
Software/web server Article

Get to know your neighbors with a SNAQ™: A framework for single cell 
spatial neighborhood analysis in immunohistochemical images

Aryeh Silver a,b, Avirup Chakraborty a,c,d, Avinash Pittu a, Diana Feier e, Miruna Anica a,  
Illeana West a, Matthew R. Sarkisian c,f, Loic P. Deleyrolle a,c,d,f,*

a Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
b Department of Immunology, Mayo Clinic, Phoenix, AZ 85054, USA
c Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL 32608, USA
d Department of Molecular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
e College of Medicine, University of Florida, Gainesville, FL 32608, USA
f Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA

A R T I C L E  I N F O

Keywords:
Neighborhood analysis
Geospatial analysis
Single cell analysis
Immunohistochemistry
Immuno-oncology
Immunology
Pathology
Image analysis

A B S T R A C T

Analyzing the local microenvironment of tumor cells can provide significant insights into their complex in
teractions with their cellular surroundings, including immune cells. By quantifying the prevalence and distances 
of certain immune cells in the vicinity of tumor cells through a neighborhood analysis, patterns may emerge that 
indicate specific associations between cell populations. Such analyses can reveal important aspects of tumor- 
immune dynamics, which may inform therapeutic strategies. This method enables an in-depth exploration of 
spatial interactions among different cell types, which is crucial for research in oncology, immunology, and 
developmental biology. We introduce an R Markdown script called SNAQ™ (Single-cell Spatial Neighborhood 
Analysis and Quantification), which conducts a neighborhood analysis on immunofluorescent images without 
the need for extensive coding knowledge. As a demonstration, SNAQ™ was used to analyze images of pancreatic 
ductal adenocarcinoma. Samples stained for DAPI, PanCK, CD68, and PD-L1 were segmented and classified using 
QuPath. The resulting CSV files were exported into RStudio for further analysis and visualization using SNAQ™. 
Visualizations include plots revealing the cellular composition of neighborhoods around multiple cell types 
within a customizable radius. Additionally, the analysis includes measuring the distances between cells of certain 
types relative to others across multiple regions of interest. The R Markdown files that comprise the SNAQ™ 
algorithm and the input data from this paper are freely available on the web at https://github.com/AryehSil 
ver1/SNAQ.

1. Introduction

Exploring the highly complex and heterogeneous ecosystem of the 
tumor microenvironment (TME) provides valuable insights into the 
intricate interactions among tumor cells, stromal tissues/cells, the 
extracellular matrix, and the immune microenvironment. This aids in 
forming a comprehensive overview and detailed insight at the spatial- 
molecular resolution into the dynamics between the cells, providing 
potential insights into the cellular interactions that influence tumor 
behavior [1]. Our proposed method for neighborhood analysis facili
tates the quantitative assessment of spatial relationships within the 
complex tumor microenvironment. This involves analyzing how specific 

cell types are distributed and aligned in relation to tumor cells, assessing 
both their prevalence and proximity; thus, providing a more detailed 
understanding of the overall picture of the cellular interactions within 
the TME from a single snapshot. This approach provides details into the 
spatial dynamics crucial for understanding interactions within tumors 
and their surrounding immune milieu, offering important insights into 
spatial organization and uncovering distinct spatial patterns in tumor 
samples. These insights are pivotal to better comprehend the critical 
aspects of tumor-immune cell (any cell subtype) dynamics, which may 
form the basis of targeted therapeutic interventions to manipulate im
mune responses leading to efficacious cancer therapy [1].

This study introduces an analysis pipeline for creating and executing 
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custom neighborhood analyses on immunofluorescent tissue samples 
using RStudio post QuPath cell segmentation and classification. The 
algorithm, named SNAQ™ (Single-cell Spatial Neighborhood Analysis 
and Quantification), facilitates the identification and quantification of 
cell types in proximity to any specified cell type. It also allows for the 
visualization and measurement of distances between different cell types. 
By employing this algorithm, valuable insights into the spatial re
lationships and interactions within the tissue microenvironment can be 
obtained, enhancing the understanding of cellular organization and 
behavior in various biological contexts. SNAQ™ is composed of two R 
Markdown documents called Data Analysis.Rmd and Plot Maker. 
Rmd. The code is highly customizable, allowing users to modify specifics 
to fit their unique image sets. The algorithm has an automated workflow 
and allows for batch processing of multiple images, empowering users 
with minimal coding experience to perform neighborhood analyses on 
their tissues. While this study demonstrates an example of using our 
neighborhood algorithm, it is designed for the research community to 
apply to various tissues and marker selections. Thus, to demonstrate its 
universal applicability, instead of hardcoding marker names in the al
gorithm, we anonymized them by assigning letter codes that are used 
consistently across the R Markdown scripts, as detailed in Table 1.

The neighborhood analysis consists of two components: quantifying 
the number of neighbors within specified distances from each cell and 
finding the closest neighbor of a certain classification for each cell type. 
The former requires the visualization of concentric rings around each 
cell, where the number of cells that lie within each ring, as well as their 
classification, are recorded. The concentric rings and their distances 
from the target cell are displayed in Fig. 1. The comparison of the 
different concentric rings offers a tool to assess specific spatial re
lationships, evaluate cell proximity, and identify interaction zones to 
provide insights into the cellular architecture within the TME and 
potentially understand immune evasion to inform therapeutic strategies. 
The latter involves calculating the distance between the target cell and 
the closest cell of a specific type, such as a tumor cell or macrophage, 
providing quantitative metrics across different cell types within samples. 
The results of the neighborhood analysis can be visualized in multiple 
ways using R Markdown, revealing patterns that may provide valuable 
insights into the interactions between different cell types. Of note, the 
SNAQ™ algorithm placed greater emphasis on B cells that are positive 
for the C functional marker, as opposed to those that are negative for it. 
However, data on B cells negative for the C marker are still collected and 
can be analyzed if relevant.

