
INTRODUCTION

A large body of evidence suggests a relationship between ovarian 
hormones and a number of neuropsychological symptoms. A 
number of studies have linked hormones with the epidemiology 

of depressive syndromes, the base incidence of which is higher 
in females than males across the lifespan [1-7]. Depression and 
anxiety-like symptoms are expressed at greater rates in perimeno
pausal relative to post- [8] or premenopausal women [9-11], even 
in the absence of premenopausal depressive tendencies [12]. 
Additionally, estrogen receptor gene polymorphisms have been 
linked with not only depressive symptomology in postpartum 
subjects [13] but also Alzheimer’s risk in elderly women and men 
[14]. Sudden loss of ovarian hormones inherent in oopherectomy 
may also be associated with higher risk of dementia in women 
[15]. Conversely, increased serum estradiol, specifically, has been 
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associated with improved mood in both perimenopausal [16] 
and postmenopausal [17] women and in postpartum depression 
patients [18], and oral progesterone analogue contraceptives have 
been shown to improve depressive mood in reproductive-age 
women [19]. Moreover, levels of frontal cortical estradiol receptor 
α (ERα) correlated positively with cognitive function in both 
female and male Alzheimer’s patients [20], and hormone replace
ment therapy has exhibited beneficial effects on both cognitive 
function and later dementia risk in postmenopausal women, 
though therapeutic effects are often contingent on the age of 
administration [21].

Despite the profusion of epidemiological evidence hinting inter
actions between ovarian hormones and the brain, the physiological 
effects of these chemicals on neural circuits, as well as the influences 
of these circuits on subsequent neural function and behaviors, have 
yet to be characterized in full detail. Perhaps the most widely studied 
of these brain regions is the hippocampus, in which estradiols or 
their receptors have been demonstrated to influence ACh release 
[22], monoamine levels [23], spine number and density of CA1 
pyramidal neurons [24], and dentate gyrus granule cell proliferation 
[25] and survival [26]. As abnormalities in hippocampal plasticity 
have been associated with disorders in which estradiols have also 
been implicated, as in the reduced hippocampal neurogenesis seen 
in major depression patients [27] and reduced hippocampal and 
serum brain-derived neurotrophic factor in Alzheimer’s patients 
[28], it is reasonable to hypothesize that understanding the activity 
of estradiols in this region may be key to unlocking their possible 
roles in these and possibly other pathologies. 

One of the less well studied routes by which ovarian function 
may affect hippocampal synaptic plasticity is by influencing long-
term depression (LTD), the process by which a neuron exhibits 
reduced excitability to stimulation at one or more synapses over 
a prolonged (>15-20 minutes) time frame [29]. Disruptions in 
LTD have been associated with abnormalities in working memory, 
episodic memory, reversal learning, and stress-induced inhibitions 
of memory retrieval in rodents; inversely, animal models of Fragile 
X syndrome as well as depressive and schizoprenic pathologies 
also exhibit disruptions in LTD [30]. The few studies on the effects 
of estradiols on hippocampal LTD in female mammals suggest 
a complex relationship dependent on age and time course of 
treatment [17]. LTD may be induced in rodent hippocampal slice 
cultures through a number of means, including low-frequency 
stimulation (LFS), stimulation synchronized with the negative 
phase of the theta rhythm [29], and application of N-methyl-D-
aspartic acid (NMDA) [31]. Consistent with these results, paired-
pulse LFS of acute hippocampal slices from ovariectomized 
female adult rats exhibited LTD in CA1 that was attenuated by 

in vitro  application of estradiol benzoate [32]. In contrast, adult 
ovariectomized female rats reportedly demonstrated attenuated 
paired-pulse LFS-induced LTD relative to age-matched low-
estrogen female controls in estrus either five days or five weeks 
following surgery, leading the authors to conclude that the chronic 
estrogen loss of ovariectomy leads to inhibitory effects on LTD 
relative to the potentiation seen in the short-term estrogen 
loss of estrus [33]. These results are consistent with another 
study suggesting that estradiol potentiates LTD by lowering the 
frequency threshold for its induction [34]. Taken together, these 
results support the idea that ovarian hormones exert multifaceted 
time-dependent influences on hippocampal LTD and that this 
relationship is disrupted by their loss.

In this study, we compared the effects of long-term treatment 
of AP ethanol extract with the those of commonly prescribed 
osteoporosis medication sodium alendronate (Fosamax) on 
LTD induced in CA1 following low-frequency stimulation to 
the CA2 stratum radiatum in hippocampal slice cultures of 
mature ovariectomized female rats. We hypothesized that the 
same single-pulse LFS-induced long-term depression found in 
the ovariectomized rats of Sharrow et al. [32]. would be replicable 
in our own rat models of ovarian hormone loss and that AP 
would also exhibit significant LTD-related biological activities in 
the estrogen-poor environment, justifying further study on the 
effects of its extracts and components on central nervous system 
function.

