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Abstract: The twin-field quantum key distribution (TF-QKD) protocol and its variations have been
proposed to overcome the linear Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. One variation
called phase-matching QKD (PM-QKD) protocol employs discrete phase randomization and the
phase post-compensation technique to improve the key rate quadratically. However, the discrete
phase randomization opens a loophole to threaten the actual security. In this paper, we first introduce
the unambiguous state discrimination (USD) measurement and the photon-number-splitting (PNS)
attack against PM-QKD with imperfect phase randomization. Then, we prove the rigorous security of
decoy state PM-QKD with discrete phase randomization. Simulation results show that, considering
the intrinsic bit error rate and sifting factor, there is an optimal discrete phase randomization value to
guarantee security and performance. Furthermore, as the number of discrete phase randomization
increases, the key rate of adopting vacuum and one decoy state approaches infinite decoy states,
the key rate between discrete phase randomization and continuous phase randomization is almost
the same.

Keywords: twin-field quantum key distribution; phase-matching; discrete phase randomization;
intrinsic bit error rate

1. Introduction

Quantum key distribution (QKD) can offer information theoretically secure means
to distribute secret keys between two remote parties [1], but the performance is restricted
by the fundamental rate-loss limit [2,3]. Recently, a novel twin-field QKD (TF-QKD) pro-
tocol [4] is proposed to surpass the linear Pirandola–Laurenza–Ottaviani–Banchi (PLOB)
bound [2], which shows the superiority relation between key rate and channel transmit-
tance, R ∼ O(

√
η). However, the security proof is not completed in the original TF-QKD

protocol [4]. In order to present a more rigorous security proof, various variations [5–10] of
the original TF-QKD protocol have been proposed. The related experimental works have
also been extensively studied [11–20].

All of these variant TF-QKD protocols have their own advantages. The no-phase-post-
selection TF-QKD (NPP-TF-QKD) protocol [5,6] provides better key rate performance in
closer-to-mid distance, but it needs phase locking and pre-phase feedback in the experiment,
so it is hard to implement [5,6,21]. The sending-or-not-sending TF-QKD (SNS-TF-QKD)
protocol [10] can tolerate large misalignment errors and provide better performance in long
distance [10,21]. The phase-matching QKD (PM-QKD) protocol [8] has no phase locking
with phase slices and employs a phase post-compensation technique, so it can be easily
experimentally implemented without pre-phase feedback [13,21].
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In reality, the decoy state method is adopted to ensure the security of imperfect
single photon source [22–25] in the actual QKD system. An important theoretical premise
and assumption of the method is that the global phase of coherent sources should be
continuously randomized [26–28]. However, perfect phase randomization is very difficult
to achieve. In an actual experiment, there are two means to randomize the global phase.
One means is to turn the laser on and off by controlling the current, but it is not suitable for
PM-QKD with the phase post-compensation technique—the reason for this is that we do not
know the precise phase slices. Moreover, experiments show that residual phase correlations
may exist between adjacent pulses [29]. The other one is to actively modulate the phase of
coherent sources controlled by a phase modulator with a true random number generator;
this method is suitable for PM-QKD, but the phase randomization is not continuous. Thus,
neither of these two means satisfy the assumption of the decoy state method, which may
introduce a potential loophole that threatens the security of the actual protocol [30]. Then,
the unambiguous state discrimination (USD) measurement [31] and the photon-number-
splitting (PNS) attack [32] can be used against the imperfect phase randomization.

An earlier security analysis of discrete phase randomization appears in the decoy
state Bennet-Brassard-1984 (BB84) in Reference [33], which points out, when the number
of discrete phase values is larger, that the performance of discrete phase randomization
is close to that of continuous phase randomization, and the number is said to be ten [33].
Similar security analysis methods are used for several other protocols, the measurement-
device-independent (MDI) QKD in Reference [34], the NPP-TF-QKD in References [35,36],
the SNS-TF-QKD in Reference [37], the PM-QKD in Reference [38]. Therein, Reference [38]
uses a different security poof method with Reference [8], and there is no in-depth formula
derivation in the decoy state PM-QKD with discrete phase randomization. In this paper,
we focus on these discrete global phase randomization issues in the PM-QKD protocol [39],
study a concrete attack against PM-QKD with imperfect phase randomization, apply the
decoy-state method to derive the single photon yield formula to exhibit performance of the
key rate and compare the yield difference of continuous phase randomization with discrete
phase randomization.