While open-access image analysis tools like QuPath [2], CellProfiler 
[3], histoCAT [4], and SCIMAP [5] facilitate high-throughput image 
analysis leading to identification of cell types and quantification of 
biomarker expression of immunohistochemically stained tissue samples, 
they have limitations in visualizing spatial data stratified by different 

distances from the target cell. For example, while QuPath can measure 
properties of classified objects, such as the distance to the nearest object 
or annotation of a given class for each cell, it lacks functionality to 
provide detailed information about the number and types of neighboring 
cells within specific distances from cells of a particular class. Similarly, 
CellProfiler does not support the execution of comprehensive geospatial 
analyses across multiplexed images. Tools like histoCAT and SCIMAP 
excel in spatial and neighborhood analyses but are constrained by their 
focus on a single fixed distance from the target cell, limiting their ability 
to evaluate spatial relationships beyond immediate proximity. SNAQ™, 
on the other hand, offers a unique capability to visualize and analyze 
segmented spatial data based on customizable concentric distances from 
target cells, enabling multi-layered neighborhood analysis. By quanti
fying the number and types of neighboring cells across varying dis
tances, SNAQ™ can reveal elusive biological interactions and 
non-proximal spatial relationships. SNAQ™ enables therefore the 
identification of spatial cellular gradients, providing a meaningful un
derstanding of tissue architecture, cellular organization, and heteroge
neity. By mapping these gradients, SNAQ™ captures subtle transitions 
in cell populations, interactions, and microenvironmental cues, 
providing directional insights into how cells integrate within their 
native context. This level of granularity goes beyond traditional histo
logical neighborhood analysis uncovering localized variations and 
microanatomical niches that are critical for understanding 
tissue-specific processes, disease progression, and therapeutic responses. 
SNAQ™ is particularly valuable for applications in fields such as cancer 
research, where the spatial organization of cells within the tumor 
microenvironment can drive disease progression or therapeutic resis
tance. By offering a powerful and intuitive simple tool for analyzing 
complex tissue environments, SNAQ™ can enhance both basic research 
and clinical applications, advancing our ability to explore the spatial 
dynamics of health and disease.

Pancreatic ductal adenocarcinoma (PDAC) is an immunologically 
cold tumor that is characterized by substantial infiltration of tumor- 
associated macrophages (TAMs), which are the most common infil
trating immune cell in the tumor microenvironment [6,7]. These acti
vated TAMs contribute to desmoplasia and are a poor prognostic 
indicator [8]. Through stimulation of the PD-1/PD-L1 axis, macrophages 
can be polarized towards the M2 phenotype [9]. M2-like macrophages 
contribute to the immunosuppressive TME characteristic of cold tumors 
by expressing PD-L1, which can inhibit the activation of cytotoxic T cells 
and helps create an immune-privileged environment [10]. Better char
acterization of the geospatial relationship between tumor-associated 
macrophages and tumor cells in PDAC may help guide novel therapies.

2. Methods

2.1. Image acquisition

To demonstrate the capabilities of our algorithm, we used immu
nofluorescent scans of human pancreatic ductal adenocarcinoma 
(PDAC) [11]. The scans contains the following markers and fluo
rophores: 4′,6-diamidino-2-phenylindole (DAPI) as a nuclear stain, Cy7 
for pan-cytokeratin (PanCK), Cy3 for CD68, and Cy5 for programmed 
death-ligand 1 (PD-L1). PanCK is used as a tumor cell marker [12], and 
CD68, a widely recognized myeloid cell marker, identifies macrophages 
[13]. PD-L1, which binds to PD-1 on T cells, inhibits their proliferation, 
survival, and effector functions, suppressing the immune response 
against tumors [14]. TAMs express PD-L1, correlating with decreased 
survival in adenocarcinoma [15]. In this study, we define macrophages 
expressing PD-L1 as immunosuppressive. Table 1 outlines the markers 
and their corresponding cell types, while Fig. 2 illustrates the classifi
cation logic. For our analysis, PanCK and CD68 were used for cell typing, 
while PD-L1 served as a functional marker for macrophages. A lettering 
system has been implemented to represent these markers in the code, 
facilitating customization. The nuclear stain DAPI is necessary for cell 

Table 1 
Summary of each marker and corresponding cell type. The "Letter Code" column 
lists the letter codes that replace the marker names in the R Markdown scripts to 
facilitate customization. The "Marker Meaning" column provides the ideal rep
resentation that each letter code should denote, guiding marker selection. The 
"Markers Used" and "Classification" columns are specific to this paper and can be 
modified to accommodate different markers and resulting classifications. 
Notably, since DAPI is not included in the code, this channel has not been 
assigned a letter.

Letter 
Code

Marker Meaning Markers Used Classification

– Nuclear stain DAPI Nuclei
A Cell Type 1 PanCK Tumor cells
B Cell Type 2 CD68 Macrophages
C Functional marker 

for B
PD-L1 Immunosuppression 

marker
D Non-Cell Type 1 +

Non-Cell Type 2
Negative for both 
PanCK and CD68

Neither tumor cell nor 
macrophage

A. Silver et al.                                                                                                                                                                                                                                   Computational and Structural Biotechnology Journal 23 (2024) 4337–4349 

4338 



segmentation in QuPath. Two markers are required for cell typing, each 
identifying a unique cell type. PanCK and CD68 classified cells as tumor 
cells, macrophages, or neither (Fig. 2). Additionally, a functional marker 
is needed to sub-describe one of the cell types; PD-L1 was used to 
determine macrophages’ immunosuppressive status (Fig. 2). The func
tional marker must modify the marker represented by letter code B, 
which means that markers represented by letter codes A and B cannot be 
used interchangeably.

