss

[ða;bÞ= ða� bÞ2 and logistic loss [ða;bÞ = logð1 +e�abÞ.

Matrix factorization is a very popular method for matrix completion, which has already achieved great suc-

cess in a closely related domain, the design of recommender systems (Koren et al., 2009). We consider a

simple network with symmetry A and assume ~A can be approximately factorized as ~AzUUT with U˛
RN3d and d � N; then, we need to solve the following optimization problem:

min
U

1��Ek
��
X

ði;jÞ˛Ek

[
�
aij;u

T
i uj

�
+UðUÞ; (Equation 23)

where ui and uj are the ith and jth rows of U., respectively Notice that uTi is the transpose of ui not the ith row

of UT . Though without topological interpretation, ui can be treated as a lower-dimensional representation

of node i, and matrix factorization can also be considered as a kind of matrix embedding algorithms (Qiu

et al., 2019). If we adopt the squared loss function and the Forbenius norm for U, then we get a specific

optimization problem:

min
U

1��Ek
��
X

ði;jÞ˛Ek

�
aij � uT

i uj

�2
+ lkUk2F ; (Equation 24)

where l is a tradeoff parameter. Menon and Elkan (2011) suggested that one can directly optimize for AUC

on the training set, given some known absent links. Accordingly, the objective function Equation (23) can be

rewritten in terms of AUC as follows:

min
U

1��Ek
+

����Ek
�
��

X
ði;jÞ˛Ek

+ ; ðx;yÞ˛Ek�

[
�
1;uT

i uj � uT
x uy

�
+UðUÞ; (Equation 25)

where Ek
+ and Ek

� are sets of known present and known absent links, respectively. Cleary, Ek
+X Ek

� = B and

Ek
+WEk

� = Ek . Menon and Elkan (2011) showed that the usage of AUC-based loss function can improve AUC

value by around 10% comparing with the routine loss function like Equation (24).

The factorization in Equation (24) is easy to be extended to directed networks (Menon and Elkan, 2011),

bipartite networks (Natarajan and Dhillon, 2014), temporal networks (Ma et al., 2018), and so on. For

example, if A is asymmetry, we can replace ~AzUUT by ~AzULUT with L˛Rd3d , and thus, Equation (24)

can be extended to the following:

min
U;L

1��Ek
��
X

ði;jÞ˛Ek

�
aij � uT

i Luj

�2
+
lU

2
kUk2F +

lL

2
kLk2F ; (Equation 26)

Analogously, for bipartite networks like gene-disease associations (Natarajan and Dhillon, 2014) and user-

product purchases (Shang et al., 2010), if A˛RM3N, then we can replace ~AzUUT by ~AzWHT , where W˛
RM3d and H˛RN3d . Accordingly, we get the optimization problem for bipartite networks as follows:
8 iScience 24, 103217, November 19, 2021
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min
W ; H

1��Ek
��
X

ði;jÞ˛Ek

�
aij � wT

i hj

�2
+
lW

2
kWk2F +

lH

2
kHk2F ; (Equation 27)

where wi and hj are the ith and jth rows of W and H, respectively. More details can be found in Menon and

Elkan (2011), Natarajan and Dhillon (2014), and Ma et al. (2018).

The explicit features of nodes, such as tags associated with users and products (Zhang et al., 2011), can also

be incorporated in the matrix factorization framework. Menon and Elkan (2011) suggested a direct combi-

nation of explicit features and latent features learned from the observed topology. Denoting xi˛Rs the vec-

tor of explicit features of node i, the predicted values ~aij in Equation (22) are then replaced by

~aij = uT
i uj + vTxi + vTxj; (Equation 28)

where v˛Rs is a vector of parameters. Experiments showed that the incorporation can considerably

improve the prediction accuracy (Menon and Elkan, 2011). Jain and Dhillon (2013) proposed a so-called

inductive matrix completion (IMC) algorithm that uses explicit features to reduce the computational

complexity. In IMC, the predicted value can be expressed as ~aij = xTi QQTxj; where xi˛Rs is the vector of

i’s explicit features, and Q˛Rs3t is a low-rank matrix with small t, which describes the latent relationships

between explicit features and topological structure.Q can be learned from observed links by the following

optimization problem:

min
Q

1��Ek
��
X

ði;jÞ˛Ek

�
aij � xTi QQTxj

�2
+ lkQk2F : (Equation 29)