MATERIALS AND METHODS

Artemisia princeps Pampanini preparation 

The stalk and leaves of Artemisia princeps Pampanini  (AP) was 
purchased from a local supplier (MANI F&B, Incheon, South 
Korea). A dried voucher specimen was deposited in the Herbarium 
of the Graduate School of East-West Medical Science (KHU-
AP-01). The raw plant material was submerged in 80% ethanol 
in a 1:20 mass ratio in a flask heated to 60oC and sonicated (3210; 
Branson, Wilmington, USA) at 60 kHz for 1 hour; precipitate 
was isolated by vacuum filtration. This process was repeated for 
two more rounds, after which the precipitate was suspended in 
distilled water at a 1:20 ratio in an Erlenmeyer flask heated to 
60oC and sonicated at 60kHz for 1 hour. The collected extract was 
concentrated by evaporator (N-1N Rotatory evaporator; EYELY 
Sunil, Seoul, South Korea), freeze dried (FD8512; Ilshin, Seoul, 
South Korea), and stored at 4oC.

High-pressure liquid chromatography analysis 

High-pressure liquid chromatography (HPLC) analysis was 
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carried out on a Waters system (Milford, MA, USA) consisting 
of a separation module (e2695) with integrated column heater, 
as well as an autosampler and photodiode array detector (2998). 
UV absorbance was monitored from 200 to 400 nm; peak areas 
were integrated at 370 nm. Injection volume was 10 μL. A 250×4.6 
mm column (YMC-Triart C18; YMC Co. Ltd., Kyoto, Japan) with 
particle size 5 μm was installed in a column oven and maintained 
at 40°C. The mobile phase consisted of water containing 1% acetic 
acid (solvent A) and acetonitrile (solvent B). The gradient was 
0.0 min, 20% B; 20.0 min, 40% B; 35.0 min, 45% B; flow rate was 
maintained at 1.0 mL/min. AP extract was dissolved in methanol 
at a concentration of 10 mg/mL prior to analysis.

Animal models and experimental diet 

All experimental protocols were approved by the Animal Care 
and Use Review Committee (KHUASP (SU) 13-01) of Kyung Hee 
University. Sixteen ovariectomized and four sham female Sprague-
Dawley rats of 5 weeks old were purchased from SLC (Shizuoka, 
Japan). All rats had undergone anesthesia (3% isoflurane dissolved 
in oxygen), abdominal incision, and suturing, while only the 
ovariectomized animals received tubal ligation and ovary excision. 
Rats were individually caged in a temperature- (22±2°C) and 
humidity- (55±5%) controlled environment with a 12-h light/
dark cycle. They had ad libitum access to water and pellet chow 
for the duration of the experiment. The body mass of all animals 
was measured twice a week throughout the experiment. Starting 
at week 14, ovariectomized animals were randomized into three 
groups (OVX, ALEN, and AP) in addition to sham. SHAM 
(n=4) and OVX (n=5) groups received daily administrations of 
0.1 mL/kg distilled water by oral gavage. ALEN (n=5) and AP 
(n=6) rats received daily gavage administrations of 10 mg/kg 
sodium alendronate (commonly used osteoporosis medication 
positive control) and 300 mg/kg AP extract, respectively. All 

treatments continued for 14 weeks. One rat in the ALEN group 
died during pre-imaging anesthesia at the end of the experiment; 
its histomorphometric data were thus incomplete and omitted 
from all final analyses. At the beginning of week 28, following 
12 hours of overnight fasting, the rats were anesthetized with 
intraperitoneally administered zolazepan/tiletamine (Zoletil 
50, Virbac) (0.1 mL/100 g) and xylazine (Rompun, Bayer) (0.03 
mL/100 g) as well as inhalational ethyl ether (99.5%) and sacrificed 
by fast decapitation (Fig. 1).

Morphological analysis 

One day prior to sacrifice, the left tibia of all sham rats and 
three randomly selected animals per experimental group were 
scanned by micro-computed tomographic analysis (μCT). Rats 
were anesthetized with zolazepan/tiletamine (Zoletil 50, Virbac) 
(0.1 cc/100 g) and xylazine (Rompun, Bayer) (0.03 mL/100 
g) administered intraperitoneally in saline at a volume of 0.1 
mL/kg immediately before scanning. Cortical and trabecular 
microstructure were scanned at 50 kV, 200 μA, at a rotation step 
of 0.4°. NRecon cone-beam algorithm software (SkyScan 1076, 
Kontich, Belgium) was used for image preprocessing; processed 
data were imported into CTan software (SkyScan) for image 
generation and analysis. Bone volume (BV) as a fraction of total 
tissue volume and bone mineral density (BMD) of the cortical and 
trabecular bones were measured to confirm the pathological effect 
of ovariectomy on bone integrity. Additional measurements were 
taken for use in another experiment, as reported above. 