A large tile stitch of a PDAC tissue sample titled PDAC 

(35000,27720)6800,3050 was accessed from a publicly-available 
dataset released under a Creative Common CC BY 4.0 license by Aley
nick and colleagues [11]. The stitch was acquired with a Zeiss Axioscan 
at a resolution of 0.3250 µm/pixel [11]. The four markers utilized in this 
cellular neighborhood analysis study are nuclei, PanCK, CD68, and 
PD-L1, captured with the following dye or fluorophores DAPI, Cy7, Cy3, 
and Cy5, respectively. Eight regions of interest (ROIs) were chosen from 
the tile stitch to serve as our test data for this paper; however, the 
program can support any number of ROIs. Of note, while the size of the 

ROIs is not restricted, their shape is limited to rectangles. ROI selection 
criteria can be tailored to the specific scientific question or experimental 
design of the study, allowing for flexibility in their application. Here, 
ROIs were selected based on areas that had high expression of each 
marker. Images of representative ROIs are shown in Fig. 3, presented 
individually for each marker and as an overlay.

2.2. Cell detection and classification

Cellular detection and segmentation were achieved in QuPath v0.5.1 
[2]. A new project was created, and an annotation was drawn around the 
tumor area using the wand tool. Cell detection was run on the annota
tion based on the DAPI channel, and the parameters are shown in Fig. 4. 
Five classes were created: PanCK, CD68, Neither, PD-L1, and Ignore* . 
An object classifier that can distinguish between cells that are either 
tumor cells (PanCK+), macrophages (CD68+), or neither (PanCK- and 
CD68-) was created. The point annotation tool was used to label 45 
PanCK+ cells, which were then assigned to the PanCK class. 

Fig. 1. Diagram showing the concentric rings visualized around a target cell. The proximal neighborhood (Ring 1) forms the first compartment, closest to the central 
cell, extending 15 µm from the center of the target cell (706.86 µm2). The intermediate neighborhood (Ring 2, 3141.59 µm2) extends 20 µm beyond the edge of Ring 
1, and the distal neighborhood (Ring 3, 5654.87 µm2) extends an additional 20 µm from the edge of Ring 2. Thus, the total distance from the center of the target cell 
to the outer edge of the distal ring is 55 µm, defining the entire neighborhood. The area of the entire neighborhood is 9503.32 µm2.Created with BioRender.com.
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Fig. 2. Classification schematic used in the PDAC image to label each cell. Both the phenotypic description and the markers are included. The top row is a cell’s 
classification based on expression of PanCK and CD68 and is used for cell typing, and the bottom row is a macrophage’s functional classification based on expression 
of PD-L1. Created with BioRender.com.

Fig. 3. Representative images showing DAPI, PanCK, CD68, and PD-L1 markers. The images have been pseudocolored for visual contrast. The numbers on the left 
correspond to the ROI’s number, and shown are ROI_2, ROI_4, and ROI_5. Each ROI measures 750 µm by 750 µm. The Overlay image contains the markers PanCK, 
CD68, and PD-L1.
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Subsequently, 45 CD68+ cells were labeled and assigned to the CD68 

class. Finally, another 45 cells that were both PanCK- and CD68- were 
labeled and assigned to the Neither class. The Train Object Clas
sifier tool was used to train an object classifier based on the point 
annotations. All default settings were maintained except for the Fea
tures setting, which was adjusted to only consider measurements 
related to PanCK and CD68. To evaluate the accuracy of the classifier, 
the Load Training option was selected. It is important to note that 
while this paper annotated 45 cells per class to train the object classifier, 
the number of annotations required may vary for different images to 
ensure an accurate classifier. Depending on the complexity and vari
ability of the tissue samples, more or fewer annotations might be 
necessary to achieve reliable classification results. Adjusting the number 
of annotations based on the specific characteristics of the images being 
analyzed can significantly enhance the performance of the object clas
sifier. The classifier was saved as Classification. Next, a single 
measurement classifier was created to determine which cells were 
PD-L1+ or PD-L1-. The parameters to create this classifier are shown in 
Fig. 5. Cells that are PD-L1+ are assigned to the PD-L1 class, and cells 
that are PD-L1- are assigned to the Ignore* class. The nomenclature 
"Ignore" serves as a placeholder for the absence of classification for 
PD-L1 negative macrophages (i.e., non-immunosuppressive) specific to 
the current study. However, this classifier’s name can be edited if 
desired. Save the classifier as FunctionalClassification. A com
posite classifier was created to combine Classification and Func
tionalClassification, which was named Combined and applied to 
the image for the classification to each cell. Eight square annotations 
measuring 750 µm by 750 µm were scattered in random locations within 
the tumor annotation. Hierarchies were resolved with the shortcut 
Ctrl+Shift+R to insert the ROIs into their proper place in the hierarchy 
of annotations. The data are then exported as a CSV file, with the pa
rameters for the cell data export shown in Fig. 6 and including Classi
fication, Parent, Centroid X µm, and Centroid Y µm. The file saved as 
PDAC_measurements.csv should be placed in a folder specifically 
designated to hold the input data for the algorithm.