Notice that, in Equation (24), the number of parameters to be learned is Nd, while in Equation (29), we only

need to learn st parameters. The numbers of latent features (d and t) could bemore or less the same as they

are largely dependent on the topological structure, while the number of nodes N is usually much larger

than the number of explicit features s. Therefore, the computational complexity of IMC should be much

lower than brute-force factorization methods. The original IMC is proposed for bipartite networks (Jain

and Dhillon, 2013), which has already found successful applications in the design of recommender systems

(Jain and Dhillon, 2013) and the prediction of gene- and RNA-disease associations (Natarajan and Dhillon,

2014; Lu et al., 2018; Chen et al., 2018).

Pech et al. (2017) argued that low rank is the most critical property in matrix completion. They assumed that

the observed network can be decomposed into two parts as A = AB +AE , where AB is called the backbone

preserving the network organization pattern, andAE is a noisematrix, in which positive and negative entries

are spurious and missing links, respectively. Pech et al. (2017) considered only two simple properties: the

low rank of AB and the sparsity of AE . Accordingly, AB and AE can be determined by solving the following

optimization problem:

min
AB ; AE

rankðABÞ + lkAEk0 subject to A=AB +AE ; (Equation 30)

whereAE0 is the l0-norm counting the number of nonzero entries ofAE . The predicted links can be obtained by

sorting entries in AB that correspond to zero entries in A. This method is straightforwardly named as low rank

(LR) algorithm. Although being simple, LR performs better than well-known similarity-based algorithms re-

ported in Zhou et al. (2009) and Cannistraci et al. (2013a), hierarchical structure model (Clauset et al., 2008),

and stochastic block model (Guimerà and Sales-Pardo, 2009), while slightly worse than LOOP (Pan et al.,

2016), structural perturbation model (Lü et al., 2015), and Cannistraci-Hebb automata (Muscoloni et al., 2020).
ENSEMBLE LEARNING

In an early survey (Lü and Zhou, 2011), we noticed the low stability of individual link predictors and thus sug-

gested ensemble learning as a powerful tool to integrate them. Ensemble learning is a popular method in ma-

chine learning, which constructs and integrates a number of individual predictors to achieve better algorithmic

performance (Zhou, 2012). Roughly speaking, ensemble learning techniques can be divided into two classes:

the ‘‘parallel ensemble’’ where individual predictors do not strongly depend on each other and can be imple-

mented simultaneously (e.g., bagging (Breiman, 1996) and random forests (Breiman, 2001)) and the ‘‘sequential

ensemble’’ where the integration of individual predictors has to be implemented in a sequential way (e.g.,

boosting (Freund and Schapire, 1997) and stacking (Wolpert, 1992)). In the following, wewill, respectively, intro-

duce how parallel ensemble and sequential ensemble are applied to link prediction.
iScience 24, 103217, November 19, 2021 9
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Given an observed network, an individual link predictor will produce a rank of all unobserved links. Pujari

and Kanawati (2012) proposed an aggregation approach on ranks resulted from individual algorithms. If

there are R ranks produced by R individual predictors, an unobserved link e’s Borda count BkðeÞ in the

kth rank can be defined as the number of links ranked ahead of e (there are many variants of Borda count

and here we use the simplest one). Pujaji and Kanawati used a weighted aggregation to obtain the final

score of any unobserved link e, as follows:

BðeÞ =
XR
k =1

wkBkðeÞ; (Equation 31)

where wk is set to be proportional to the precision of the kth predictor trained by the observed network.

Clearly, smaller BðeÞ indicates higher existence likelihood. In addition to rank aggregation, a similar

weighting technique can also be applied in integrating likelihood scores. If every unobserved link is as-

signed a score (higher score indicates higher existence likelihood) by each predictor, then the final score

of any unobserved link e can be defined in a weighted form as follows:

SðeÞ =
XR
k = 1

wkSkðeÞ; (Equation 32)

where SkðeÞ is the score from the kth predictor. Different from rank aggregation, Skð ,Þ ðk = 1; 2; /; RÞ
should be normalized before the weighted sum to ensure scores from different predictors are comparable.

