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Microbiome research is starting to move beyond the exploratory phase towards interven-

tional trials and therefore well-characterized cohorts will be instrumental for generating

hypotheses and providing new knowledge. As part of the Estonian Biobank, we established

the Estonian Microbiome Cohort which includes stool, oral and plasma samples from 2509

participants and is supplemented with multi-omic measurements, questionnaires, and regular

linkages to national electronic health records. Here we analyze stool data from deep meta-

genomic sequencing together with rich phenotyping, including 71 diseases, 136 medications,

21 dietary questions, 5 medical procedures, and 19 other factors. We identify numerous

relationships (n= 3262) with different microbiome features. In this study, we extend the

understanding of microbiome-host interactions using electronic health data and show that

long-term antibiotic usage, independent from recent administration, has a significant impact

on the microbiome composition, partly explaining the common associations between

diseases.
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In the last decade, human microbiome research has undoubt-
edly been one of the most exciting and most rapidly expanding
fields from the perspective of personalized medicine. Tech-

nological developments and increasing amounts of available data
have transformed microbiome science, expanding our knowledge
about the ways the microbiome is influenced by our lifestyle
choices and the environment we live in as well as how it reflects
the state of our health. In addition, the mechanisms by which
unfavorable changes in the microbiome might lead to the dete-
rioration of our well-being and the ways that the microbiome
could be altered to interfere with the progression of disease are
being studied1,2. The focus of precision health research has
recently moved beyond analyzing host DNA to study host-related
factors, including among others the microbial communities3,4.
Thus, population-scale studies of the microbiome and health
relationships are of utmost importance.

Recently, Wilkinson et al. have published a comprehensive
perspective on incorporating the current knowledge about the
human microbiome into population-scale health research and
practice5. The authors highlight several areas of microbiome
science that can have a major impact on public health, including
the identification of microbiome–drug interactions that are
responsible for dose effectiveness and adverse events, manage-
ment of chronic diseases, and maintenance of one’s health. Bio-
banks can help to achieve these goals, since they include large
sample sets of multiple data layers and provide excellent metadata
from anthropometric measurements, questionnaires, and health
registries.

Although the gut microbiome profiles and factors shaping the
community dynamics and function have been described in various
populations, only a few extensive population-based metagenomic
cohorts are available6–8. The first large-scale population level asso-
ciation studies have extended our knowledge regarding the relative
impact of various host and environmental factors on the composi-
tion of the microbiome6. Moreover, a recent extended study of 8208
individuals in the Dutch population shows that the 241 studied
phenotypes from a broad set of categories explained approximately
15% of the variation in the microbiome composition and function
between individuals, indicating that our current understanding of
the factors that shape the microbiome is still limited7. Thus, pro-
spective biobanks with extensive lifestyle and health data from dif-
ferent populations will be an important resource for dissecting the
role of the gut microbiome in the near future.

The Estonian Biobank (EstBB) is one of the leading volunteer-
based biobanks in Europe, covering almost 20% of the country’s
adult population (> 200,000 participants ≥ 18 years old). Addi-
tionally, comprehensive phenotype data are available from the
nationwide electronic health records (EHRs), enabling monitor-
ing of the health status across a lifespan. The EHRs are recorded
by medical specialists, thus providing reliable information for
disease diagnosis and prescribed medications. In this study, we
analyzed the gut microbiome composition in more than 2500
adults from the EstBB who participated in the Estonian Micro-
biome Project (EstMB), which included stool sample collection
and comprehensive phenotyping. The project was established in
order to study the role of the microbiome in health and disease as
well as to evaluate its potential as a means to advance persona-
lized medicine.

In this work we show that by using deep metagenomic
sequencing, we are able to identify the impact of 50 diseases, 47
medications, 20 dietary factors, 5 intrinsic factors, 4 medical
procedures, and 14 other factors on the gut microbiota, which
together explain 10.14% of the inter-individual variation in the
gut microbiota composition and 10.48% of the variation in the
microbiome functionality. Access to EHRs also provided us with
a unique opportunity to study the effect of long-term medication

usage on the fecal microbiome. We demonstrate that the long-
term use of antibiotics has a remarkable effect on microbiome
diversity and might partly explain shared dysbiosis between dis-
eases. After correcting for the number of antibiotic treatments
taken over the last 10 years, we identify a clear decline in the
number of previously detected microbiome-disease associations,
underlining the value of longitudinal health data records in
interpreting the results and identifying disease-specific signals.
The EstMB cohort is an excellent resource for analyzing the role
of fecal microbiota in disease susceptibility, clinical phenotypes,
and therapeutic responses using information on past and future
clinical outcomes by linkage to the participants’ EHRs.

Results
Cohort overview. The EstBB is a volunteer-based cohort of the
Estonian adult population initiated in 1999 with the objective to
investigate the genetic, environmental, and behavioral back-
ground of common diseases and traits9. Currently, the EstBB
includes more than 200,000 genotyped participants (≥ 18 years
old) from all over the country. Supported by the Estonian Human
Genes Research Act, continuously updated personal health data
from various EHRs and re-examinations as well as a wide array of
biological samples are used to promote the development of per-
sonalized medicine and to improve public health9. To identify
and characterize microbiome-associated factors, the Estonian
Microbiome project was initiated in 2017. More than 2500 EstBB
participants, who joined the EstBB at least 10 years ago, provided
stool, oral, and blood samples to establish the EstMB cohort
(Fig. 1a). Being part of the larger EstBB cohort, all of the EstMB
participants have been genotyped, and additional omics data
(whole-exome sequencing, whole-genome sequencing, metabo-
lomics, etc.) are available for subsets of participants (Supple-
mentary Fig. 1). Additionally, all of the EstBB and EstMB
participants have responded to extensive questionnaires covering
their dietary preferences, living environment, and various lifestyle
choices. The overview of the EstMB cohort and data character-
istics is shown in Fig. 1.