Representative images of the cell classification are shown in Fig. 7, 
which shows both the Classification and FunctionalClassifi
cation classifiers.

2.3. Data analysis

R Studio was employed to run the neighborhood analysis algorithm 
on the data derived from QuPath [16]. The R Markdown file Data 

Fig. 4. Parameters used for cell detection. Please note that the values of these 
parameters can be adjusted to optimize detection based on the type of tissue 
and the acquired image.

Fig. 5. Parameters used to create the single measurement classifier for PD-L1. Note that the Threshold value needs to be optimized if a different image is used.
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Analysis.Rmd was used to run the neighborhood analysis and exports 
the results for downstream visualization [17–22]. Table 2 lists all the 
variables that need to be initialized within both the Data Analysis. 
Rmd and Plot Maker.Rmd R Markdown files. However, each file con
tains only a subset of these variables. Therefore, only the variables 
named in the “Variables to Initialize” code chunk in each respective file 
need to be assigned a value.

The master CSV file PDAC_measurements.csv was then imported 
into the Data Analysis.Rmd file. If the images were taken from a 
larger stitched image, such as when the ROIs were saved from a larger 
tile stitch of PDAC, then individual CSV files for each image must be 
created by filtering the master file. The centroid x- and y-axis positions 
for each ROI in the tile stitch were recorded, enabling the recalculation 
of the x- and y-coordinates for each cell so that the top left corner of each 
ROI becomes the origin. A separate CSV file was created for each ROI, 
containing only the cells that fall within it and their recalculated co
ordinates. These ROI-specific files are saved in the designated input 
folder.

The CSV files for each image were then aggregated into a master data 
frame called combo. During this process, cell numbers were reset for 
each new image, and an image number was assigned to each cell to keep 
track of its origin. The SNAQ™ algorithm is designed to analyze one 
image at a time, which is achieved by wrapping the entirety of the main 
algorithm in a for loop that iterates through each image individually. 
For each iteration, combo is filtered to only include cells from the image 
currently being analyzed, and these cells are saved in a new data frame 
called newCombo that is rewritten after each iteration. For the 
remainder of this section, the process described occurred to each image 
separately.

In the data frame newCombo, the columns xDim and yDim store each 
cell’s x- and y-coordinates, respectively. A distance matrix is populated 
with the pairwise distance between every cell in newCombo using these 
coordinates. Each element in the matrix represents the distance between 
two cells, with the element’s row and column numbers corresponding to 
the ObjectNumber of the cells. Cells that are within 55 µm from the 
image border are excluded from the distance matrix calculation and 

return null values; however, cells that are not excluded still calculate a 
distance between themselves and excluded cells. The distance matrix 
was created using the rdist function, which computes all pairwise 
distances between cells in a single operation, resulting in a precomputed 
distance matrix named distances_full. To incorporate parallel 
processing, a foreach loop coupled with %dopar% is employed, 
allowing multiple workers to concurrently process specific tasks. The 
foreach loop iterates through each cell in the image, referred to as the 
target cell, and applies boundary conditions to determine whether the 
cell is to be included. If the target cell is within the specified boundaries 
(greater than 55 µm from the image border), the precomputed distances 
from distances_full corresponding to the target cell are directly 
extracted and returned. If the target cell is excluded, a list of null values 
with a length equal to the number of cells in the image is returned. These 
lists, generated in parallel by multiple workers, are concatenated to form 
a master list named distances. Outside the foreach loop, this master 
list is reshaped into a matrix, creating the final distance matrix (also 
called distances), which provides the distance between any two cells 
in the image. This approach leverages the efficiency of rdist to 
calculate pairwise distances in bulk while retaining the flexibility of 
parallelized processing for boundary condition checks.

Note that when accessing the distance matrix distances, it is 
important to maintain the correct order of the indices. Since only non- 
excluded cells passed through the distance function, the x- and y-axes 

Fig. 6. Parameters to export the data for the cells as a CSV file.

Fig. 7. Representative images of the cell classification for ROI_2, ROI_4, and 
ROI_5. In the left panels, which represent the Classification classifier, cells 
are color-coded as follows: red for PanCK class, blue for CD68 class, and grey 
for Neither class. For the column on the right, which represents the Func
tionalClassification classifier, cells belonging to the PD-L1 class are green 
and cells belonging to the Ignore* class are grey.
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of the distance matrix are not interchangeable when retrieving values. 
The way to find the distance between a target cell and any secondary cell 
is through distances[ObjectNumber (of target cell), Object
Number (of secondary cell)]. Reversing this order may return a null 
value if the location of the secondary cell falls within 55 µm from the 
image border and is subsequently excluded. This is especially important 
when iterating through the distances between a target cell and other 
secondary cells in the image. Another way to understand it is that the 
distance from the target cell to the secondary cell is determined by 
prioritizing the index of the target cell first. The distance matrix is used 
in conjunction with newCombo to calculate a neighborhood analysis for 
each cell. To spatially resolve the cell types at varying distances from the 
target cell, the number of neighbors within three concentric rings 
around the target cell are recorded. Ring1, defining the proximal 
neighborhood, spans from 0 µm to 15 µm away from the cell and provide 
information of the cell population in the immediate vicinity of the target 
cell. Ring 2, representing the intermediate neighborhood, covers dis
tances from 15 µm to 35 µm. Finally, Ring 3, corresponding to the distal 
neighborhood, extends from 35 µm to 55 µm away from the cell. The 
counts from the three concentric rings (Ring 1, Ring 2, and Ring 3) can 
be aggregated to obtain the total number of neighboring cells within the 
entire neighborhood, spanning from 0 µm to 55 µm away from the target 
cell. The number of neighboring cells that are classified as tumor cells, 
macrophages, or neither are recorded, along with whether each 
neighbor is PD-L1 positive or negative. This data is then converted into 
proportions, reflecting the types of neighbors within the concentric rings 
as well as the total neighbors within the 55 µm radius environment. This 
was achieved using dynamic programming, where a for loop iterates 
through each cell in the image (which is the target cell), and a nested 
for loop iterates through every other cell (which is the secondary cell). 
Within the nested for loop, an if statement ensures that the target and 
secondary cells are not the same cell and that the value of the distance 
between the target and secondary cell is not a null value. Another if 
statement checks whether the distance between the target and second
ary cells falls within a ring, and if it does, adds a value of one to the 
counter for the specific ring that corresponds to the secondary cell 
identity, PD-L1 status, and if applicable, its PD-L1 + macrophage cell 
status. These counts are used to tally the number and type of neighbors 
within each ring and keep a tally for the total number of neighbors 
across the three rings. Outside of the for loop and nested for loop, 