The paper is arranged as follows: in Section 2, we review the PM-QKD protocol in
detail, based on the security analysis of symmetric-encoding PM-QKD, we estimate the
overall phase error rate. In Section 3, we show a concrete attack against PM-QKD with
imperfect phase randomization. In Section 4, we show how to apply the decoy-state method
to obtain the upper bound of the phase-flip error rate with discrete phase randomization;
moreover, the yield difference between continuous and discrete phase randomization is
also studied in this section. The numerical simulation results are shown in Section 5, and
then we conclude in Section 6.

2. The Protocol of PM-QKD

We employ the attenuated laser as a single photon source, which is regarded as the
coherent state. When the coherent state is randomized by continuous phase, it is equivalent
to the Fock state, with the photon number distribution as

Pj|α = e−α αj

j!
(1)

In this section, we review the PM-QKD protocol, and without considering the security
effects of discrete phase randomization, Equation (1) is used for formula derivation.

2.1. Protocol Description

The implementation process of the PM-QKD is similar to Reference [39].

• State preparation. In each round, the coherent state
∣∣∣√αAei(πκA+

2π
D dA)

〉
is prepared

by Alice, the intensity αA ∈ {µA, νA, ωA}, where µA is she signal state, νA is the
decoy state, ωA is the vacuum state, the random key bit κA ∈ {0, 1}, the discrete
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phase randomization number dA is randomly chosen from {0, 1, · · · , D− 1}, D is the
number of maximum discrete phase that is modulated by Alice, for simplicity, assume
D is an even number. Similarly, Bob prepares the coherent state

∣∣∣√αBei(πκB+
2π
D dB)

〉
,

therein, αA = αB = α
2 ∈

{ µ
2 , ν

2 , ω
2
}

.
• Measurement. Alice and Bob send their quantum states to Charlie with transmittances

ηA and ηB, Charlie performs an interference measurement with a beam splitter and
records which detector (L or R) clicks.

• Announcement. The detection result is announced by Charlie for each round; the
intensity settings αA, αB and phase numbers dA, dB are also announced by Alice
and Bob.

• Sifting. After that, the phase post-compensation method is used by Charlie to calculate
and then Charlie announces the phase match pairs. Assume the phase compensation
dδ ∈ {0, 1, · · ·D/2− 1}, only one of the two detectors clicks is the successful detection.
If the left detector clicks and |dA − dB − dδ| mod D = 0, Alice and Bob keep κA and
κB as the raw key. If the right detector clicks and |dA − dB − dδ| mod D = D/2, Bob
flips his key bit κB. If |dA − dB − dδ| mod D 6= 0, D/2, for simplicity, we discard the
phase mismatch pairs.

• Parameter estimation. Alice and Bob estimate the information leakage from the raw
data that they have kept.

• Key generation. After reconciling the corresponding key string to perform error
correction, Alice and Bob use privacy amplification to produce the final keys.

2.2. Phase Error Estimation

The security analysis of asymptotic case is considered, so there are no statistical
fluctuations. The analysis method of the phase error rate that we use comes from [39], which
is an important new viewpoint of QKD security, establishing the relationship between the
symmetric encoding and privacy with the standard phase-error-correction approach [40],
and we summarize briefly as follows.

If the joint state ρAB is a pure of even or odd state, the symmetric encoding PM-QKD
protocol is perfectly private, the phase error rate Eph = 0, if the joint state ρAB is a mixture of
even and odd state, ρAB = Poddρodd + Pevenρeven, the phase error rate Eph 6= 0, the effective
detection ratios of odd and even components of signal state are estimated by [39]

qodd|µ = Podd|µ
Yodd|µ

Qµ

qeven|µ = Peven|µ
Yeven|µ

Qµ

(2)

where Qµ = Podd|µYodd|µ + Peven|µYeven|µ is the total gain of mixture signal state ρAB. Yodd|µ
and Yeven|µ are the yield of odd signal state ρodd and even signal state ρeven, respectively.
Podd|µ and Podd|µ are the signal state probability of odd and even photon numbers.