The EstMB cohort includes 2509 adult participants (age range:
23–89 years old, mean: 50.1 ± 14.93 years old) of whom 70.3% are
women (n= 1764) and 29.7% are men (n= 745) [body mass
index (BMI) range: 15.1–54.0 kg/m2, mean: 26.5 ± 5.34 kg/m2)]
(Fig. 1b, Supplementary Table 1). The vast majority of the
participants are of Estonian origin (98.4%). The majority of the
participants originate from two counties, Tartu County (28.3%)
and Harju County (25.3%), where most of the Estonian
population is located; however, all 15 Estonian counties are
represented (Fig. 1c).

One of the major strengths of the EstBB is the possibility to use
EHRs for investigating medical procedures, disease occurrences,
and medication usage before and after sample collection and to
recontact the subjects in the biobank. This enabled us to study the
effects of disease phenotypes, medication usage, and disease–drug
interactions on the microbiome in great detail. For example, Fig. 1d
illustrates the value of using EHRs compared to self-reported
questionnaires for identifying disease cases. Besides detecting only a
small proportion of cases recorded in EHRs, questionnaires fail to
cover the vast majority of total disease counts. Questionnaires can
occasionally provide additional information to EHRs; however, the
reliability of the self-reported diagnosis is in some cases question-
able (e.g., Crohn’s disease and depression). Therefore, we focused
primarily on the EHRs for the identification of prevalent diseases
and medications used.

Landscape of the Estonian gut microbiome. To characterize the
composition and functionality of the microbiome in the Estonian
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population, the microbial DNA was extracted using a QIAamp
DNA Stool Mini Kit (Qiagen, Germany) and then sequenced
using paired-end metagenomic shotgun sequencing on the Illu-
mina Novaseq 6000 platform, resulting in an average of
4.62 ± 0.44 Gb of data per sample. The mean relative abundance
of bacterial taxa was 98.51%, followed by 0.55% for taxa of viral
origin, 0.35% for taxa of eukaryotic origin, and 0.08% for taxa
belonging to the Archaeal kingdom (Supplementary Table 2).

The Estonian gut microbiome community and functional
profiles are characterized in Fig. 2. Similar to previously reported
results, the microbiome taxonomic composition is highly variable
across the population, while the functional profile is stable
(Fig. 2a, b)7. The Bacteroidetes and Firmicutes phyla dominate
the taxonomic composition, with average relative abundances of
56.2% (range: 0.2–95.2%) and 33.7% (range: 1.8–91.6%),
respectively, followed by Proteobacteria with 5.4% (range:
0.8–93.6%) and Actinobacteria with 1.0% (range: 0.1–10.6%)
(Fig. 2a, Supplementary Table 2). Bacteroidetes and Firmicutes
together account for a similar percentage of the whole micro-
biome composition in the EstMB compared to the largest current

European microbiome population study, the Dutch Microbiome
Project (DMP) (~90% on average in the EstMB vs. ~83% in the
DMP)7, although the relative abundance of Firmicutes is higher
in the Estonian population (33.7% in the EstMB vs. 24.8% in the
DMP). The most dominant genera in the samples correspond to
the previously reported enterotypes, with Bacteroides and
Prevotella genera being the most dominant followed by the genus
Clostridium (Fig. 2c)10.

To characterize the microbial taxa shared by most of the
Estonian population, we studied the core genera of the cohort
using a similar definition as the Finnish FINRISK cohort8. In
particular, we defined the core genera as those with a relative
abundance of > 0.1% in at least 10% of the samples. In total, we
identified 72 genera as the core, of which 70 were bacterial genera,
1 was eukaryotic (Blastocystis), and 1 was viral (Sk1virus)
(Supplementary Table 2). The mean relative abundance of the
identified core was 84.4%. The identified core genera are similar
to results reported previously. Among the 72 identified genera, 43
were shared with the Finnish FINRISK cohort core8. In addition,
all of the 9 reported core genera in the large 16 S rRNA based
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Fig. 1 EstMB cohort characteristics. a Data flow of the EstMB cohort participants. In 2009–2010 and during the stool sample collection in 2017–2019,
subjects (N= 2509) completed questionnaires on their diet and lifestyle. All of the EstMB participants have been genotyped. Additional datasets, e.g.,
WES, WGS, and NMR metabolite datasets, are available for subsets of participants (Supplementary Fig. 1). Data on disease occurrences, prescribed
medications, and medical procedures have been recorded annually for all of the participants using the national EHRs. b The age and gender distributions of
the cohort participants were compared to the Estonian population in 2020. c Residence of the cohort participants by county. The two counties colored with
dark purple are where most of the population originates from and where the study centers were located. The figure uses county borders data from the
Estonian Land Board (accessed 12.01.2021). d Compliance of prevalent diseases from EHRs and self-reported questionnaires. The color bars indicate the
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MiBioGen consortium including 24 cohorts were also present in
the EstMB core11.