these counts are converted to proportions based on the totals for each 
ring, and the results are saved in columns in newCombo. newCombo is 
exported as a CSV file, with the image number being concatenated to the 
end of newCombo. For example, analysis of Image #2 exports new
Combo2.csv. The distance matrix distance and the data stored in 
newCombo were used in combination to run a series of closest neighbor 
distance calculations, which are listed in Table 3.

This was achieved by using a foreach loop with %dopar% that 
returns the shortest distance values for each target cell in the image and 
stores these values in a list. The target cell type is the one from which the 
measurements are being taken, and the secondary cell type is the cell 
type to which the target cell type is measured (e.g., distance of the 
closest macrophage from tumor cell, tumor cell is target cell type and 
macrophage is secondary cell type). newCombo is filtered to only 
include cells that are of the target cell type. A nested for loop iterates 
through every cell in the image, and an if statement ensures that only 
cells of the secondary cell type are taken for consideration. The distance 
between the target cell and the closest secondary cell of the specified cell 
type is found and concatenated to the list of shortest distance values. 
This list is exported as a CSV file to allow for downstream statistical 
analysis, and a separate list is exported for each type of measurement 
being recorded. For example, the computing time to analyze the ROI #1 
presented in this study was 18.172 min and performed on a workstation 
equipped with an Intel Core i5–10300H processor (2.50 GHz) with 8 GB 
RAM, and a 64-bit operating system.

2.4. Data Visualization

The output from the neighborhood analysis was imported into the R 
Markdown file Plot Maker.Rmd [18,21–24]. The variables that were 
initialized are listed in Table 2. The data from each image were compiled 
into master data frames for data visualization and statistical analysis.

3. Results

3.1. Cell type distribution and PD-L1 expression in PDAC 
microenvironment

Our analysis provides a breakdown of the cell type composition 
within the tissue. We identified a total of 42,985 cells of which 28,185 
(65.6 %) are PanCK positive tumor cells, 5917 (13.8 %) are CD68 pos
itive macrophages, and 8883 (20.7 %) are dual negative non-tumor and 
non-macrophage (neither) cells (Fig. 8A) across all of the ROIs, with 
3693 cells (8.6 %) expressing PD-L1 (Fig. 8B). Fig. 8C reveals that 
41.17 % of all macrophages are positive for PD-L1. Tumor cells and 
neither cells are primarily negative for PD-L1, with just 3.31 % and 
3.65 % positivity for PD-L1, respectively.

This analysis enables the identification of the TME composition 
through marker recognition and cell segmentation, while also providing 
us, in this specific example, with primary molecular resolution insights 
into the immunosuppressive environment.

3.2. Single cell quantitative spatial mapping of neighborhood composition 
and cell type proportions in the PDAC TME

While the initial step of the analysis above provides information on 
cell typing, it does not address the spatial distribution of these cell types. 
Understanding the spatial cellular distribution within the TME is 
essential for deciphering the cellular interactions that contribute to tis
sue function or pathology. It helps identify potential hotspots of immune 
activity that can be clinically targeted, enhances the understanding of 
disease mechanisms, guides therapeutic strategies, and aids in assessing 
the efficacy of interventions. In this study, a 55 µm radius was defined as 
the immediate neighborhood surrounding each cell. Within this radius, 
the spatial coordinates of all neighboring cells were recorded to decipher 
and quantify direct spatial interactions. This radius, however, can be 

Table 2 
List of all the variables that must be initialized before running the neighborhood 
analysis and plot maker. Also included is a description of what each variable 
represents and its data type. These variables are used across the Data Anal
ysis.Rmd and Plot Maker.Rmd R Markdown files, and as such, each file will 
not contain all these variables. These variables must be set by the user to 
accommodate their images.