The overall phase error rate comes from the even components, which is estimated
by [39]

Eph = Peven|µ
Yeven|µ

Qµ
(3)

where Peven|µ is given by the above section, Qµ is given by the experiment results, the
important task is to estimate the parameter Yeven|µ.

For simplicity, we use phase match pairs and discard phase mismatch pairs, so the
upper bound of phase error rate comes from the signal state bounded by

Eph ≤ 1− q1|µ (4)

where q1|µ = P1|µ
Y1|µ
Qµ

.
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According to the above discussion, we get the final secure key rate by

R f =
2
D

Qµ[1− H2(Eph)− f H2(Eµ)] (5)

where Qµ is the total gain of the signal state, Eph is the phase error rate of the signal state,
Eµ is the bit error rate of the signal state, f is the error correction efficiency, H2(x) =
−xlog2(x)− (1− x)log2(1− x) is the binary entropy function.

3. Attack PM-QKD with Imperfect Phase Randomization

Considering the extreme case that Eve knows, the exact phases of the signal and
decoy states without phase randomization, the PM-QKD protocol will have a serious
security loophole. Due to the signal state and the decoy state not being orthogonal, Eve
can use USD measurement to distinguish the signal state and the decoy state with the
probability q < 1. The optimal success probability [41] of USD measurement on each

side is qopt = 1− e−|
√

µ−
√

v|2/4, which is obtained by performing positive operator valued
measurement. After performing USD measurement, Eve measures the number of photons
in the pulse and performs a PNS attack.

For the sake of simplicity, we neglect the dark count and the misalignment error, and
only consider the channel loss. Without attacking, the gains of the signal state and decoy
state are

Qµ = 1− e−ηµ

Qv = 1− e−ηv (6)

where η is the channel loss.
Under the PNS attack, the gains of the signal state and decoy state are

Qattack
µ =

∞

∑
j=1

q2
optZ

µ
j e−µ µj

j!

Qattack
v =

∞

∑
j=1

q2
optZ

v
j e−v vj

j!

(7)

where Zµ
j and Zv

j represent the probability that Eve forwards j photons to the signal state
and the decoy state, with j as the sum of the photons on both sides.

The simplified upper key rate under the PNS attack is bounded by

Ru = RPNS =
∞

∑
j=1

q2
optZ

µ
j e−µ µj

j!
[1− H2(Eph)] (8)

The lower key rate of the simplified Equation (5) is bounded by

Rl
PM = RPM = Qµ[1− H2(Eph)] (9)

Combining the USD measurement with PNS attack, the security of final key rate
without the phase randomized system is vulnerable. We can optimize Zµ

j to let Rl
PM > Ru,

especially for long distance communication, due to channel loss is large enough, we can
block single photon and release multiple photons. Then, the key rate will be higher than
the secure key rate, and information will leak out. Hence, Eve’s goal is to minimize Ru.

It is worth noting that the attack scheme of USD measurement and PNS attack, which
requires the quantum non-demolition measurement [42] about the photon numbers, the
lossless channel and the ability of controlling detector efficiency, all of these are beyond
the current technology. Ma adopts the beam splitting (BS) attack [43] in Reference [8]. We
briefly present his results as follows.
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Ma [8] points out, under the BS attack, that the probability of successfully distin-
guishing the states is Psuc = 1− e−(1−η)µ. The simplified key rate of PM-QKD is lower
bounded by

Rl
BS = Qµe−2(1−η)µ (10)

Ma [8] supposes that the photon number channel model exists in PM-QKD, then
Gottesman–Lo–Lutkenhaus–Preskill (GLLP) [26] analysis can be used to obtain the formula

RGLLP = Q1|µ[1− H2(Eph
1|µ)]−Qµ f H2(Eµ) (11)

where Q1|µ is the gain of the single photon signal state, Eph
1|µ is the phase error rate.

Due to the yield being Yj = 1 − (1− η)j, the simplified GLLP key rate is lower
bounded by

Rl
GLLP = RGLLP = Q1|µ = ηµe−µ (12)

Final results show that, when η is smaller than a certain value, the GLLP formula can-
not hold under the BS attack, so the photon number channel model is invalid. Fortunately,
the PM formula can defend against BS attack; the precondition is that the intensity must
be weaker.