Overview of microbiome–phenotype associations. Next, we
aimed to get an extensive look at the microbiome-associated
factors in the Estonian population. A total of 252 factors were
analyzed, including 71 prevalent diseases, usage of 136 medica-
tions, 21 factors reflecting dietary preferences, 5 medical proce-
dures, and 19 other factors describing lifestyle and anthropometric
measurements (Supplementary Table 1). To determine which
factors are associated with the overall microbiome composition,
we analyzed the association of each factor with the microbial alpha
diversity (observed richness and Shannon’s index) and beta
diversity [interindividual differences in the microbiome compo-
sitions calculated based on the Euclidean distance on centered log-
ratio (CLR)-transformed data on 17,158 species and 7869 Kyoto
Encyclopedia of Genes and Genomes (KEGG) orthologies (KOs).
Figure 3 shows the statistically significant associations (false

discovery rate, FDR < 0.05) with a species-level microbiome pro-
file. In total, 39 factors were associated with the species richness,
i.e., observed number of unique species, 20 factors were associated
with the Shannon’s index, and 75 factors were found to be asso-
ciated with the beta diversity calculated on the species-level profile.
Diversity analyses on the functional profile (KO profile) showed
associations between 16 factors and the KO richness, and 90
factors were found to be associated with the beta diversity calcu-
lated on the KO profile (Supplementary Fig. 2, Supplementary
Tables 3 and 4).

The microbial alpha diversity, characterized by the number of
observed species and the Shannon entropy, confirmed the
previously reported associations with microbial diversity. Stool
characteristics such as consistency (higher Bristol scale values),
medication usage, and disease prevalence were associated with a
lower biodiversity as previously reported6,12,13. Other lifestyle
factors reflecting the so-called healthy lifestyle, such as physical
exercise and consumption of berries, fruit, and vegetables,
corresponded to a higher diversity; whereas smoking, a higher
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Fig. 2 Landscape of the Estonian microbiome. a Phylum level microbiome composition across all EstMB cohort subjects. b Functional profile of the
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BMI, and the consumption of soft drinks and preprocessed meat
products were associated with a lower diversity (Fig. 3,
Supplementary Fig. 2, Supplementary Table 3). The strongest
associations with the beta diversity (FDR < 0.001), both with
specific species and pathways, were observed for the gut emptying
frequency (R2= 1.03%), stool consistency (Bristol stool scale,
R2= 0.95%), waist-to-hip ratio (R2= 0.52%), and BMI
(R2= 0.49%) (Fig. 3, Supplementary Fig. 2, Supplementary
Table 4). The diseases describing the most variation in the
microbiome composition (FDR < 0.001) included hypertension
(R2= 0.43% and R2= 0.21%, for pathways and species, respec-
tively), gout (R2= 0.18% and R2= 0.21%), and type 2 diabetes
(T2D) (R2= 1.1% and R2= 0.20%) (Fig. 3, Supplementary Fig. 2,
Supplementary Table 4).

In line with previous studies6,14, several drugs were signifi-
cantly associated with the microbiome composition, of which the
beta blocker metoprolol, metformin, and glucocorticoids
described the most variation amongst the medications used
(Fig. 3, Supplementary Table 4). Using the EHR data, we were
able to expand the current knowledge by studying and comparing
the effects of drugs belonging to the same pharmacological or
chemical subgroups [up to Anatomical Therapeutic Chemical
(ATC) classification level 5]. For example, the beta blockers
metoprolol and nebivolol were found to be associated with the gut
microbiome, with metoprolol describing more variation in the gut
microbiome (Supplementary Table 4).

In addition to replicating the findings from previous studies,
our study yielded novel associations. Our results expand the
knowledge regarding microbiome-related factors by showing
novel associations with recently carried out medical procedures
(anesthesia and colonoscopy), dietary factors (drinking water
origin), and usage of various medications [e.g., glucocorticoids
(H02AB); simvastatin (C10AA01); dopaminergic agents (N04B);
blood glucose-lowering drugs, excl. insulins (A10B); and
influenza, inactivated, split virus or surface antigen (J07BB02)
(Supplementary Table 4)]. Altogether, the studied factors describe
10.14% of the total variability in the species-level microbial
composition and 10.50% of the variability in the KO profile.

To obtain a more precise understanding of the associations
seen in the overall microbial composition, unique species and
KOs were associated with the diseases, medications, and dietary
factors using the ALDEx2 methodology after adjusting for gender,
age, BMI, and stool type (Methods). In order to limit the number
of comparisons, the species and KOs that were detected with
> 10% prevalence at a relative abundance of 0.1% were used for
the analysis, resulting in 1231 species and 1974 KOs. In total, we
identified 1335 statistically significant associations with the
species and 1072 associations with the KOs (FDR < 0.05)
(Supplementary Table 5).

In summary, 50 diseases, usage of 47 medications, 20 dietary
items, 4 medical procedures, and 15 other factors showed a
statistically significant association (FDR < 0.05) with the
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microbiome composition, either with microbial diversity or
differential abundance on the species-level or functional-level
profiles (Supplementary Table 6, Supplementary Fig. 3).