Preparation of hippocampal slices

Following sacrifice, the whole brain of each rat was quickly 
extracted using a rongeur (Fine Science Tools Inc., CA, USA) 
and immediately put into ice-cold oxygenated (95% O2, 5% CO2) 
artificial cerebrospinal fluid (114 mM NaCl, 26 mM NaHCO3, 

Fig. 1. Study design. Ovariectomized (n=16) and sham (n=4) rats (SLC, Inc., Shizuoka, Japan) were fed pellet chow ab libitum for one week after 
arrival to habituate to laboratory conditions. Starting the second week, rats were fed 50 g of pellet chow per day until the end of the experiment, 
chow consumption was measured daily, and body weights of a sample of 2-3 rats per group was measured twice per week. At the fourteenth week, 
ovariectomized rats were randomly sorted into three groups of differing drug treatments: distilled water (OVX; n=5), 10 mg/kg/d alendronate sodium 
(ALEN, n=5), or 300 mg/kg/d Artemisia princeps Pampanini  ethanol extract (AP, n=6). All drugs were administered daily by oral gavage at a volume 
of approximately 0.1 mL/kg until the end of the experiment. On the second to last day, rats were anesthetized, and cortical and trabecular bone volume 
fraction and mineral density of the left tibia was scanned. On the last day, rats were anesthetized; after serum extraction by cardiac puncture (results not 
shown), the rats were sacrificed by fast decapitation and whole brains extracted for electrophysiological analysis.
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10 mM glucose, 3 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 20 mM 
HEPES, pH 7.4). NaOH was used for pH adjustment. Whole-brain 
slices (300 μm) were cut with a vibratome (MA752, Campden 
Instruments). The slices were stabilized at room temperature for at 
least 1 h in the aCSF. 

Preparation of acute hippocampal slices on the microelec

trode array probes 

A single stabilized hippocampal slice was carefully removed 
from a membrane insert with a needle and then placed on an 8x8 
microelectrode array (MEA) of 10 μm-diameter electrodes spaced 
100 μm apart (Multi Channel Systems, Reutlingen, Germany) 
precoated with 0.01% polyethylenimine and connected to a 
stimulator, amplifier, temperature control unit, and computer for 
data acquisition. The slice was stabilized in aCSF (in which 114 
mM NaCl, 26 mM NaHCO3, 10 mM glucose, 3 mM KCl, 2 mM 
CaCl2, 1 mM MgCl2, 20 mM HEPES, pH 7.4) for 1 hr at 33°C 
with 95% O2 and 5% CO2 gas aeration. Extraneous aCSF was then 
removed using a pipette. The MEA containing the hippocampal 
slice was transferred to an MEA1060 amplifier interface. The 
solution in the array was grounded using an Ag/AgCl pellet. Data 
were sampled from every channel at 25 kHz speed and recorded 
using Recorder-Rack software (MEA systems, MCS software). The 
stimulating channel was disconnected from the sampling device 
during stimulation.

Induction of LTD for hippocampal slice electrophysiology

Single slices from multiple animals (n=3~4) were used for each 
experimental group. Bipolar electrical stimulation was applied 
to the CA2 stratum radiatum region to stimulate the Schaffer 
collateral (SC) and commissural pathways. The intensity of 
bipolar test pulse (or baseline) stimulation was set at 100 mA; 
this value was optimized to provide 40~65% of the maximum 
tissue response and delivered once every 60 seconds. Baseline 
responses were evoked for at least 30 min, of which the last 10 

minutes were recorded, before the low-frequency conditioning 
stimulation (1Hz for 15 minutes; 900 total pulses; Fig. 2A) was 
applied to induce LTD. After the conditioning stimulation, field 
excitatory postsynaptic potentials (fEPSPs) were recorded every 
60 sec for another 75 min from 59 microelectrodes spanning the 
hippocampus. During experiments, the slices were continuously 
perfused with fresh aCSF solution (bubbled with 95% O2, 5% CO2) 
at the rate of 3 mL/min. 

Electrophysiology data processing

MC_Rack (v.3.2.1.0, Multi Channel Systems) and a custom 
program (Dr. Tae-Sung Kim, department of medical-engineering 
Kyung-hee university) written in MatLab (v.7.0.1, The Mathworks 
inc.) was used to analyze the data. This program integrated the 
field potential trajectory, minus artifact (Fig. 2B). 

Statistical analysis

Results are expressed as means±standard error (S.E.). Between-
group differences were calculated for two groups by independent 
student’s t-test given that all independent variable groups showed 
no difference from normality as indicated by a nonsignificant 
Shapiro-Wilk test result, as well as equality of variances as 
indicated by Levene’s test. Differences among three or more groups 
were calculated with univariate analysis of variance or repeated 
measures univariate analysis of variance using the Huynh-Feldt 
correction for deviations from sphericity [35] followed by Scheffe’s 
S post-hoc analysis given that all independent variable groups 
demonstrated normality as indicated by a nonsignificant Shapiro-
Wilk test result and homogeneity as demonstrated by Levene’s 
test; it was decided ahead of time that normal non-homogeneous 
samples would be compared with Tumhane’s T2 post-hoc 
analysis. Non-parametric Mann-Whitney and Kruskal-Wallis 
tests were used to evaluate group differences for two or more, 
respectively, distributions violating the assumption of normalcy 
as demonstrated by a significant Shapiro-Wilk result. Alpha 

Fig. 2. Long-term depression (LTD) 
induction and activity calculation in rat 
hippocampal slices. (A) Low-frequency 
stimulation (1 Hz, 15 min) was applied 
to induce LTD in hippocampal slices 
from sacrificed rats. (B) Activity was cal
culated as the area under the field po
tential trajectory during the activation 
period shown. Regions included in the 
calculations are represented by circles. 
Stimulus artifact points (indicated by 
the labeled arrow) were omitted from 
the calculations.
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was set at p=0.05. Parametric analyses were performed in SPSS 
(Version 20.0, SPSS Inc, Chicago, USA). Non-parametric analyses 
were performed in SPSS (Version 20.0, SPSS Inc, Chicago, USA) 
and non-parametric post-hoc tests in R (R Project for Statistical 
Computing, v. 3.0.2). 