Variable Name Data 
Type

Description

dist1 Numeric Desired thickness of Ring 1 in µm
dist2 Numeric Desired thickness of Ring 2 in µm
dist3 Numeric Desired thickness of Ring 3 in µm
maxXum Numeric Length of each ROI in µm
maxYum Numeric Height of each ROI in µm
numImages Numeric Number of ROIs being analyzed
numberOfCores Numeric Number of cores used by your computer to run 

the analysis
markerA Character Name of Marker A
markerB Character Name of Marker B
markerC Character Name of Marker C
inputFolder Character File path of the folder which contains the input 

CSV files
outputFolder Character File path of the folder to where the results will 

be saved
workingDir Character Same file path as outputFolder
graphOutputPath Character File path of the folder to where the data 

visualizations will be saved

A. Silver et al.                                                                                                                                                                                                                                   Computational and Structural Biotechnology Journal 23 (2024) 4337–4349 

4343 



easily adjusted in the code to suit study specificities. Fig. 9 displays the 
average proportions of various cell types within a 55 µm radius of each 
cellular classification. Specifically, Fig. 9A illustrates the distribution of 
PanCK+ tumor cells within a 55 µm radius from each different cell type. 
On average, 61.46 % of the neighboring cells within a 55 µm radius of 
macrophages are tumor cells, compared to only 46.34 % for dual 
negative cells. Furthermore, 74.07 % of the neighboring cells around 
tumor cells are also tumor cells. This suggests that tumor cells are more 
likely to cluster together, potentially creating a more supportive 
microenvironment for enhanced tumor growth and survival by facili
tating cellular communication and evading immune surveillance. When 
focusing on macrophages (CD68+ cells) as neighbors, 17.33 % of the 
neighboring cells around macrophages are also macrophages, compared 
to 11.96 % for tumor cells and 15 % for dual negative cells (Fig. 9B). 
Comparing the presence of dual-negative cells (neither) in different 
neighborhoods, macrophages have 19.46 % neighboring dual-negative 
cells, whereas tumor cells have 12.5 %, and neither cells themselves 
have 36.08 % (Fig. 9C). Interestingly, even though tumor cells have 
fewer neighboring macrophages (11.96 %) compared to neither cells 
(15 %) (Fig. 9B), their neighborhood includes significantly more 
immunosuppressive macrophages (PD-L1 +/CD68 +) than that of 
neither cells (Fig. 9D). Thus, our SNAQ™ platform provides detailed 
quantitative spatial insights into the immediate neighborhood (defined 
by a radius of 55 µm from each cell) of multiple target cell types. To 
enhance the resolution and refine the stratification of our spatial 
profiling, we divided the 55 µm radius into three concentric rings 
(proximal, intermediate, and distal). This customizable multi-layered 
neighborhood incorporates cell density to calculate enrichment scores 
based on the proportions of phenotypes within defined proximal areas, 
represented as rings. The percentages of phenotypes are calculated 
relative to the total number of cells within each ring, as determined by 
DAPI staining. This approach is based on the concept illustrated in Fig. 1, 
with each graph displaying data for a given cell type (Fig. 10). The 
average proportions of different cell phenotypes in the vicinity of each 
specific phenotype, as illustrated in Fig. 10, are also presented in matrix 
form and displayed in Supplemental Table 1. For instance, Fig. 10A 
shows that the proximal neighborhood for tumor cells, on average, 
consists of 85 % tumor cells, 9 % macrophages (with 44 % of those 

macrophages being immunosuppressive), and 7 % non-tumor and non- 
macrophage cells. In the intermediate ring, the composition changes 
to 75 % tumor cells, 13 % macrophages (with 46 % being immunosup
pressive), and 13 % non-tumor and non-macrophage cells. The distal 
ring contains 70 % tumor cells, 13 % macrophages (with 46 % being 
immunosuppressive), and 17 % non-tumor and non-macrophage cells, 
on average. Similarly, our analysis revealed the cellular composition of 
the three concentric rings surrounding macrophages (Fig. 10B) and 
neither cells (Fig. 10C). The data indicates that, regardless of their 
relative spatial coordinates, a high proportion of the total non-tumor 
cells within the TME are macrophages with a significant percentage of 
them expressing PD-L1, suggesting their immunosuppressive potential. 
This observation aligns with other research studies reporting a signifi
cant proportion of immunosuppressive macrophages within the PDAC 
TME [25]. Interestingly, the fraction of immunosuppressive macro
phages in the tumor cell microenvironment remains relatively constant 
across the rings, at approximately 45 % (Fig. 10 A-D). In contrast, the 
percentage of immunosuppressive macrophages is significantly lower in 
the neighborhood of neither cells, ranging from 23.5 % in the proximal 
ring, to 29 % in the intermediate ring, and 33 % in the distal ring 
(Fig. 10C). This indicates a decreasing gradient of immunosuppressive 
macrophages as we move closer to the neither cells, whereas the pro
portion of immunosuppressive macrophages remains consistently 
higher within a 55 µm radius of tumor cells, regardless of the ring 
(Fig. 10A). This suggests that tumor cells attract more immunosup
pressive macrophages compared to neither cells. This phenomenon is 
also observed for macrophages, whose neighborhoods show a high 
content of immunosuppressive macrophages (47–50 %) with constant 
values throughout the three rings (Fig. 10B). Additionally, when 
focusing on the microenvironment of immunosuppressive macrophages, 
we observed a greater proportion of macrophages in their vicinity, with 
80 %, 72 %, and 66 % of the macrophages being immunosuppressive 
across the rings, respectively (Fig. 10D). These results indicate that 
immunosuppressive macrophages tend to cluster together or create an 
environment conducive to their polarization. Thus, our platform allows 
for quantitative mapping of spatial distribution at a high resolution and 
provides tailored analysis for detailed and customized investigations.

Table 3 
List of the closest neighbor calculations performed by the SNAQ™ algorithm. The distances are calculated for each cell in the image that was not excluded due to 
proximity to the image border, and mean is used to find the average distance for each row. Only the data for the rows shaded in blue are displayed in the Results section 
as they have biological significance to the PDAC tissue.