Associations with long-term usage of medications. To show the
value of continuous linkages with EHRs, we studied the asso-
ciations between the microbiome and the long-term history of
antibiotic (ATC J01) or antidepressant (ATC N06A) usage. We
summarized the number of prescriptions filled by the participants
in the last 10 years before the sample collection. The subjects were
then divided into five distinct classes: the nonusers (subjects not
having used any medications within 10 years) and the rest based
on the quartiles of the number of prescriptions filled over the
10-year period. To avoid the direct effect of the medication on the
microbiome due to recent usage, we excluded the participants
who had taken the medication during the last 6 months before
sample collection.

There was a significant decrease in the number of observed
species with increasing amounts of antibiotics used; however, we
observed no major difference in the Shannon’s index for either
antibiotic or antidepressant usage (Fig. 4a). This is likely due to
the exclusion of subjects taking these medications within six
months of sample collection. On the contrary, a history of
antibiotic or antidepressant usage was associated with the
microbiome composition (R2= 0.31% and R2= 0.08%, respec-
tively, Fig. 3, Supplementary Table 4). This was characterized by a
shift in the first two principal components for both antidepres-
sants and antibiotics (Fig. 4). The association was especially
apparent for antibiotics, as higher amounts of antibiotics used
over the last 10 years showed changes in PC1 and PC2 towards
the Bacteroides-dominant part of the PCA plot depicted in Fig. 2c.
It is likely that numerous courses of antibiotics over the years are
a sign that a person suffers from a health complication but taking
numerous courses of antibiotics also leads to changes in the gut
microbiome. In our study we observed that as many as three or
more courses of antibiotics over 10 years already lead to a shift in
the microbial composition in the gut.

The role of antibiotic usage in common dysbiosis. Amongst the
identified associations between species and diseases (Supple-
mentary Table 5), many were overlapping between different
diseases (Fig. 5a). Remarkably, diseases with diverse pathophy-
siologies like anxiety disorder, hypertension, and gout display a
significant number of overlapping associations. Altogether,
109 species showed associations with at least 3 diseases, sup-
porting the previously reported idea of a common dysbiosis
between diseases (Supplementary Table 7)7,15. Furthermore,
species co-occurrence networks showing that the species being
associated with diseases for which the overlap in associations is
not necessarily high display direct interactions in the co-
occurrence networks (Supplementary Fig. 4). For example,
Crohn’s disease (ICD code: K50) and essential hypertension
(ICD10 code: I10) have 30 overlapping associations; however, the
networks of these disease-associated species are highly similar due
to species co-occurrence (Supplementary Fig. 4).

Based on the previously described effect of long-term antibiotic
usage on the microbiome composition, we further analyzed the
associations between species and diseases by taking into account
the amount of antibiotic usage over the last 10 years as a
confounder (Supplementary Table 5). Remarkably, adjusting for
long-term antibiotic usage significantly reduced the number of
identified associations (Fig. 5b). For example, most of the
previously identified associations were lost for gastroesophageal
reflux disease (before adjustment 38, after 1), irritable bowel
syndrome (before adjustment 16, after 1), and other anxiety

disorders (before adjustment 48, after 3; Fig. 5). Similarly, the
overlap between different diseases in terms of the number of
associated species was significantly changed, and the number of
species having associations with at least 3 diseases was 41
compared to the 109 species found in the previous analysis not
adjusting for antibiotic usage. This finding suggests that adjusting
for a history of antibiotic usage can largely affect the results of the
analysis, even for diseases like anxiety disorder and hypertension,
for which antibiotics are not used as a primary treatment.

Due to the increasing interest and potential of using machine
learning methods for predicting complex disease based on the
microbiome, we also evaluated the predictive value of the
microbiome compared to a history of antibiotic usage (Methods;
Fig. 5c). Comparison of the average area under the curve
(AUROC) values of the elastic net models shows that using
information regarding long-term antibiotic usage in addition to
conventional predictors (e.g., age, gender, BMI, and stool
consistency) has an equal or better predictive power compared
to the combination of using microbial features and conventional
predictors for almost all of the phenotypes studied (Fig. 5c and
Supplementary Table 8). T2D is the only exception, for which the
microbial predictors in addition to conventional predictors led to
models that had remarkably higher AUROC values compared to
the models using a history of antibiotic usage and conventional
predictors. Microbial predictors also improved the AUROC for
anxiety disorder relative to the null model, but a history of
antibiotic usage showed even higher AUROC values.

Although we observed a major impact of antibiotic usage on the
identified associations, host-targeted medications used for the
treatment of complex diseases can also alter the gut microbiome16.
For example, the antidiabetic drug metformin is known to alter the
microbial composition, which makes it challenging to differentiate
drug-mediated and disease-mediated effects17. Because the adjust-
ment for antibiotic usage did not affect the number of T2D-related
associations, we next adjusted the analysis for metformin usage to
distinguish between T2D disease and drug effects. After adjusting
for metformin usage, 15 species were identified to be associated
with T2D, compared with 18 species without adjustment
(Supplementary Table 5). Therefore, the usage of host-targeted
medications in addition to antibiotics can confound the analysis,
making it difficult to identify disease-specific associations.