An alternative aggregation method is the ordered weighted averaging (OWA) (Yager, 1988), where the R

predictors are ordered according to their importance to the final prediction, as Sð1Þ;Sð2Þ;/;SðRÞ, and then

the final score of any unobserved link e is

SðeÞ =
XR
k = 1

wkS
ðkÞðeÞ; (Equation 33)

where
PR

k = 1wk = 1 andw1Rw2R/RwRR0.Without prior information, themost usual way to determine the

weights is using themaximum entropymethod, whichmaximizes�PR
k = 1wk ln wk subject to

PR
k = 1wk = 1 and

h = 1
R�1

PR�1
k = 1ðR � kÞwk , where h is a tunable parameter measuring the extent to which the ensemble (33) is

like an or operation. If h is very large, then w1z1 and wkz0 ðkR2Þ, that is to say, only the first predictor

works. He et al. (2015) applied OWA to aggregate nine local similarity indices. These indices are ordered

according to their normalized values (irrelevant to their qualities), which is essentially unreasonable. There-

fore, although He et al. (2015) reported considerable improvement, later experiments (Wu et al., 2019;

Zhang et al., 2020) indicated that the method in He et al. (2015) does not work well because the position

of a predictor is irrelevant to its quality. In contrast, if the order is relevant to the predictors’ qualities

(e.g., according to their precisions trained by the target network), OWA will bring in remarkable improve-

ment compared with individual predictors (Wu et al., 2019). As some link prediction algorithms scale worse

thanOðNÞ, Duan et al. (2017) argued that to solve smaller problems multiple times is more efficient than to

solve a single large problem. They considered a latent factor model (similar to the one described by Equa-

tion (23), with complexity OðNd2Þ) and developed several ways for the bagging decomposition, such as

bagging with random nodes together with their immediate neighbors and bagging preferring dense com-

ponents. They showed that those bagging techniques can largely reduce computational complexity

without sacrificing prediction accuracy. Considering the family of stochastic block models (Guimerà and

Sales-Pardo, 2009), Valles-Catala et al. (2018) showed that the integration (via Markov Chain Monte Carlo

sampling according to Bayesian rules) of individually less plausible models can result in higher predictive

performance than the single most plausible model.

Boosting is a typical sequential ensemble algorithm that trains a base learner from initial training set and

adjusts weights of instances (the wrongly predicted instances will be enhanced while the easy-to-be-

predicted instances will lose weights) in the training set to train the next learner. Such operation will

continue until reaching some preseted conditions. The most representative boosting algorithm is

AdaBoost (Freund and Schapire, 1997), which is originally designed for binary classification and thus can

be directly applied in link prediction. AdaBoost is an additive model as

HðxÞ =
XT
t = 1

athtðxÞ; (Equation 34)
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where ht is the tth base learner, at is a scalar coefficient, and T is a preseted terminal time. H aims to mini-

mize the expected value of an exponential loss function:

[ ðH;WÞ = Ex�W

�
e�f ðxÞHðxÞ�; (Equation 35)

where f ðxÞdenotes the true class of the instance x andW is the original weight distribution.Without specific

requirements, we usually set WðxÞ= 1=m for every instance x where m is the number of instances. We set

W1 =W and learn h1 from W1, and then, a1 is determined by minimizing [ða1h1;W1Þ. The weight of an

instance x in the second step is updated as follows:

W2ðxÞ =

8>>><
>>>:

1

Z2
W1ðxÞe�a1 ; h1 = f ðxÞ

1

Z2
W1ðxÞea1 ; h1sf ðxÞ

; Equation (36)

where Z2 is the normalization factor. Obviously, if the instance x can be correctly classified, its weight will

decrease; otherwise, its weight will increase. Such process iterates until reaching the terminal time T. When

applying AdaBoost in link prediction, we need to be aware of the following three issues. (i) The base learner

should be sensitive to Wt so that we cannot use unsupervised algorithms or supervised algorithms insen-

sitive to Wt . (ii) In addition to positive instances (observed links), negative instances should be sampled

from unobserved links. Though it introduces some noise, the influence is ignorable if the network is sparse.