The distance of…
the closest tumor cell from each macrophage
the closest neither cell from each macrophage
the closest tumor cell from each PD-L1+ macrophage
the closest neither cell from each PD-L1+ macrophage
the closest cell of any type from each macrophage
the closest cell of any type from each tumor cell
the closest cell of any type from each neither cell
the closest macrophage from each tumor cell
the closest macrophage from each neither cell
PD-L1+ macrophage from each tumor cell
the closest PD-L1+ macrophage from each neither cell
the closest tumor cell from each tumor cell
the closest neither cell from each tumor cell
the closest macrophage from each macrophage
the closest PD-L1+ macrophage from each macrophage
the closest macrophage from each PD-L1+ macrophage
the closest PD-L1+ macrophage from each PD-L1+ macrophage
the closest tumor cell from each neither cell
the closest neither cell from each neither cell
the 10 closest macrophages from each tumor cell
the 10 closest macrophages from each neither cell

dist =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xDimsecondary − xDimtarget)
2
+ (yDimsecondary − yDimtarget)

2
√

Formula 1. Euclidian formula used by the function calcDist to calculate the distance between two cells.
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3.3. Closest/nearest neighbor distance analysis

Analyzing the shortest distance from specific cell types to target cells 
can provide us with another dimension to better understand the cell 
types undergoing potential interactions with the target cells. These 
patterns may define specific functional relationships, potentially indi
cating particular cell-cell interaction, tissue architecture, active biolog
ical processes, disease progression, or response to treatment. This data 
coupled with the previous data of neighborhood composition and 
spatial-quantitative mapping of the TME may act as important data for 
deciphering the interacting partners and their possible biological role. 
Our study compared the average distance from a macrophage to the 
closest tumor cell or neither cell. Macrophages find themselves in closer 
proximity to tumor cells than neither cells (Fig. 11A). When focusing on 
immunosuppressive macrophages, this difference is even greater 
(Fig. 11B). These observations align with the results presented in Fig. 10
and further highlight the close relationship between tumor cells and 
immunosuppressive macrophages. The proximity of these macrophages 
to tumor cells may facilitate immune evasion and promote tumor 

growth. Interestingly, our study calculated the distance between tumor- 
associated macrophages and tumor cells in PDAC to be 10.73 µm 
(Fig. 11A), and Matusiak and colleagues reported this distance to be 
10.6 µm in their analysis of colon and breast tumors using co-detection 
by indexing (CODEX) computational pipelines [26]. This helps demon
strate the validity and reliability of SNAQ™ for single-cell spatial 
analysis. Furthermore, the similarity also suggests that there might be a 
conserved spatial relationship across different tumor types, which could 
be crucial for advancing our understanding of tumor biology and 
developing targeted therapies.

Fig. 12 illustrates the average distance of the closest macrophage or 
immunosuppressive macrophage from either a tumor cell or a neither 
cell. Interestingly, tumor cells tend to be farther from the nearest 
macrophage compared to neither cells (Fig. 12A). However, this pattern 
is reversed when considering immunosuppressive macrophages 
(Fig. 12B). Together, this may indicate that immunosuppressive mac
rophages may have a greater migratory affinity for tumor cells over non- 
regulatory macrophages, potentially playing a crucial role in facilitating 
immune evasion and promoting tumor growth. Of note, the differing 

Fig. 8. Bar charts displaying summary data for the number of cells for each classification and PD-L1 positivity. A) Bar chart showing the number of cells that are 
macrophages (CD68 +), tumor cells (PanCK+), and non-tumor and non-macrophage cells (CD89-/PanCK-). B) Bar chart showing the number of cells that are PD-L1 
positive and negative. C) Bar chart showing the percentage of macrophages (CD68 +), tumor cells (PanCK+), and non-tumor and non-macrophage cells (CD89-/ 
PanCK-) that are PD-L1 positive and negative stratified by cell type. The green shading represents the percentage of cells that are PD-L1 positive, and the grey shading 
represents the percentage of cells that are PD-L1 negative.
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observations in Fig. 11A and Fig. 12A can be explained by the higher 
concentration of tumor cells relative to macrophages and neither cells in 
the tissue sample (Fig. 8A). Given the abundance of tumor cells, each 
macrophage is likely to have a nearby tumor cell. Conversely, many 
tumor cells may not have a macrophage within close proximity due to 
the lower number of macrophages. Supplemental Table 2 presents a 
matrix summarizing the average minimum distances between pairs of 
cell phenotypes.

4. Discussion

The SNAQ™ algorithm, which consists of the Data Analysis.Rmd 
and Plot Maker.Rmd R Markdown files, is highly customizable to 
accommodate the variable demands of each user. The platform’s flexi
bility allows for the adaptation of the algorithm to meet specific 
analytical requirements. The files can be found in a GitHub repository 
named “SNAQ” (https://github.com/AryehSilver1/SNAQ). Detailed in
structions for modifying the code are found in the ReadMe file. Addi
tionally, the repository includes the input data used in this paper to 