4. The PM-QKD with Discrete Phase Modulation of Coherent State Sources

In this section, we introduce the security analysis of discrete phase randomized PM-
QKD. Then, we apply the decoy-state method to derive the single photon yield formula.
Finally, we compare the yield difference between continuous phase randomization and
discrete phase randomization.

4.1. Coherent State with Discrete Phase Randomization

For the coherent state with discrete phase randomization, the joint state of Alice and
Bob of PM-QKD is as follows

|ψ〉AB =
D−1

∑
dA=0

∣∣∣√αAei(πκA+
2π
D dA)

〉
A

∣∣∣√αBei(πκB+
2π
D dB)

〉
B

(13)

where κA, κB ∈ {0, 1}, |dA − dB − dδ| mod D = 0 or |dA − dB − dδ| mod D = D/2.
Considering the simple case, dδ = 0, then |dA − dB| = 0 or |dA − dB| = D/2. Now,

the density matrix can be written as

ρD
AB=

1
D

D−1

∑
dA=0

∣∣∣√αAei(πκA+
2π
D dA)

〉
A

〈√
αAe−i(πκA+

2π
D dA)

∣∣∣
⊗
∣∣∣√αBei(πκB+

2π
D dB)

〉
B

〈√
αBe−i(πκB+

2π
D dB)

∣∣∣
=

D−1

∑
j=0

PD
j|α

∣∣∣λD
j|α

〉
AB

〈
λD

j|α

∣∣∣
(14)

where PD
j|α =

∞
∑

l=0

e−ααlD+j

(lD+j)! ,
∣∣∣λD

j|α

〉
AB

= e−α/2√
PD

j|α

∞
∑

l=0

(
√

α)
lD+j

√
(lD+j)!

|lD + j〉AB, with |lD + j〉AB =

1√
2lD+j(lD+j)

(a† ± b†)
lD+j|00〉AB.
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In our security analysis with discrete phase randomization, we modify the final secure
key rate Equation (5) to

R f =
2
D

Qµ[1− H2(ED
ph)− f H2(Eµ)] (15)

where the upper bound of phase error rate ED
ph comes from the signal state bounded by

ED
ph ≤ 1− qD

1|µ, with qD
1|µ = PD

1|µ
YD

1|µ
Qµ

. The bit error rate Eµ and the gain Qµ remain the same.

4.2. The Decoy-State Method

In discrete phase randomized PM-QKD, we estimate the yield YD
1|µ of the single-photon

signal state. We use the vacuum and one decoy state, which is similar to the BB84 decoy
state analysis [24].

We know that, in the security proof of the decoy state method with continuous phase
randomization, there is an important assumption

Yj|signal = Yj|decoy (16)

However, it is not strict in the condition of discrete phase randomization, YD
j|signal 6=

YD
j|decoy; the reason lies in ∣∣∣λD

j|µ

〉
6=
∣∣∣λD

j|v

〉
(17)

Consider the properties of trace distance; we need to estimate the difference of yields
for different intensities as [33] ∣∣∣YD

j|µ −YD
j|v

∣∣∣ = √1− (FD
j|µν

)
2 (18)

where FD
j|µν

=
∞
∑

l=0

(µv)(lD+j)/2

(lD+j)!

/√
∞
∑

l=0

µlD+j

(lD+j)!

∞
∑

l=0

vlD+j

(lD+j)! , that is the fidelity of
∣∣∣λD

j|µ

〉
and

∣∣∣λD
j|v

〉
.

The estimation of the yield YD
1|µ is similar to continuous phase randomization. The

equation can be written as

Qµ =
D−1

∑
j=0

PD
j|µYD

j|µ

Qv =
D−1

∑
j=0

PD
j|vYD

j|v =
N−1

∑
j=0

PD
j|vYD

j|µ +
D−1

∑
j=0

PD
j|v(Y

D
j|v −YD

j|µ)

(19)

We have

YD
1|µ =[PD

2|µQv − PD
2|vQµ − (PD

2|µPD
0|v − PD

0|µPD
2|v)Y

D
0|µ

− PD
2|µ

D−1

∑
j=0

PD
j|v(Y

D
j|v −YD

j|µ)−
∞

∑
j≥3

(PD
2|µPD

j|v − PD
j|µPD

2|v)Y
D
j|µ]