(iii) The negative instances should be undersampled to keep the data balanced. Comar et al. (2011) pro-

posed the so-called LinkBoost algorithm, which is an extension of AdaBoost to link prediction with a typical

matrix factorization model being the base learner. Instead of undersampling negative instances, they sug-

gest a cost-sensitive loss function which penalizes the misclassifying links as nonlinks aboutN times heavier

thanmisclassifying nonlinks as links. They further considered a degree-sensitive loss function that penalizes

more for misclassification of links between low-degree nodes than high-degree nodes.

Stacking (Wolpert, 1992) is another powerful approach in sequential ensemble. It trains a group of primary

learners from the initial training set and uses the outputs of primary learners as input features to train the

secondary learner that provides the final prediction. If both primary learners (i.e., input features) and

training instances are directly generated by the same training set, the risk of overfitting will be very high.

Therefore, the original training set D, usually containing similar numbers of positive and negative instances

for data balance, is divided into J sets with same size asD1; D2; /; DJ. Denoting h
ðjÞ
r the primary learner using

the rth algorithm and trained from the jth fold of the training setDj =D\Dj, for each instance xi˛Dj, its feature

vector is zi = ðzi1; zi2;/;ziRÞ, where zir =h
ðjÞ
r ðxiÞ and R is the number of primary algorithms. This J-fold division

ensures all features of any instance x are obtained by primary learners trained without x. Some scientists have

already used similar techniques (e.g., using various regressions to integrate results from primary predictors

and other features (Zhang et al., 2020; Zhang, 2017; Fire et al., 2013)), but they are not aware of stackingmodel

and did not employ any measures to avoid overfitting. Li et al. (2020) proposed a stacking model for link pre-

diction, which use logistic regression and XGBoost to learn 4 similarity indices. Their method is inspiring, but

they only considered 4 primary predictors and tested on two very small networks with some experimental re-

sults (e.g., the AUC values of CN index) far different from well-known results, and thus, the reported results

and conclusion are questionable. Ghasemian et al. (2020) proposed a stacking model that considers 203 pri-

mary link predictors on 550 disparate networks. Using a standard supervised random forest algorithm (Brei-

man, 2001) as the secondary learner, Ghasemian et al. (2020) argued that the stacking model is remarkably

superior to individual predictors for real networks and can approach to the theoretical optima for synthetic

networks with known highest prediction accuracies. In addition, they showed that social networks are more

predictable than biological and technological networks. However, a recent large-scale experiment (Musco-

loni and Cannistraci, 2021) suggested that the above stacking model does not perform better than SPM

(Lü et al., 2015) and Cannistraci-Hebb automata (Muscoloni et al., 2020). Wu et al. (2019) proposed an alter-

native sequential ensemble strategy called network reconstruction, which reconstructs network via one link

prediction algorithm and predicts missing links by another prediction algorithm.
DISCUSSION

In this review, to improve the readability, we classify representative works in the last decade into five

groups. Of course, some novel and interesting methods, such as evolutionary algorithm (Bliss et al.,

2014), ant colony approach (Sherkat et al., 2015), structural Hamiltonian analysis (Pan et al., 2016), and
iScience 24, 103217, November 19, 2021 11



Table 1. Computational complexities of some representative link prediction algorithms

Algorithm References Complexity Scalability

CN Liben-Nowell and Kleinberg (2007) OðNk2Þ High

RA Zhou et al. (2009) OðNk2Þ High

LP Zhou et al. (2009) OðNk3Þ Medium

CH Muscoloni et al. (2018) OðNk3Þ Medium

L3 Kovács et al. (2019) OðNk3Þ Medium

SPM Lü et al. (2015) OðdN2Þ Medium

DeepWalk Perozzi et al. (2014) OðgN log NÞ Medium

LINE Tang et al. (2016) OðtNkÞ Medium

NetSMF Qiu et al. (2019) OðNd2Þ Medium

IMC Jain and Dhillon (2013) OðNkd2Þ Medium

LR Pech et al. (2017) OðdN2Þ Medium

HSM Clauset et al. (2008) OðeNÞ Low

SBM Guimerà and Sales-Pardo (2009) OðeNÞ Low

LOOP Pan et al. (2016) OðN3Þ Low

N is the number of nodes, k is the average degree, g is usually a large number depending on the number of randomwalks, the

length of each walk, and the implemented deep learning model, t is the number of iterations, and d is the representation

dimension or the preseted rank for matrix factorization and low-rank decomposition.
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leading eigenvector control (Lee et al., 2021), do not belong to any of the above groups, and readers are

encouraged to read other recent surveys (Wang et al., 2015; Martı́nez et al., 2016; Kumar et al., 2020) as

complements of the present review.