Discussion
The gut microbiome is highly individual, and our understanding
of the factors associated with the variation in the microbiome
composition has certainly improved with large population-based
cohort studies6,7. These studies make an important contribution
with respect to the perspective of personalized medicine, where,
in addition to a person’s genetic profile and lifestyle, microbial
data are included to estimate disease risks and to identify
individual-specific drugs for effective treatment. In our study, we
analyzed the microbiomes of 2509 individuals from the
volunteer-based EstBB. Moreover, we examined the extent to
which various factors are associated with the composition of the
gut microbiome and identified a number of microbes and path-
ways showing significant associations with different diseases,
medications, as well as intrinsic and lifestyle factors. We provide
evidence that significant changes in the microbiome composition
are associated with a history of antibiotic usage over a 10-year
period, demonstrating the value of continuous linkage with
EHRs. Finally, our data supports previous studies that multiple
diseases share a common dysbiosis, but this could be partly
explained by a history of antibiotic usage.

The gut microbiome profile in the Estonian population is
comparable to those reported in previous large-scale studies of
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European populations, where the same bacterial phyla with
similar relative abundances are represented in the gut
microbiome6–8. Similarly, the functional profile of the gut
microbiome in the population is more stable compared to the
relative abundance of microbial phyla described previously7,18,19.
Although the core microbiome depends largely on the analysis
methodology and definition20, we identified a large number of
similar genera among European populations8,11.

In this study, we used extensive clinical and lifestyle data col-
lected from EHRs and questionnaires. While questionnaires pro-
vide information regarding a person’s lifestyle and diet, EHRs
allow access to medically confirmed data on the participants’
current as well as incident diseases, medication usage, and medical
procedures. Overall, we measured 252 different factors from a
broad set of categories that explained 10.14% of the total varia-
bility in the species-level microbial composition and 10.50% of the
functional variability between individuals. This explained level of
variation is comparable with previous studies in European
populations and confirms the high individuality of the

microbiome7. Furthermore, we saw overlapping results with pre-
vious studies in which a lower biodiversity was associated with a
loose stool (based on the Bristol scale score), smoking, a higher
BMI, and the consumption of soft drinks and preprocessed meat
products; while physical activity and the consumption of berries,
fruits, and vegetables were related to a higher diversity6,21. New
significant associations, among others, include medical procedures
such as the removal of the cecum and recent anesthesia as well as
dietary information like the origin of the drinking water and
medications, e.g., glucocorticoids and long-term antibiotic usage.

The possibility of using data from EHRs is a major advantage
of the EstMB cohort. We visualized how self-reported ques-
tionnaires do not capture the health profiles of the biobank
participants comprehensively and observed that the resulting
prevalence of diseases and other conditions differs greatly when
compared with the data from the EHRs documented by medical
specialists. For example, information on vitamin D deficiency
comes largely from EHRs, and only a small portion of ques-
tionnaires included this information. Another benefit presented
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by EHRs is the possibility of having access to information on
medical procedures. This allowed us to identify novel significant
associations and showed that medical procedures such as ton-
sillectomy and anesthesia have a significant effect on the micro-
bial composition.

In addition to analyzing the associations with current medi-
cation usage, we assessed the effects of long-term usage of anti-
biotics and antidepressants (10-year period) on the gut
microbiome. We observed significant changes in the composition
of the microbiome after the participants had taken only 3–4

courses of antibiotics. The fact that a shift in the microbial
composition is evident with only a few courses of treatment is
intriguing, as half of the participants take more than four courses
and Estonians are among the lowest consumers of antibiotics in
Europe, suggesting an even stronger effect in other populations22.
The effects of antibiotic overuse on the normal microbial com-
munity structure and health have been reported in both humans
and mice23–26. It has been shown that after antibiotic treatment,
some members of the microbial community do not recover to
pretreatment levels and disappear from the community
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Fig. 5 Effect of adjusting for antibiotic usage on the number of overlapping associations between various diseases. a Heatmap of overlapping
associations between various complex diseases before adjusting for antibiotic usage. b Heatmap of overlapping associations between various complex
diseases after taking long-term antibiotic usage into account. c The area under the receiver operating curve (AUROC) values on 10 random test sets for
elastic net regression models for predicting diseases based on different predictor sets. The null model includes age, gender, BMI, and stool consistency as
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microbiome does not provide an additional predictive value compared to the null model and a history of antibiotic usage leads to the best average AUROC.
Group 4 includes anxiety disorder, for which the microbial predictors lead to a higher AUROC compared to the null model, but a history of antibiotic usage
leads to the highest average AUROC. Abbreviations in the x-axis of a, b and c are the international classification of diseases-10 codes (ICD-10) for
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indefinitely27–29. A similar observation, although not so distinct,
was visible with antidepressant usage. Moreover, when we took
the history of antibiotic usage into account in identifying disease-
related microbes, a vast number of associations were lost.
Nevertheless, for some diseases such as T2D, Crohn’s disease, and
ulcerative colitis, the long-term usage of antibiotics did not have a
significant effect on the number of detected associations, sug-
gesting a more disease-specific dysbiosis.

Our data also supports the common dysbiosis hypothesis7,15.
When comparing species–disease associations, we identified
common signals for multiple diseases. However, we again saw a
profound effect of a history of antibiotic usage. Adjusting for
antibiotic usage significantly reduced the number of shared spe-
cies between the diseases, suggesting that a history of antibiotic
usage can at least partly explain the common dysbiosis. In con-
clusion, long-term antibiotic usage has a significant effect on the
overall microbial composition and is an important factor to
consider when interpreting the results of association analyses.
Disentangling the effects of host-targeted medications and disease
is a further complication for identifying disease-specific microbial
signals30. To illustrate this, we showed that adjusting for met-
formin usage could help to further disentangle T2D-specific
associations. Using our data, the confounding effect of other host-
targeted medications on complex diseases could be further
investigated in the future.