RESULTS

High-pressure liquid chromatography results 

HPLC analysis confirmed that the AP contained eupatilin 
(0.0463±0.006 μg/mg), the retention time of which is shown in 
Supplemental.

Effect of ovariectomy on body mass, food intake, and food 

efficiency ratio 

While an equal variances independent samples t-test revealed 
no significant effect of ovariectomy (n=16) on pre-surgery body 
mass (152.75±0.94 g versus sham 152.75±1.44 g; t (20)=0.000, 
p=1.000), ovariectomized rats showed significantly higher body 
masses versus sham by Week 13 (354.74±7.10 versus 275.65±9.73 
g; t (20)=5.217, p<001). Similarly, pretreatment weight gain from 
weeks 1 to 14 was significantly higher in all ovariectomized than 
sham rats (201.99±28.26 g versus sham 122.90±8.73 g; t(20)=5.286, 
p<0.01). Mann-Whitney tests revealed a continued significant 
effect of ovariectomy on body weight at Week 28 (151.85±6.85 g 
versus sham 92.48±5.98 g; two-tailed p<0.01) but no significant 
effect of ovariectomy on weight gain from Weeks 14 to 28 (11.28± 
6.18 g versus sham 21.31±3.58 g; p=0.134).

Mann-Whitney tests revealed significantly higher daily dietary 
intakes from Weeks 1-13 for as-yet untreated ovariectomized (n=6; 
301.87±12.58 g/d) relative to sham (n=2; 230.52±5.43 g/d) rats (U= 
0.000, two-tailed p<0.05).

Effect of treatment on body mass, food intake, and food 

efficiency ratio   

Sham and water-treated, ALEN -treated, and AP-treated ovariec
tomy groups showed no between-group differences in body 
mass before surgery (Levene’s test F 3,16=0.495 p=0.691; univariate 
analysis of variance F 3,16=0.151, p=0.927), but univariate analysis 
showed a significant effect of treatment on body mass by Week 13 
(Levene’s test F 3,16=0.344, p=0.794; F 3,16=8.260, p<0.01). Post-hoc 
analysis with Scheffe’s S procedure revealed significantly higher 
mean mass for ovariectomized controls versus sham (79.47±19.16 
g, p<0.05), for ovariectomized ALEN treatment group versus 
sham (83.47±19.16, p<0.05), and for ovariectomized AP treatment 
group versus sham (75.12±18.43, p<0.01) but no between-group 
difference for the two ovariectomized treatment groups versus 
ovariectomized controls (Scheffe’s S p>0.05 for ALEN - and AP-
treated rats versus ovariectomized controls). 

A similar pattern was seen after treatment at Week 28, as Kruskal-
Wallis analysis showed a significant effect of treatment group on 
body weight (χ2(3)=9.183, p<0.05). Pairwise post-hoc analysis 
with a multiple comparisons Kruskal test with Bonferonni 
correction showed higher body weight than sham (286.93±9.21 g) 
for ovariectomized rats treated with water (375.28±9.44 g; mean 
rank difference 10.20, p<0.05), ALEN (371.44±12.15 g; mean 

Table 1. Effects of ovariectomy and treatment on body weight, weight gain, and dietary intake

SHAM (n=4) OVX (n=4)1 ALEN (n=5)1 AP (n=6)1

Body weight (g)

Pre-surgery 152.75±1.44 152.75±0.94 152.75±0.94 152.75±0.94

Week 14 275.65±9.73 354.74±7.10a 354.74±7.10a 354.74±7.10a

Week 28 286.93±9.21 374.28±9.44b 371.44±12.15b 375.77±12.54b

Weight gain (g)

Weeks 1~13 122.90±8.73 201.99±7.06a 201.99±7.06a 201.99±7.06a

Weeks 14~28 11.28±6.17 20.16±9.06 12.32±4.11 25.00±5.89

Dietary intake (g/d)2

Weeks 1~13 230.52±5.43 307.87±12.58b 307.87±12.58b 307.87±12.58b

Weeks 14~28 240.73±4.62 215.25±49.29 218.26±43.19 259.96±7.18

Sham-operated rats treated with distilled water (SHAM) and ovariectomized rats treated with distilled water (OVX), 10 mg/kg/d sodium alendronate 
(ALEN), or 300 mg/kg/d Artemisia princeps ethanol extract (AP) daily by oral gavage (0.1 mL/kg) for 15 weeks starting at Week 14. Data expressed as 
group mean±SEM. aEqual variances independent samples t-test versus sham p<0.05. bMann-Whitney mean rank test versus sham p<0.05. 1Pre-Week-13 
figures reported as untreated ovariectomized rat group (n=16). 2Figures calculated from a subset of sham (n=2), ovariectomy controls (n=2), alendronate 
(n=2), and AP rats (n=2).
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rank difference 9.60, p<0.05), and AP (375.77±12.54 g; mean rank 
difference 10.17, p<0.05), but no evident differences among the 
three ovariectomized treatment groups. Kruskal-Wallis analysis on 
weight gain from weeks 14 to 28 did not show a significant effect 
of treatment group (p=0.243). 