Computational complexities of some representative algorithmsmentioned in this perspective are reported

in Table 1. Those algorithms are roughly categorized into three classes according to their computational

complexities: the ones of ‘‘high’’ scalability can be applied to large-scale networks with millions of nodes,

the ones of ‘‘medium’’ scalability can be applied to mid-sized networks with tens to hundreds of thousands

of nodes, and the ones of ‘‘low’’ scalability can only deal with small networks with up to a few thousands of

nodes using a common desktop computer. Given the size and sparsity of the target network, as well as the

computational power, this table helps readers in finding suitable algorithms.

Very recently, a notable issue is the applications of neural networks in link prediction, which may be partially

facilitated by the dramatic advances of deep learning techniques. Zhang and Chen (2017) trained a fully con-

nected neural network on the adjacency matrices of enclosing subgraphs (with a fixed size) of target links.

They applied a variant of theWeisfeiler-Lehman algorithm to determine the order of nodes in each adjacency

matrix, ensuring that nodes with closer distances to the target link are ranked in higher positions. Zhang and

Chen (2018) further proposed a novel framework based on graph neural networks, which can learn multiple

types of information, including general structural features and latent and explicit node features. In this frame-

work, a node’s order in the enclosing subgraph can be determined only by its closeness to the target link and

the subgraph size can be flexible. Wang et al. (2020) directly represented the adjacency matrix of a network as

an image and then learned hierarchical feature representations by training generative adversarial networks.

Some preliminary experimental results suggested that the performance of those methods (Zhang and Chen,

2017, 2018; Wang et al., 2020) is highly competitive to many other state-of-the-art algorithms. Despite of the

promising results, at present, features and models are simply pieced together without intrinsic connections.

The above pioneering works (Zhang and Chen, 2017, 2018; Wang et al., 2020) provide a good start but we still

need in-depth and comprehensive analyses to push forward related studies.

Although most link prediction algorithms only account for structural information, attributes of nodes (e.g.,

expression levels of genes (Natarajan and Dhillon, 2014) and tags of citation and social networks (Zhang

et al., 2011; Wang et al., 2019)) can be utilized to improve the prediction performance. It is easy to treat attri-

butes as independent information additional to structural features and work out a method that directly com-

bines the two, while what is lacking but valuable is to uncover nontrivial relationship between attributes and

structural roles and then design more meaningful algorithms. Beyond explicit attributes, we should also pay
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attention to dynamical information. It is known to us that limited time series obtained from some dynamical

processes can be used to reconstruct network topology (Shen et al., 2014) while even a small fraction ofmissing

links in modeling dynamical processes can lead to remarkable biases (Nicolaou and Motter, 2020); however,

studies about how to make use of the correlations between topology and dynamics to predict missing links

or how to take advantage of link prediction algorithms to improve estimates of dynamical parameters are rare.

By an elaborately designed model, Gu et al. (2017) showed that there is no ground truth in ranking influential

spreaders even with a given dynamics. Peel et al. (2017) proved that there is no ground truth and no free lunch

for community detection. The latter implies that no detection algorithm can be optimal on all inputs. Fortu-

nately, we have ground truth in link prediction; however, extensive experiments (Ghasemian et al., 2020)

also implicate that no known link predictor performs best or worst across all inputs. If link prediction is a no-

free-lunch problem, then no single algorithm performs better or worse than any other when applied to all

possible inputs. It raises a question that whether the study on prediction algorithms is valuable. The answer

is of course YES (Guimerà, 2020) because we actually have free lunches as what we are interested in, the

real networks, have far different statistics from those of all possible networks. AsGhasemian et al. (2020) argued

that the ensemble models are usually superior to individual algorithms, a related question is whether the study

on individual algorithm is valuable. The answer is still YES. Firstly, a recent large-scale experimental study (Mus-

coloni and Cannistraci, 2021) indicated that the performance of the stacking model is worse than elaborately

designed individual algorithms, like SPM (Lü et al., 2015) and Cannistraci-Hebb automata (Muscoloni et al.,