Fig. 9. Box and whisker plots showing the percentage of neighboring cell types within the whole 55 µm neighborhood. The average percentage of cells within the 
55 µm neighborhood that are tumor cells (A), macrophages (B), neither tumor cells nor macrophages (C), or immunosuppressive macrophages (D) are shown for each 
classification. The bottom and top edges of the boxes represent Q1 (25th percentile) and Q3 (75th percentile), respectively. The height of the boxes represents the 
interquartile range (IQR). The bold middle line within the boxes represents the median, which is detailed within each box. The bottom whisker extends to the lesser 
between the minimum data point or the value calculated by (Q1 – 1.5 *IQR), and the top whisker extends to the greater between the maximum data point or the 
value calculated by (Q3 + 1.5 *IQR). Statistical significance is indicated by asterisks: *p < 0.05, * *p < 0.01, * **p < 0.001.
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facilitate code testing and allow for inquiries into the algorithm. This 
study introduces a free algorithm designed to perform neighborhood 
analysis on immunofluorescent images. Interrogating tissues with our 
platform can facilitate better understanding the cell-type distribution 
and proximities, thereby providing a better understanding of the TME 
and the potential cellular interactions. Although the algorithm was 
initially developed for cancer images, it can be applied to any tissue type 
with the use of markers as indicated in the “Marker Meaning” column in 
Table 1. The SNAQ™ algorithm can offer significant advancements in 

the field of immuno-oncology by uncovering specific geospatial patterns 
within tumors, enhancing our understanding of the TME and its inter
action with the immune system. By analyzing neighborhood in
teractions, the algorithm can reveal variations between different 
patients or treatment groups, highlighting potential differences in pa
tient responses or treatment efficacy. Altogether, this analysis demon
strates that our versatile and comprehensive platform SNAQ™ can 
effectively dissect and reveal specific heterogeneous cellular patterns 
and architectures dependent on the cell types composing a tissue. This 

Fig. 10. Radial bar charts showing the percentage of the different cell types within each concentric ring. Ring 1 is the central ring, Ring 2 is the middle ring, and Ring 
3 is the outermost ring. Panel A measures data derived from only tumor cells, panel B is only macrophages, panel C is only non-tumor and non-macrophage cells, and 
panel D is only immunosuppressive macrophages.

Fig. 11. Macrophage-focused cellular closest neighbor distance analysis. A) Shows the average distance from each macrophage to the closest tumor cell (red shading) 
and to the closest non-tumor and non-macrophage cell (grey shading). B) shows the average distance from each immunosuppressive macrophage to the closest tumor 
cell (red), and to the closest non-tumor and non-macrophage cell (grey). Statistical significance is indicated by asterisks: *p < 0.05, * *p < 0.01, * **p < 0.001.
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highlights the power of our method to uncover specific cellular com
positions, relationships, and interactions in the context of both normal 
and malignant tissues. These insights can reveal underlying physiolog
ical processes, disease progression, or treatment response. By providing 
a detailed spatial analysis of cell types and their interactions, SNAQ™ 
offers a powerful tool for understanding the complexities of the TME. 
For instance, identifying clusters of immunosuppressive macrophages in 
proximity to tumor cells can help elucidate mechanisms of immune 
evasion and inform strategies for enhancing immunotherapy. Similarly, 
understanding the spatial dynamics of different cell types within normal 
tissues can shed light on homeostatic processes and identify potential 
early markers of disease. Furthermore, SNAQ™ promotes data repro
ducibility by minimizing reliance on manual analysis, thereby helping to 
standardize results across various studies and ensuring consistency in 
research findings.

One limitation of the currently presented algorithm is that it can only 
differentiate between three cell types (letter codes A, B, and D), and the 
latter is derived through exclusion. However, the code can be modified 
to accommodate an unlimited number of cell types and functional 
markers. Since the R Markdown scripts are publicly available, users have 
the flexibility to edit the code to incorporate any number of markers, 
tailoring the analysis to their specific research needs. To modify the code 
to accommodate additional cell types, comments are included 
throughout the code to indicate the specific areas where changes are 
required.

The aim of this paper is to develop a simple user-friendly platform 
that allows efficient cell detection and classification using object clas
sifiers tailored to specific markers, while minimizing the inclusion of 
less-essential data that could contribute to overfitting. Our focus was not 
on developing an intuitive, dimension-reduced visualization model, but 
rather on providing a simple interface with easy-to-use annotation tools 
for neighborhood analysis. Due to the controlled complexity of the 
platform and the simplicity of the algorithm, SNAQ™ emphasizes 
fundamental patterns over noise fitting, allowing researchers of all skill 
levels to engage with complex tissue data. Therefore, we believe that 
with its customizable classifiers, adaptable annotation process, and 
straightforward export capabilities, it will encourage and assist re
searchers to conduct more systematic neighborhood analysis. To 
demonstrate the versatility of our method, Supplemental Figure 1 shows 
SNAQ™ also being used to analyze ROIs from a large tile stitch of 
cutaneous T cell lymphoma (CTCL) [11], following the same protocol 
outlined in this manuscript. This analysis quantifies the differential 
localization of cytotoxic and non-cytotoxic T cells relative to the skin 
epithelium, offering potential insights into the migration patterns of 
cancerous lymphocytes. These findings underscore SNAQ™’s 

adaptability in investigating diverse disease models and support its 
broader applicability. The versatility of this algorithm extends its utility 
beyond oncology, making it applicable to a variety of biological and 
medical research fields. The ability of SNAQ™ to reveal detailed and 
specific cellular patterns makes it a valuable asset for researchers and 
clinicians alike. In clinical settings, it can support personalized medicine 
approaches by providing insights into how individual patients’ tumors 
might respond to specific treatments based on their unique cellular 
architecture.

In summary, the SNAQ™ algorithm not only enhances our under
standing of cellular heterogeneity and spatial organization within tis
sues, but also holds significant potential for advancing the diagnosis, 
prognosis, and treatment of various diseases. The algorithm not only 
supports cancer research but also holds potential for broader applica
tions in studying various tissue types. Its availability as a free tool en
courages widespread use and adaptation, fostering advancements in 
spatial analysis and contributing to our understanding of complex bio
logical systems.
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