/(PD
2|µPD

1|v − PD
1|µPD

2|v)

(20)

with
∞
∑

j≥3
(PD

2|µPD
j|v − PD

j|µPD
2|v)Y

D
j|µ ≤ 0, YD

0|µ ≤ Qω/PD
0|ω +

√
1− (FD

0|µω
)

2 and
D−1
∑

j=0
PD

j|v(Y
D
j|v −

YD
j|µ) =

D−1
∑

j=0
PD

j|µ

√
1− FD

j|µν

2.
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Then

YD
1|µ ≥

PD
2|µQv − PD

2|vQµ − (PD
2|µPD

0|v − PD
0|µPD

2|v)Y
D
0|µ − PD

2|µ
D−1
∑

j=0
PD

j|µ

√
1− FD

j|µν

2

PD
2|µPD

1|v − PD
1|µPD

2|v

(21)

4.3. The Yield Difference between Continuous and Discrete Phase Randomization

To compare the yield difference of continuous phase randomization and discrete phase
randomization, the density matrix of the continuous phase randomization can be written as

ρAB=
1

2π

∫ 2π

0

∣∣∣√αAei(πκA+ϕA)
〉

A

〈√
αAe−i(πκA+ϕA)

∣∣∣
⊗
∣∣∣√αBei(πκB+ϕB)

〉
B

〈√
αBe−i(πκB+ϕB)

∣∣∣
=

∞

∑
j=0

Pj|α|j〉AB〈j|

(22)

where the general Poisson distribution Pj|α is given by Equation (1), with |j〉AB = 1√
2j j!

(a† ± b†)j|00〉AB.

In the ideal case, D → ∞, the fidelity FC,D
j|α between |j〉AB and

∣∣∣λD
j|α

〉
AB

should be the

same. In the security analysis, the fidelity FC,D
j|α between |j〉AB and

∣∣∣λD
j|α

〉
AB

is bounded by

FC,D
j|α = F

(
|j〉AB,

∣∣∣λD
j|α

〉
AB

)
=

∣∣∣〈j
∣∣∣ λD

j|α

〉
AB

∣∣∣√
〈j | j〉AB

〈
λD

j|α

∣∣∣ λD
j|α

〉
AB

= 1

/
e−α/2√

PD
j|α

∞

∑
l=0

(√
α
)lD+j√

(lD + j)!

(23)

which is related to the intensity α, photon number j and discrete phase numbers D.
Therefore, the yield difference is bounded by

∣∣∣Yj|α −YD
j|α

∣∣∣ ≤ √1− FC,D
j|α =

√√√√√1− 1

/
e−α/2√

PD
j|α

∞

∑
l=0

(√
α
)lD+j√

(lD + j)!
(24)

5. Numerical Results

Let’s suppose the transmittances between Alice/Bob and Charlie are ηA = ηB = η f ,
the detection efficiency of detectors is ηd, after the channel and detection losses, η = η f ηd,
the detection click probabilities are given by

Pα(L̄) = (1− pd)e−ηαcos2 φAB
2

Pα(L) = 1− Pα(L̄)

Pα(R̄) = (1− pd)e−ηαsin2 φAB
2

Pα(R) = 1− Pα(R̄)

(25)

where Pα(L)/Pα(R) and Pα(L̄)/Pα(R̄) are the detection click probabilities of the L/R click
and no L/R click, φAB is the phase mismatch between Alice and Bob.

Due to the discrete phase randomization, we can obtain D phase slices. Although
we keep the phase match pairs and discard all of the others, there is still an intrinsic bit
error rate [4], ED = D

2π

∫ 2π/D
0 sin2 φAB

2 dφAB. Significantly, this is very different from BB84
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protocol with the global phase mismatch value φAB = 0. When we use discrete phase
randomization, we must consider the intrinsic bit error rate, which will deeply affect the
bit error rate and phase error rate.