Univariate ANOVA did not show a significant effect of treatment 
group on dietary intakes from weeks 14 to 28 (F 3,7=0.348, p=0.792). 

The mean values of body mass before surgery and at the 
beginning of weeks 2, 13, and 28, as well as changes in body weight 
and average dietary intakes during the pretreatment period (weeks 

2 to 13) and treatment period (14 to 28) are shown in Table 1.

Effect of ovariectomy and treatment on trabecular and 

cortical bone histomorphometry 

Univariate ANOVA on sham (n=4) and water-treated (n=3), 
ALEN-treated (n=3), and AP-treated (n=3) ovariectomy groups 
showed a significant effect of treatment on trabecular bone 
volume fraction (F 3,9=22.186, p<0.001); Scheffe’s S post-hoc 
analysis revealed significantly lower trabecular bone volume 
fraction than sham in ovariectomized rats treated with water 

Fig. 3. Bone histomorphological parameters at Week 28. Histomorphological parameters for left tibia of 33-week-old sham-operated rats treated with 
distilled water (SHAM, n=4) and ovariectomized rats treated with distilled water (OVX, n=3), 10 mg/kg/d sodium alendronate (ALEN, n=3), or 300 mg/
kg/d Artemisia princeps Pampanini ethanol extract (AP, n=3) daily by oral gavage (0.1 mL/kg) for 15 weeks following a 13-week pretreatment period. (A) 
Trabecular bone scans at 28 weeks. Note how the bone, which appears much less dense in the OVX and AP than SHAM groups, appears to make a partial 
recovery in the ALEN group. (B) Cortical bone scans at 28 weeks. Note the absence of visible recovery in all ovariectomized groups. (C) Trabecular 
and cortical bone volume as a percent of total tissue volume by group. Univariate ANOVA showed a significant effect of treatment for trabecular bone 
volume (F=22.186, p<0.001) with lower values for all ovariectomized groups relative to sham controls. No differences between sham and ovariectomized 
controls were found for cortical bone volume, though the alendronate-treated group did show significantly higher values than sham (effect of treatment 
F 3,9=5.659, p<0.05; alendronate versus sham mean difference 1.66%, p<0.05). (D) Trabecular and cortical bone mineral density by group. Like bone 
volume, trabecular bone density also decreased significantly in all ovariectomized groups relative to sham (Kruskal-Wallis χ2(3)=10.840, p<0.05), while 
no significant differences were seen in cortical bone density. Partial recovery in trabecular bone density relative to OVX controls was seen in the ALEN 
group. Values represent means±SEM. *Scheffe’s S or Kruskal-Wallis pairwise post-hoc versus SHAM p<0.05. **Kruskal-Wallis pairwise post-hoc versus 
OVX p<0.05 and versus SHAM p<0.1.
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(17.93±0.47% versus 54.40±5.26%; mean difference -36.47%, 
p<0.01), ALEN (20.81±4.41%; mean difference -33.59%, p<0.01), 
and AP (18.38±1.84%; mean difference -36.02%, p<0.01) but 
no differences among the three treatment groups. Kruskal-
Wallis test showed a significant effect of treatment on trabecular 
bone mineral density (χ2(3)=10.840, p<0.05). Pairwise post-hoc 
analysis with Bonferroni correction for multiple comparisons [36] 
revealed significantly reduced trabecular bone mineral density 
in ovariectomized (0.11±0.0088 g/cm3; mean rank difference 9.0, 
p<0.001) and AP-treated groups (0.15±1.85 g/cm3; mean rank 
difference 7.0, p<0.001) relative to sham (0.26±0.028 g/cm3) but 
only a marginally significant difference between sham and the 
ALEN -treated ovariectomized rat values (0.19±0.0058 g/cm3; 
mean rank difference 3.5, p=0.06). In addition, ALEN -treated 
ovarictomized rats exhibited a significantly higher trabecular bone 
mineral density than water-treated ovariectomized controls (mean 
difference 5.5 g/cm3, p<0.01).

Univariate ANOVA also showed a significant effect of treatment 
on cortical bone volume (F 3,9=5.659, p<0.05); Scheffe’s S post-
hoc analysis revealed significantly higher cortical bone volume 
fraction in ovariectomized rats treated with ALEN than in sham 
(10.77±0.40% versus 9.11±0.32%; mean difference 1.66%, p<0.05) 
but no other between-group differences. Kruskal-Wallis test 
did not show a significant effect of treatment on cortical bone 
mean density (χ2(3)=4.193, p=0.241). See Fig. 3 for a summary of 
treatment effects on bone histomorphometric parameters. 