Obtaining health data through linkage to the EHRs can provide
a more reliable diagnosis of diseases, detailed information on
medication usage, and information on medical procedures.
However, the EHR data also opens up the possibility of investi-
gating adverse drug reactions by studying subjects who rapidly
change their medication or examining the effect of a history of
long-term medication usage on the microbiome composition as
we have shown in this study with antibiotics. In addition, the
EHRs include epicrises, that enables us to gain a detailed look into
the medical history of an individual, thus allowing us to further
refine the analysis by examining disease subtypes and possible
comorbidities. Together with the opportunity to call back parti-
cipants for follow-up examinations, the EHRs provide an
opportunity for more in-depth analysis and discovery of novel
links between the microbiome and health in the future.

Limitations of our study should be noted when interpreting the
results. As the EstMB cohort is volunteer-based, it might not
provide a comprehensive overview of the whole Estonian popu-
lation. Our cohort suffers from gender unbalance—there are
more females than males. Also, the study might attract people
who are more interested in their health. Furthermore, for some of
the medications and diseases, a relatively low number of users
and cases were available, which could mean a low statistical
power for detecting an effect with the microbiome. Therefore, the
associations identified in the current study should be carefully
interpreted and require further investigation using larger sample
sizes. Lastly, reproducibility in microbiome studies remains
challenging due to the complexity of sample collection, data
analyses, and different bioinformatic approaches used from study
to study11,31–35.

The EstMB cohort is an outstanding data resource that will
help to confirm existing knowledge and provide novel insights
about the microbiome, its associated factors, and its potential for
identifying prognostic markers. Moreover, analysis of this infor-
mation will help to raise new questions to be addressed in
microbiome studies. Therefore, there is an ever-growing necessity
to improve the data resource. Today, the EstMB already includes
the possibility of studying the oral microbiome and performing
metabolic profiling analysis using plasma or stool samples col-
lected from the EstMB cohort. Incorporating multi-site micro-
biome data with human genetics and metabolomics can help us to

further uncover the pathophysiology of complex diseases and
improve decision-making in clinical applications.

Methods
EstMB and metadata collection. The Estonian microbiome cohort was estab-
lished in 2017, when stool, oral, and blood samples were collected from 2509 EstBB
participants (1764 females and 745 males), aged 23–89 years. Participation in the
study was voluntary and no compensation was paid. The EstBB is a volunteer-
based population cohort initiated in 19999 that currently includes over 202,282
genotyped adults (≥ 18 years old) across Estonia. All individuals from the EstBB
cohort have been genotyped, and multiple additional datasets are available for a
subset of the cohort, including whole-genome sequencing, whole-exome sequen-
cing, and metabolite data using a nuclear magnetic resonance spectroscopy plat-
form (Supplementary Fig. 1). All participants included in the EstMB cohort
provided informed consent for the data and samples to be used for scientific
purposes. This study was approved by the Research Ethics Committee of the
University of Tartu (approval No. 266/T10) and by the Estonian Committee on
Bioethics and Human Research (Estonian Ministry of Social Affairs; approval No.
1.1-12/17). All participants have joined the Estonian Biobank on a voluntary basis
and have signed a broad consent form, which allows to receive participant’s per-
sonal and health data from national registries and databases. Rights of gene donors
are regulated by Human Genes Research Act (HGRA) § 9 – Voluntary nature of
gene donation (https://www.riigiteataja.ee/en/eli/ee/531102013003/consolide/
current).

Extensive information was collected on the EstMB participants, including data
from both questionnaires (self-reported) and EHRs (completed by medical
professionals). The EHR data on the diseases, medications, medical procedures,
and causes of death were obtained from the Estonian Health Insurance Fund,
Estonian National Death Registry, Estonian Cancer Registry, Estonian Causes of
Death Registry, and the two largest hospitals in Estonia (University of Tartu Clinic
and North Estonia Medical Centre). EHRs include the data since 2004. We focused
on the diseases, medications, and medical procedures recorded in the EHRs to
achieve high reliability for the phenotypes of interest, since these are written by
medical professionals. The reliability of the diagnosis data from EHRs was further
increased by using at least two data entries from the databases to account for wrong
entries or misdiagnoses. Arbitrarily selected diseases (based on 3-digit ICD10
categories) with at least 10 cases were chosen for downstream analysis, resulting in
71 diseases (Supplementary Table 1). Although 537 diseases had at least 10 cases,
we decided to focus on chronic illnesses (Supplementary Table 9). Medications
were grouped into categories based on the ATC classification at the lowest ATC
level (up to 7-digit code; ATC level 5) similarly to Gacesa et al.7 ATC categories
with fewer than 10 cases were grouped into a higher level. ATC categories with
fewer than 10 cases at any ATC level were removed from the analysis. In total, 132
medications or medication groups were analyzed, of which 90 were classified as
ATC level 5 (7-digit code), 26 were classified as ATC level 4 (5-digit code), and 16
were classified as ATC level 3 (4-digit code) (Supplementary Table 1). Also,
arbitrary selection of the medical procedures that had been conducted six months
prior to the sample collection and included more than 10 cases were studied
(Supplementary Table 1). In addition to the EHR data, the patients reported their
diseases, medications, medical procedures, and health-related behavior in terms of
lifestyle using a microbiome study-specific questionnaire, which included questions
about their diet (e.g., dietary frequency questionnaire), physical activity, medical
data, living environment, delivery mode, and stool characteristics (Bristol stool
scale). The list of all studied variables is listed in Supplementary Table 1.