The error gain can be given by

QE
α=

D
2π

∫ 2π
D

0
Pα(R)Pα(L̄)dφAB

=
D
2π

∫ 2π
D

0
(1− pd)e−ηαcos2 φAB

2 dφAB − (1− pd)
2e−ηα

(26)

We can derive the total gain Qα as

Qα=
D
2π

∫ 2π
D

0
[Pα(L)Pα(R̄)+Pα(R)Pα(L̄)]dφAB

=
D
2π

∫ 2π
D

0
(1− pd)e−ηαsin2 φAB

2 dφAB − (1− pd)
2e−ηα+QE

α

(27)

The bit error rate of signal states is given by

Eµ=
QE

µ(1− 2eopt) + eoptQµ

Qµ
(28)

The simulate parameters are listed in Table 1.

Table 1. List of parameters used in numerical simulations. Here pd is the dark counts rate; eopt is the
misalignment error probability of the system; ηd is the detection efficiency; f is the error correction
efficiency; η f is the transmission fiber loss coefficient (dB/km).

pd eopt ηd f η f

1× 10−8 1.5% 0.2 1.1 0.2

In the key rate versus the transmission distance of the finite decoy states PM protocol
with a different number of phase values, as shown in Figure 1, the PLOB bound is plotted
for comparison. The smaller D, the lower the key rate; the reason is that the smaller the D,
the larger the intrinsic bit error rate. D = 8 can break the PLOB bound, and meanwhile, we
can find that there is an optimal D = 10, which can guarantee better performance. With
the increase of D, the key rate will become lower due to the sifting factor 2/D. Hence,
in an actual experiment of PM-QKD, we must find the suitable discrete phases value to
guarantee security and performance. When D → ∞, the key rate will tend to 0; we do not
present it here.

Moreover, we compare the performance of PM-QKD with discrete phase random-
ization between infinite decoy states and vacuum and one decoy state. As depicted in
Figure 2, when we adopt vacuum and one decoy state and small D, the key rate exhibits
poor performance. As D increases, the key rate of adopting vacuum and one decoy state
approaches infinite decoy states. Combining the conclusion of Figure 1, we find that the
discrete phase D = 10 still maintains good security and performance when the finite decoy
states are implemented.
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Figure 1. The key rate versus the transmission distance of the PM-QKD with different number of
discrete phase values; the PLOB linear bound is plotted for comparison.
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Figure 2. The key rate versus the transmission distance of the PM-QKD with different number
of discrete phase values, infinite decoy states and vacuum and one decoy state are plotted for
comparison. The dash line represents the case of vacuum and one decoy state; the solid line
represents the case of infinite decoy states.

Due to there being a sifting factor 2/D, we know that when D → ∞, the key rate will
tend to 0. In order to compare the key rate between continuous phase randomization and
discrete phase randomization, we first compare the fidelity between |j〉AB and

∣∣∣λD
j|α

〉
AB

,
as shown in Figure 3a. The fidelity varies slightly with the intensity. With the increase
of D, the fidelity gradually approaches 1. Therefore, when D is too small, the method
of continuous phase randomization is not suitable; we cannot ignore the safety effect of
discrete phase randomization.

Then, considering finite decoy states, the key rate between continuous phase random-
ization and discrete phase randomization has been studied in Figure 3b. As D increases,
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the performance of a key rate between discrete phase randomization and continuous phase
randomization is almost the same. This is consistent with the conclusion in Figure 3a.
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Figure 3. (a) The fidelity of different mean photon numbers. The fidelity refers to Equation (23),
which we take j = 1. (b) The key rate versus the transmission distance of the PM-QKD with a different
number of discrete phase values. The solid line represents the coherent state with continuous phase
randomization; the dash line represents the coherent state with discrete phase randomization.

6. Conclusions

In this paper, we introduce the USD measurement and PNS attack against PM-QKD
with imperfect phase randomization, and simultaneously, we deeply study the security
of discrete phase randomization PM-QKD protocol with a decoy state in the asymptotic
case. Our simulation results show that, as D increases, the key rate of adopting vacuum
and one decoy state approaches infinite decoy states, and furthermore, the performance of
key rate between discrete phase randomization and continuous phase randomization is
almost the same. We also find that due to the intrinsic bit error rate and sifting factor, there
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is an optimal discrete phase randomization value to guarantee security and performance.
Therefore, for the actual PM-QKD system, we should better adopt the suitable discrete
phase randomization value to apply.
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