Effect of treatment on pre-stimulation EPSP activation 

values 

Univariate ANOVA did not show a significant effect of treatment 
on pre-stimulation EPSP total activation averages in acute 
hippocampal slices from ovariectomized rats treated with water 
(n=3), ALEN (n=4), or AP (n=3) (F 2,7=2.464, p=0.155). 

Effect of treatment on acute hippocampal slice LTD induction

Total activation values from each of the 75 minutes of fEPSP 
recording from CA1 were averaged across CA1 channels (n=2-4 
per slice) and normalized to percent of baseline, which was defined 
as the average of the first ten minutes of pre-stimulation recording. 
A repeated measures ANOVA with fixed factor treatment and 
within-subjects repeated measure time (before, during, and 
following stimulation) on individual subject averages showed a 
significant within-subject effect of time (F 2,7=90.521, p<0.001), 
a significant between-subject effect of treatment (F 2,7=24.929, 
p<0.01), and a significant within-subject interaction between time 
and treatment (F 2,7=13.632, p<0.001) on total activation averages. 
Post-hoc analysis for treatment with Scheffe’s S procedure revealed 
significantly higher values for both ALEN and AP treatment 
groups relative to water-treated ovariectomized controls (mean 
difference 10.07%, p<0.01; 8.78%, p<0.01, respectively) but no 
significant difference of AP from ALEN (mean difference -1.29%, 
p=0.704). Univariate ANOVA showed no effect of treatment on 
time-averaged fEPSP total activation percent before stimulation 

Fig. 4. Integrated activation-period microelectrode array field potential sums following low-frequency stimulation of hippocampal slice cultures. 
Sum of all integrated activation-period field potentials from three of 59 single microelectrode recordings of hippocampal slice cultures from 33-week-
old ovariectomized rats treated with distilled water (OVX, n=3 slices), 10 mg/kg/d sodium alendronate (ALEN, n=3 slices), or 300 mg/kg/d Artemisia 
princeps ethanol extract (AP, n=3 slices) daily by oral gavage (0.1 mL/kg) for 15 weeks following a 13-week pretreatment period. Recordings followed 15 
minutes of low-frequency stimulation (100 mA, 1Hz) to the CA2 stratum radiatum to stimulate LTD-inducing Schaffer collateral signaling. (A) Time 
course of activity totals. Starting at 10 minutes following stimulation, OVX rats exhibited significantly lower activation than that of ALEN or AP rats, a 
difference maintained until the end of the experiment. (B) Group averages of normalized total activity for 50 minutes following stimulation. ALEN and 
AP activation were both significantly higher than that of the OVX group (F 2,7=26.797; p=0.001; Scheffe’s post hoc S mean difference 11.88%, p<0.01; 
mean difference 10.00%, p<0.05, respectively) but did not differ significantly from each other. Values represent means±SEM. Stars represent significant 
between-group differences as calculated by Scheffe’s S post hoc analysis with alpha set at p<0.05.
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as they were, by definition, normalized to a mean of 100% for each 
group, but showed a significant effect both during (F 2,7=11.241; 
p<0.01) and after (F 2,7=26.797; p=0.001). Scheffe’s S post-hoc 
analysis revealed significantly higher values for ALEN and AP 
treatment groups relative to water-treated ovariectomized controls 
during stimulation (94.98±2.19%, mean difference 11.88%, p<0.01; 
93.10±0.31%, mean difference 10.00%, p<0.05, respectively; 
control 83.10±2.00%) and after stimulation (92.00±2.35%, mean 
difference 18.00%, p<0.01; 90.00±0.58%, mean difference 16.68%, 
p<0.01, respectively; control 73.67±1.20%) but no significant 
difference of AP relative to ALEN during either time frame (mean 
difference during stimulation -1.87%, p=0.780; mean difference 
after stimulation -2.00%, p=0.761). See Fig. 4 for activation trends 
across time for each group.

DISCUSSION

The present study assessed the possible effect of Artemisia 
princeps Pamp  ethanol extract on long-term depression at 
the CA3-CA1 synapse in hippocampal slice cultures from rat 
models of ovarian hormone deficiency. As Artemisia princeps 
and its components have demonstrated a number of bioactivities, 
including insulin regulation [37-39], antioxidant [40], pro-
inflammatory [41] or anti-inflammatory [42, 43], and cytotoxic 
[44, 45] effects, it was hypothesized that it may also influence 
hippocampal LTD in a model of ovarian hormone deficiency.

Calculations of body weight and food intake confirmed the 
presence of physiological abnormalities in the ovariectomized 
relative to sham group. Though pre-surgery body weights by group 
showed no significant differences, body weights had increased 
significantly in ovariectomized relative to sham rats by Week 14, a 
difference that was maintained to the end of the experiment even 
though food intake from Weeks 14~28 showed no significant 
differences among the groups. It is reasonable to attribute this 
difference at least in part to higher food intakes by ovariectomized 
relative to sham rats prior to treatment in the first thirteen 
weeks of analysis. This result mirrors previous observations of 
ovariectomized rats, in which ovariectomy is associated with not 
only obesity but also hyperphagic behaviors relative to control [46], 
a difference that can disappear with time [47]. 

