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Abstract

In patients with dense breasts or at high risk of breast cancer, dynamic contrast enhanced

MRI (DCE-MRI) is a highly sensitive diagnostic tool. However, its specificity is highly vari-

able and sometimes low; quantitative measurements of contrast uptake parameters may

improve specificity and mitigate this issue. To improve diagnostic accuracy, data need to be

captured at high spatial and temporal resolution. While many methods exist to accelerate

MRI temporal resolution, not all are optimized to capture breast DCE-MRI dynamics. We

propose a novel, flexible, and powerful framework for the reconstruction of highly-under-

sampled DCE-MRI data: enhancement-constrained acceleration (ECA). Enhancement-con-

strained acceleration uses an assumption of smooth enhancement at small time-scale to

estimate points of smooth enhancement curves in small time intervals at each voxel. This

method is tested in silico with physiologically realistic virtual phantoms, simulating state-of-

the-art ultrafast acquisitions at 3.5s temporal resolution reconstructed at 0.25s temporal res-

olution (demo code available here). Virtual phantoms were developed from real patient data

and parametrized in continuous time with arterial input function (AIF) models and lesion

enhancement functions. Enhancement-constrained acceleration was compared to standard

ultrafast reconstruction in estimating the bolus arrival time and initial slope of enhancement

from reconstructed images. We found that the ECA method reconstructed images at 0.25s

temporal resolution with no significant loss in image fidelity, a 4x reduction in the error of

bolus arrival time estimation in lesions (p < 0.01) and 11x error reduction in blood vessels

(p < 0.01). Our results suggest that ECA is a powerful and versatile tool for breast DCE-MRI.

Introduction

Dynamic contrast enhanced MRI (DCE-MRI) is an important tool for the diagnosis of breast

cancer. MRI detects cancers that other screening methods fail to detect [1,2]. DCE-MRI is par-

ticularly important for patients with dense breasts or at high risk for breast cancer. DCE-MRI
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is highly sensitive (93% [1]) to invasive cancers, and has a variable and sometimes high false

positive rate. One 2016 meta-analysis puts the specificity at 71% [1], while another puts it

between 78% and 94% [2]; individual studies have reported specificities as low as 37% [3].

These results suggest a need for acquisition and analysis methods that increase the diagnostic

accuracy of DCE-MRI. Quantitative measurement of the parameters that describe contrast

uptake kinetics offers one route to improved specificity [4,5], but accurate measurement of

these parameters can prove challenging.

Clinical standard-of-care focuses on morphological analysis of DCE-MRI images, as well as

evaluation of the overall kinetics of the contrast uptake and washout. As a result, clinical MRI

protocols produce post-contrast-injection images at very high spatial resolution; these show

patient anatomy in exquisite detail but require long scan times. In the standard-of-care setting,

DCE-MRI images are acquired at temporal resolutions of 60–90 seconds [6]. These temporal

resolutions are too low to accurately measure kinetic parameters, especially in early uptake,

when signal changes rapidly, particularly in cancers. Findings in recent years indicate that

lesion conspicuity is highest immediately after contrast uptake [7,8], so it is especially impor-

tant to faithfully capture early-uptake kinetics. Other modes of analysis, even primarily mor-

phological ones, also benefit from increased temporal resolution. Some groups have found that

texture features, often used to characterize the morphology of lesions and classify them into

benign and malignant subgroups, become more accurate with the inclusion of kinetic data [9–

12]. Thus, high temporal resolution DCE-MRI may offer significant advantages in diagnostic

accuracy.

Accurate quantitative measurement of the arterial input function (AIF) requires high tem-

poral resolution measurements and an accurate estimate of the bolus arrival time (BAT). Hen-

derson et al. [13] found that a temporal resolution of 1s is necessary to capture the AIF. Parker

et al. [14] opt instead for a population-average AIF, which they calculate from 5s/image data.

Estimates of the optimal temporal resolution for pharmacokinetic analysis vary based on the

underlying assumptions used to model tissue behavior. For example, Kershaw et al. showed

that the standard compartmental (AATH) model requires a temporal resolution of at least 1.5s

for accurate diagnosis [15], even when a population AIF is used. In small mammals, which

require small fields-of-view, researchers have been able to characterize AIFs with significantly

higher sampling frequency; Yankeelov et al. [16] measured an AIF at 0.9s/image in mice, while

Kershaw et al. measured an AIF at 0.44s/image in rabbits [17]. Current state-of-the-art in

ultrafast breast DCE-MRI produces full 3D bilateral breast scans with temporal resolution 2.7–

3.8s [4,7,18,19], well above the desired threshold of temporal resolution.