2020). Secondly, an individual algorithm could be highly cost-effective for its competitive performance and

low complexity in time and space. Above all, individual algorithms, especially the mechanistic algorithms,

may provide significant insights about network organization and evolution. In some real applications like friend

recommendation, predictions with explanations are more acceptable (Barbieri et al., 2014), which cannot be

obtained by ensemble learning. In addition, an alogical reason is that some elegant individual models (e.g.,

HSM (Clauset et al., 2008), SBM (Guimerà and Sales-Pardo, 2009), SPM (Lü et al., 2015), HYPERLINK (Kitsak

et al., 2020), etc.) bring us inimitable esthetic perception that cannot be experienced elsewhere.

Along with fruitful algorithms proposed recently, the design of novel and effective algorithms for general net-

works is increasingly hard. We expect a larger fraction of algorithms in the future studies will be designed for

networks of particular types (e.g., directed networks (Zhang et al., 2013), weighted networks (Zhao et al., 2015),

multilayer networks (Bacco et al., 2017), temporal networks (Bu et al., 2019), hypergraphs andbipartite networks

(Daminelli et al., 2015; Benson et al., 2018), networks with negative links (Leskovec et al., 2010; Tang et al., 2015),

etc.) and networks with domain knowledge (e.g., drug-target interactions (Wu et al., 2018), disease-associated

relations (Zeng et al., 2018), protein-protein interactions (Kovács et al., 2019; Lei and Ruan, 2013), criminal net-

works (Berlusconi et al., 2016), citation networks (Liu et al., 2019), academic social networks (Kong et al., 2019),

knowledge graphs (Nickel et al., 2015), etc.). We should take serious consideration about properties and re-

quirements of target networks and domains in the algorithm design, instead of straightforward (and thus

less valuable) extensions of general algorithms. For example, if we attempt to recommend friends in an online

social network based on link prediction (Aiello et al., 2012b), we need to consider how to explain our recom-

mendations to improve the acceptance rate (Barbieri et al., 2014), how to use the acceptance/rejection infor-

mation to promote the prediction accuracy (Wu et al., 2013), and how to avoid recommending bots to real

users (Aiello et al., 2012a). These considerations will bring fresh challenges in link prediction.

Early studies often compare a very few algorithms on several small networks according to one or two met-

rics. Recent large-scale experiments (Mara et al., 2020; Ghasemian et al., 2020; Muscoloni et al., 2020; Mus-

coloni and Cannistraci, 2021; Zhou et al., 2021) indicated that the above methodology may result in

misleading conclusions. Future studies ought to implement systematic analyses involving more synthetic

and real networks, benchmarks, state-of-the-art algorithms, and metrics. Researchers can find benchmark

datasets for networks from Open Graph Benchmark (OGB, ogb.stanford.edu), Pajek (mrvar.fdv.uni-lj.si/

pajek), and Link Prediction Benchmarks (LPB, www.domedata.cn/LPB). If relevant results cannot be pub-

lished in an article with limited space, they should be made public (better together with data and codes)

in some accessible websites like GitHub, OGB, and LPB.

Lastly, we would like to emphasize that the soul of a network lies in its links instead of nodes; otherwise,

we should pay more attention on set theory rather than graph theory. Therefore, in network science, link pre-

diction is a paradigmatic and fundamental problem with long attractivity and vitality. Beyond an algorithm

predicting missing and future links, link prediction is also a powerful analyzing tool, which has already
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been utilized in evaluating and inferring network evolving mechanisms (Wang et al., 2012; Zhang et al., 2015;

Zhang, 2017), testing the privacy-protection algorithms (as an attaching method) (Xian et al., 2021), evaluating

and designing network embedding algorithms (Dehghan-Kooshkghazi et al., 2021; Gu et al., 2021), and so on.

Though the last decade has witnessed plentiful and substantial achievements, the study of link prediction is

just unfolding and more efforts are required toward a full picture of how links do emerge and vanish.
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