Similarly, cortical and trabecular bone volume and mean 
density in the left tibia showed abnormalities in ovariectomized 
relative to sham rats. Both trabecular bone volume and mean 
density were shown to have decreased relative to sham in all three 
ovariectomized groups twenty-eight weeks following ovariectomy, 
while cortical bone abnormalities were not yet present, a result 
that also recapitulates previous findings of trabecular bone volume 

fraction and/or mineral density reductions without statistically 
significant changes in mineral density or area in ovariectomized 
relative to sham rats less than eight months following surgery 
[48-50], thus validating the establishment of pathology in our 
ovariectomized rats. Notably, some reversal in trabecular bone 
loss was apparent in the group treated with alendronate for fifteen 
weeks prior to measurement, as trabecular bone mineral density 
was higher in this group than water-treated ovariectomized 
controls, as well as the AP treatment group. This is a result 
that would be expected in a model of osteoporosis given that 
alendronate is a popular therapeutic of this condition. 

Against this background of pathology, we found that long-term 
treatment with Artemisia princeps Pamp extract attenuated long-
term depression at the CA3/CA1 synapse relative to that exhibited 
in vehicle-treated ovariectomized rats. These findings may have 
implications for the current understanding of the mechanisms 
behind LTD generation in rodent models of chronic ovarian 
hormone deficiency and signal the need for further research 
on possible applications for AP in the management of affective 
and cognitive symptoms engendered by pathological changes in 
synaptic plasticity.

Determining the extent to which the LTD observed in the ovari
ectomized rats of this study represents a pathological departure 
from the norm is vital to understanding the nature of its alteration 
in our treated groups. While the induction of LTD in the CA1 pyra
midal neurons by the LFP in acute hippocampal slice cultures from 
adult, but not aged, rats like the ones we used is reportedly unusual 
[51, 52], it is not unprecedented. The first report of homosynaptic 
LTD in CA1 induced in vitro  was by LFS to adult male slices in 
1992 [53], and more cases have been subsequently reported [29], 
with allegedly greater ease of production in Sprague-Dawley or 
Wistar than hooded rats [30]. Moreover, both stress [54] and expo
sure to novelty [55] has been shown to enhance LFS-induced LTD 
[30], and the bone-scanning protocol to which some rats were ex
posed one day before euthanasia, as well as the conditions to which 
all rats were exposed immediately prior to euthanasia, presumably 
encompassed both features, presenting these factors as a possible 
confounds among the three tested groups. 

Of the few studies done to date inducing homosynaptic LTD 
in ovariectomized rats [32-34, 56], only one, to our knowledge, 
has directly compared ovariectomized rat measures with sham 
controls [33]. This study demonstrated LTD in CA1 from ovari
ectomized rats in response to paired-pulse stimulation to the 
Schaffer collaterals. LTD was, however, stronger rather than atte
nuated in both sham rats and ovariectomized rats treated with 
short-term injection of 17β estradiol, a result corroborated by 
previous research similarly showing enhanced LTD to paired-
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pulse stimulation in 17β estradiol-treated ovariectomized adult 
rats [34, 56]. This suggests that at least under some circumstances, 
LTD stimulation by LFS in adult rats, despite the difficulties 
inherent in its induction [51, 52], may be considered a feature of 
normal tissue rather than symptomatic behavior to be treated. 

Two other experiments, however, show that the conditions 
under which LTD in adult ovariectomized rats may be considered 
normal features of brain tissue may be limited. One reported 
attenuated homosynaptic LTD in acute slices from 17β estradiol 
-treated ovariectomized rats relative to vehicle-treated controls 
[56] or in 17β estradiol-perfused acute hippocampal slices from 
ovariectomized rats relative to vehicle-perfused controls [32]. 
Even though these studies did not have sham controls, their results 
link the estrogen deficiency of ovariectomy with enhanced rather 
than attenuated LTD, suggesting that their stimulation protocols 
would potentially result in attenuated LTD in sham relative to 
ovariectomized rats as well. The differing results of the first study 
have been attributed to the use of its lower-frequency single-
pulse stimulation than in experiments demonstrating estrogenic 
enhancement in LTD [56], while those of the second by the use 
of acute estradiol application rather than a longer-term in vivo 
injection schedule [33]. It is thus possible that our own protocol, 
which also differs from the conflicting studies in stimulation 
type (single versus paired-pulse), age of ovariectomy, and other 
contextual details, may exhibit similar patterns of attenuated 
rather than enhanced LTD in hormonally normal controls relative 
to ovariectomized rats, had the electrophysiology experiments 
included a sham group.

While the etiology and significance of the LTD exhibited by ovari
ectomized controls in our study are thus admittedly ambiguous, that 
it was clearly attenuated in rats treated long-term with 300 mg/kg/
d Artemisia princeps Pamp ethanol extract suggests bioactivities of 
this substance on hippocampal plasticity, particularly in inhibiting 
the mechanisms by which hippocampal long-term depression are 
effected in an environment bereft of gonadally derived ovarian 
hormones. It is worthy of note that this effect was exerted in a model 
of ovarian hormone deficiency; whether it might also appear in 
sham or naïve controls is important to understanding its possible 
mechanisms. 