In fact, the thresholds of 1s and 1.5s offered here represent necessary conditions for only a

subset of analytic approaches. Fractional-second temporal resolutions in breast DCE-MRI

may allow new modes of kinetic characterization, including detailed local measurements of

arterial blood flow and effects of the cardiac cycle, interstitial pressure and vessel permeability,

and the initial time and early morphology of lesion enhancement. These parameters have

potential as indicators of malignancy [4]. However, these approaches have not been adequately

explored, since they require data with high resolution in both the spatial and temporal

domains. High spatio-temporal resolution data could offer significant advances in the charac-

terization of tumor physiology and access to biomarkers previously unavailable through estab-

lished techniques. In order to characterize these vascular properties and assess their utility as

malignancy biomarkers, we must first develop and validate methods for the acquisition and

reconstruction of high spatio-temporal resolution DCE-MRI data.

Many groups have proposed techniques to increase temporal resolution in MRI, each with

their own sets of trade-offs and optimal use cases. While many methods straddle categories,

most algorithms fit approximately into one of the groups below:
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Ultrafast methods [5,7,18,19] tend to rely on parallel imaging (and partial Fourier sam-

pling) techniques to accelerate scans with greatly reduced coverage and/or spatial resolution.

While easy to implement and well-suited to kinetic analysis, the images produced at reduced

coverage/resolution do not always contain enough morphological data to be clinically

interpretable.

Parallel Imaging techniques [20–23] make use of multiple receiver coils to acquire imaging

data “in parallel,” with data from each coil constraining the image reconstruction. These

approaches are powerful and ubiquitous, and they can be used in tandem with many other

techniques. However, they suffer from highly nonlinear artifacts at high accelerations. The

impact of these artifacts on pharmacokinetic analysis is not well-characterized. They also rely

heavily on coil sensitivity maps, which can be difficult to measure precisely.

View-sharing methodologies [7,24–30] accelerate acquisitions by sampling k-space with

non-uniform densities, sampling low frequencies much more often than high spatial frequen-

cies. This category includes many common acquisition sequences, including DISCO, TWIST,

TRICKS, 4D-TRAK, and most keyhole methods. While these methods do an excellent job of

categorizing large-scale enhancement patterns (e.g., average enhancement within a lesion),

they sample different spatial frequencies at different temporal resolutions. This could create

errors in quantitative analysis. When low spatial frequencies are sampled more often than high

ones, it is difficult to reliably interpret the enhancement kinetics of small, sharp structures like

blood vessels and the edges of lesions. These structures are critical for accurate clinical

diagnosis.

Compressed sensing [31–36] strategies capitalize on the sparse enhancement of DCE-MRI

in the early uptake phase to create L1-constrained image reconstructions from very highly

undersampled data. This provides high spatial and temporal resolution. However, because

these approaches require sampling incoherence, they are susceptible to artifacts from non-uni-

form k-space sampling [37–39]. These artifacts are greatest when the signal is changing rap-

idly, as in the critical phase of early contrast uptake [37].

While all of these methods are powerful, they may not be well-suited to the task of precisely

recovering early enhancement kinetics in breast DCE-MRI.

We propose a novel, flexible, and powerful framework for the reconstruction of highly-

undersampled DCE-MRI data: enhancement-constrained acceleration (ECA). If raw k-space

data is available from the scanner and the acquisition sequence used to produce that data is

known, then k-space data can be re-partitioned into small intervals. The data sampled during

each interval can then be used to reconstruct a new set of images with a temporal resolution

equal to the interval length. We use the term “sweep time” to refer to the equivalent temporal

resolution of a conventional (fully-Nyquist) Fourier-sampled scan at the same spatial resolu-

tion as the reconstructed image after SENSE and partial Fourier acceleration. In a recent

study, bilateral ultrafast scans with complete Fourier sampling had “sweep times” between 3.4

and 4.1s [40]. To reflect the current state-of-the-art in conventional-Fourier ultrafast acquisi-

tions, we simulate data with a sweep time of 3.5 seconds and reconstruct at a temporal resolu-

tion of 0.25 seconds. When the temporal intervals used for image reconstruction are small

compared to the “sweep time,” this reconstruction problem is (highly) underdetermined. To

fully constrain the reconstruction problem, we introduce a penalty function that requires

approximately smooth enhancement on the short timescale of the temporal resolution of the

reconstructed image. In this setting, our reconstruction problem reduces to the minimization

of a constrained quadratic penalty.

In the investigation presented here, we (1) develop physiologically realistic breast phantoms

from patient data, (2) simulate a virtual scanner with custom pulse sequences to acquire data,

and (3) compare the time-tagged reconstructions of phantom data to a “gold standard”
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conventional Fourier-sampled ultrafast acquisition. In this proof-of-concept study, we aim to

demonstrate that ECA reconstructions capture bolus motion in physiologically realistic phan-

toms more accurately than standard methods. Code that reproduces some of the examples dis-

cussed here is openly available at<github.com/tyo8/ECA_Demo>.