In addition to the questionnaire and EHR data, the participants’
anthropometric measurements (height, weight, blood pressure, and waist and hip
circumferences) were taken during a pre-registered visit upon delivering the stool
sample. Furthermore, the participants donated an oral buccal swab sample and a
blood sample during the visit for further analysis.

Microbiome sample collection and DNA extraction. The sample collection took
place between 2017 and 2019. The participants collected a fresh stool sample
immediately after defecation with a sterile Pasteur pipette and placed it inside a
polypropylene conical 15 mL tube. The participants were instructed to time their
sample collection as close as possible to the visiting time in the study centre and
keep the samples in the fridge (+ 4 °C) until transportation. The participants
delivered the sample to the study center, where it was stored at −80 °C until DNA
extraction. The median time between sampling and arrival at the freezer in the core
facility was 3 h 25 min (mean 4 h 34 min) and the transport time wasn’t sig-
nificantly associated with alpha (Spearman correlation, p-value 0.949 for observed
richness and 0.464 for Shannon index) nor beta diversity (p-value 0.061, R-squared
0.0005). Microbial DNA extraction was performed after all samples were collected
using a QIAamp DNA Stool Mini Kit (Qiagen, Germany). For the extraction,
approximately 200 mg of stool was used as a starting material for the DNA
extraction kit, according to the manufacturer’s instructions. DNA was quantified
from all samples using a Qubit 2.0 Fluorometer with a dsDNA Assay Kit (Thermo
Fisher Scientific). A NEBNext® Ultra™ DNA Library Prep Kit for Illumina (NEB,
USA) was used for generating sequencing libraries, according to the manufacturer’s
recommendations. Briefly, 1 μg of DNA per sample was used as the input material.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28464-9 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:869 | https://doi.org/10.1038/s41467-022-28464-9 |www.nature.com/naturecommunications 9

https://www.riigiteataja.ee/en/eli/ee/531102013003/consolide/current
https://www.riigiteataja.ee/en/eli/ee/531102013003/consolide/current
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Index codes were added to attribute the sequences to each sample. The DNA
sample was fragmented by sonication to an average size of 350 bp, and then the
DNA fragments were end-polished, A-tailed, and ligated with the full-length
adaptor for Illumina sequencing with further amplification by the polymerase
chain reaction (PCR). Finally, the PCR products were purified (AMPure XP sys-
tem), and libraries were analyzed for size distribution by an Agilent 2100 Bioa-
nalyzer and quantified using real-time PCR.

Metagenomics data analyses. The shotgun metagenomic paired-end sequencing
was performed by Novogene Bioinformatics Technology Co., Ltd. using the Illumina
NovaSeq6000 platform, resulting in 4.62 ± 0.44 Gb of data per sample (insert size,
350 bp; read length, 2 × 250 bp). A total of 2514 samples belonging to 2509 individuals
were sequenced, including 5 biological replicates from one individual. We observed
that the microbiome composition between biological replicates was more similar than
between random pairs (Supplementary Fig. 5). First, the reads were trimmed for
quality and adapter sequences. The host reads that aligned to the human genome were
removed using SOAP2.21 (parameters: -s 135 -l 30 -v 7 -m 200 -x 400)36. Quality
controlled data of each sample was then used for metagenomic assembly using
SOAPdenovo (v. 2.04, parameters: -d 1 -M 3 -R -u –F)37. Next, SOAP2.21 was used to
map the clean data of each sample to the assembled scaftigs (i.e., continuous sequences
within scaffolds). Unutilized paired-end reads of each sample were put together for
mixed assembly. MetaGeneMark (v.3.38) was used to carry out gene prediction (gene
length > 100 bp) based on the scaftigs (≥ 500 bp), which were assembled by single and
mixed samples. CD-HIT (v.4.6) was used to dereplicate the predicted genes based on
95% identity and 90% coverage to generate the gene catalogues (parameters: -c 0.95, -G
0, -aS 0.9, -g 1, -d 0)38. The longest dereplicated gene was defined as the representative
gene (i.e., unigene). SoapAligner39 (v.2.21, parameters: -m 200, -x 400, identity ≥ 95%)
was then used to map the clean data to the gene catalogues and to calculate the
quantity of the genes for each sample. The gene abundance was calculated based on
the total number of mapped reads and the normalized gene length. The taxonomic
composition of the metagenomes was identified by comparing the marker gene
homologs to a NCBI nonredundant NCBI-nr (ftp://ftp.ncbi.nlm.nih.gov/blast/db/)
database (201810) of taxonomically informative gene families using DIAMOND
(v0.9.9.110)40. The homologs were annotated based on the sequence or phylogenetic
similarity to the database sequences. The abundance of different taxonomic ranks was
based on gene abundance tables. Microbial functional pathways were annotated using
the KEGG database (https://www.genome.jp/kegg/).