The dearth of research on AP’s molecular routes of action as 
well as the complexity of its multi-component makeup make it 
difficult to pinpoint the mechanisms by which it exhibited the 
modulatory effects we demonstrated here. Among the most well 
studied are its antioxidant [40], and anti-inflammatory [42, 43] 
properties, which present a viable route for LTD attenuation in 
environments marked not only by ovarian hormone deficiency, 
relevant here perhaps for its association with oxidative stress [57, 

58] and inflammation [59] in rodents as well as a reduction in 
biomarkers for stress compensation in the primate midbrain [60], 
but any manipulation that increases cellular stress in the brain. 
Indeed, while research on the effects of oxidative stress on LTD is 
sparse, behavioral stress, as mentioned, has been shown to enhance 
LTD in CA1 [54]; in addition, inflammatory cytokines have also 
demonstrated supportive or enhancing effects on homosynaptic 
LTD in CA1. For example, treatment of acute hippocampal 
slices from adult rats with interferon alpha (IFNα) enhanced 
glutamate-induced reductions in EPSP amplitude [61]; similarly, 
application of interleukin-1beta (Il-1β) produced a depression 
that both blocked and was blocked by LFS, suggesting a shared 
mechanism of action [62]. Tumor necrosis factor alpha (TNFα) 
has also been suggested to be necessary for LFS-induced LTD in 
CA1, as its induction was shown to be impaired in TNF-receptor 
knockout mice [63]. It is thus possible that AP altered the plasticity 
patterns demonstrated in ovariectomized controls by reducing 
the levels of these and other inflammatory cytokines implicated 
in LTD, as it has been previously reported to do for Il-1β and 
TNFα in serum [42] and Il-4 and TNFα in epidermal tissue [43], 
thereby attenuating the influence of these factors on hippocampal 
plasticity. Eupatilin, one of the active ingredients confirmed by 
HPLC analysis to be present in the sample used in our study, has 
similarly demonstrated inhibitory effects on Il-1β, Il-6, and TNFα 
in lipopolysaccharide-stimulated macrophages [64] and Il-1β and 
TNFα in a mouse model of inflammatory edema [65] in addition 
to acutely enhancing CA1 neuron counts following ischemia-
reperfusion injury in mice [66], suggesting a possible role of this 
compound in the attenuation of LTD by chronic AP treatment 
suggested by our findings. 

Unfortunately, the current state of research on AP and its compo
nents can lead us only to such unsatisfyingly general explanations 
of its action as that attempted above, as to present little effort has 
been made to understand the molecular mechanisms of its putative 
bioactivities. On the other hand, an examination of alendronate, 
which has more well studied mechanisms of action and exerted 
an effect similar to that of AP in our analysis, might provide an 
alternative direction for an examination of the findings demon
strated by our study. Alendronate is a member of the bisphos
phonate family, a group of structurally similar molecules whose 
most well known function is their therapeutic use in inhibiting 
excess bone resorption, a process thought to be effected through 
the chemicals’ absorption into bone tissue and chelation with Ca2+ 
ion, thereby preventing mineral loss to serum [67]. Even though 
a large body of research has described the various physiological 
effects of alendronate and other bisphosphonates, we have not seen 
any describing the influences on hippocampal plasticity that we 
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demonstrated. 
Alendronate is thought to be able to pass the blood-brain barrier 

[68], suggesting that it is at least theoretically capable of exerting 
direct effects on central nervous system activity. Indeed, daily 
oral administration of 3 mg/kg alendronate for one week was 
shown to reduce acetylcholinesterase activity in the prefrontal 
cortex of rats [68]; the same dosing schedule for nine days also 
yielded significant reductions in brain cholesterol synthesis rates 
in hippocampus, frontal lobe, and spinal cord [69]. Acute and 
subchronic administrations of 10~80 mg/kg alendronate have 
also demonstrated antinociceptive effects in rat models of visceral 
(acetic acid) but not inflammatory (formalin) pain [70], though 
this finding is as parsimoniously explained by possible influences 
on peripheral tissues as that on the central nervous system. 
Given some evidence that at least one of the molecular targets of 
alendronate might be a subset of protein tyrosine phosphatases [71, 
72], which as a group have been implicated in neural functions 
from the management of hippocampal neuron calcium stores [73] 
to behavioral habituation to new environments [74], its biological 
influences might be far more diverse than the inhibitory effects on 
bone resorption for which it is commonly exploited.  

To our knowledge, neither AP nor alendronate has demonstrated 
direct effects on neuroplasticity in any experiments to date. As a 
result, our finding that long-term administration of both drugs 
appears to inhibit the induction of long-term depression at 
the CA3-CA1 synapse justifies the further exploration of their 
neurological bioactivities, either for their therapeutic benefits or 
for their possible adverse patient effects.

Long-term oral treatment with Artemisia princeps Pamp 
ethanol extract attenuates low-frequency-stimulation-induced 
homosynaptic long-term depression in CA1. These results were 
similar to those shown for alendronate and justify further focused 
research on the extent and mechanisms of the possible effects of 
both substances on hippocampal plasticity and the disorders with 
which it is associated, especially in the context of ovarian hormone 
deficiency and menopause. 
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