Filtering microbiome data. For downstream analysis, we removed three indivi-
duals with an exceptionally low number of reads. In total, 17,158 species and 7869
KOs were identified. Alpha and beta diversity analyses were carried out on the
whole identified composition. To identify univariate associations with species and
KOs, species and KOs that were detected with > 10% prevalence at a relative
abundance of 0.1% were used in order to limit the number of tests carried out,
resulting in 1231 species and 1974 KOs. Similarly, filtered species were used as
predictors for building classification models. We did not rarefy the counts to avoid
loss of data.

Statistics and reproducibility. The EstMB cohort is a volunteer-based population
cohort. No statistical method was used to predetermine the sample size, sample
collection was not randomized and no exclusion criteria were applied. The sta-
tistical analysis workflow used in our study is based on standard statistical tech-
niques applied in microbiome studies. All statistical analyses were carried out using
R (v. 4.0.1) software.

Microbiome diversity analysis. The observed number of unique species and the
Shannon diversity index were used to assess the alpha diversity using the vegan
package (v2.5.6). The observed number of unique KOs was used to characterize the
diversity of the functional profile. To associate the alpha-diversity metrics with the
phenotypes of interest, the Spearman correlation coefficient was used. The Eucli-
dean distance on the CLR-transformed microbiome (species and KO) profile was
used to calculate the between-sample distances for the beta diversity analysis.
Permutational analysis of variance (PERMANOVA) on the Euclidean distances
was used to test the associations between the phenotypes and microbiome com-
position using 10,000 permutations for the p-value calculations. PERMANOVA
was carried out using the adonis function in the vegan package (v.2.5-6.). To apply
the CLR transformation, zero counts were imputed with a pseudo count of 0.5. The
Benjamini–Hochberg procedure was used to account for multiple testing.

Core microbiome detection. Genera with a prevalence of more than 10% using a
detection threshold of 0.1% were considered core genera.

Detecting microbial features associated with the phenotypes. The ANOVA-
like Differential Expression tool (ALDEx2, v.1.18.0) was used to identify species
and KOs associated with prevalent diseases, medications, and dietary factors.
Models were adjusted for gender, age, BMI, and stool consistency. The number of
antibiotic prescriptions over the last 10 years before sample collection was used as
an additional covariate to assess the role of antibiotic usage history on the detection

of disease-specific associations. Metformin usage was used as an additional cov-
ariate for disentangling the T2D-metformin effects. Subjects who had taken anti-
biotics within the last 6 months of sample collection were excluded from the
analysis (n= 482). Further, participants who had missing values for gender, age,
BMI or stool consistency, had their samples removed (n= 73), resulting in
1951 samples for the analysis. The number of cases for diseases and medication
users after excluding antibiotic users and subjects with missing values in covariates
is summarized in Supplementary Table 5. Zero imputation, number of Monte-
Carlo instances, and selection of the denominator followed the default behavior of
the aldex.clr function.

Prediction models for common diseases. Elastic net regression was used to build
models for predicting disease prevalence using different sets of predictor variables. As
a null model, age, gender, BMI, and stool consistency were used as predictors. The
null+ABmodel included the number of antibiotics used within the last 10 years as a
predictor in addition to the predictors of the null model to assess the added pre-
dictive value of antibiotic usage. The null+MB model included CLR-transformed
abundances of 1231 species in addition to the predictors of the null model to assess
the added predictive value of the microbiome relative to the null model. The
null+MB+AB model included antibiotic usage and CLR-abundances of species in
addition to the predictors of the null model to assess whether the microbiome can
provide additional predictive value compared to the null+AB model.

Elastic net models were implemented in R using the tidymodels (v0.1.1) and
glmnet (v3.0-2) packages. To build the models, data were split in a 75:25 ratio to
the training and test datasets, and models were tuned on the training data using a
5-fold cross-validation and grid search with 100 hyperparameter combinations.
The initial data split and cross-validation splits were stratified by the disease
occurrence to deal with class imbalance. The performance of the models was
evaluated on the test dataset using the AUROC. The model building and evaluation
were repeated 10 times on random training-test splits to gain a robust measure of
performance. The average AUROC of the 10 repetitions was reported. Diseases
showing association with the beta-diversity with at least 50 cases after excluding
antibiotic users and subjects with missing values for gender, age, BMI or stool
consistency were considered (Supplementary Table 5).

Detection of species co-occurrence. Species co-occurrence networks were cal-
culated using SPIEC-EASI (v1.1.0)41 with default parameters and the (bounded)
StARS model selection. Isolated nodes were excluded from the network
visualization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The metagenomic data generated in this study have been deposited in the European
Genome-Phenome Archive database (https://www.ebi.ac.uk/ega/) under accession code
EGAS00001008448. The phenotype data contain sensitive information from healthcare
registers and they are available under restricted access through the Estonian biobank
upon submission of a research plan and signing a data transfer agreement. All data access
to the Estonian Biobank must follow the informed consent regulations of the Estonian
Committee on Bioethics and Human Research, which are clearly described in the Data
Access section at https://genomics.ut.ee/en/content/estonian-biobank. A preliminary
request for raw metagenome and phenotype data must first be submitted via the email
address releases@ut.ee. Used databases are NCBI nonredundant (NCBI nr) database
201810 (https://www.ncbi.nlm.nih.gov/blast/db/) and KEGG (https://www.kegg.jp/).

Code availability
The source code for the analyses is available at https://doi.org/10.5281/zenodo.5767071.
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