Theory and methods

Virtual phantoms

To provide flexible, programmable, and quantitative ground truths for reconstruction testing,

virtual breast phantoms modeling realistic physiology and bolus propagation were created

from patient data (Fig 1). Five (5) virtual breast phantoms were created from paired ultrafast

and high-spatial resolution DCE-MRI datasets representing a range of pathologies. Cases 1, 2,

and 4 were invasive ductal carcinomas (grades III, II, and III, respectively); cases 2 and 4

showed necrosis and calcifications. Case 3 was a grade II invasive lobular carcinoma and case

5 was a control showing no abnormal enhancement. Acquisition parameters for the original

patient scans are shown in Table 1.

Virtual phantoms were created as a set of parameters (e.g., bolus arrival time and an uptake

rate constant) and functions that call those parameters (e.g., the Parker AIF) to estimate

whole-image signal at an input time point. We use these enhancement models to compute the

time-evolution of the virtual phantom during the scanning process. The phantoms used in this

experiment modeled noisy acquisition with signal from three different classes of sources; ves-

sel, lesion, and background. Vessel and lesion signal components come from distinct models

but a single procedure; all signal components are additive.

Vessels and lesions were segmented from patient images and perfusion maps were created

from constraining flow equations with ultrafast data, using a method developed by Wu et. al

Fig 1. A maximum-intensity projection of a sample phantom. The red dashed circle (upper left) shows a sample voxel enhancing

via the AIF; the blue dashed circle (middle right) shows a sample voxel enhancing via the EMM.

https://doi.org/10.1371/journal.pone.0258621.g001
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[4]. First, ultrafast and high-spatial resolution image sets undergo non-rigid registration for

motion correction. Next, a total 3D vasculature is segmented from high-spatial resolution

image sets by a Hessian filtering process. Lesions were segmented by hand. Using the seg-

mented lesions and vessels, ultrafast image sets were used to fit a fluid dynamics-based contrast

perfusion model, which created a map of bolus arrival times in the breast. These maps of con-

trast perfusion times parametrized Parker et al.’s population-based AIF model [14] in vessels

and a three-parameter empirically-derived enhancement model [41] in lesions. The empirical

model used a truncated exponential function to model the concentration of contrast agent in

lesion at initial phase (uptake only):

C tð Þ ¼ t � t0ð Þ � A � 1 � e� a t� t0ð Þ
� �

where t0 is the bolus arrival time in lesion voxels (s), A is the upper limit of tracer concentra-

tion (mmol), and α is the uptake rate (s-1). Those per-voxel parameters of the empirical model

were fit from ultrafast image sets; the mean ± standard deviation of each parameter each case

is listed in Table 2.

Background signal in the phantom is static except for fluctuations caused by measurement

noise (noise modeling is discussed in the “Virtual Scanner” section). Motion artifacts are not

directly simulated in this initial study. Each high-resolution image set contains a single pre-

contrast image; these were used to compute the background signal for each phantom.

This breast phantom construction emphasizes the characteristic “sparse plus low-rank”

nature of early-enhancement breast DCE-MRI [42,43] while including features that have high

resolution in both spatial and temporal domains. In addition, this virtual phantom design is

highly modular and can flexibly incorporate staggered changes to both functions and parame-

ter sets; different morphologies, perfusion models, and enhancement functions can be

swapped around with relative ease.

Table 1. Scan parameters of the source MR image datasets.

HIGH-SPATIAL RESOLUTION ULTRAFAST

TR/TE (MS) 4.8/2.4 3.2/1.6

ACQUISITION VOXEL SIZE (MM3) 0.8 × 0.8 × 1.6 1.5 × 1.5 × 3

TEMPORAL RESOLUTION RANGE (S) 60–70 2.8–3.6

FLIP ANGLE 10˚ 10˚

FIELD OF VIEW (MM3) 300-380mm (X,Y),

180-220mm (Z)

300-380mm (X,Y),

180-220mm (Z)

NUMBER OF SLICES 120–250 80–100

https://doi.org/10.1371/journal.pone.0258621.t001

Table 2. Parameter values for empirical model of tracer concentration in lesion.

A α (s-1) t0 (s)

Case 1 1.56 ± 0.45 0.14 ± 0.13 15 ± 2.2

Case 2 0.12 ± 0.25 0.019 ± 0.038 17 ± 7.3

Case 3 0.84 ± 0.70 0.041 ± 0.033 20 ± 8.2

Case 4 1.4 ± 0.38 0.075 ± 0.020 21 ± 2.8

Case 5 1.0 ± 0.70 0.020 ± 0.015 32 ± 9.1

https://doi.org/10.1371/journal.pone.0258621.t002
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Representation of sampling schemes

Here we clarify a notion of k-space sampling trajectories, which plays a role in both recon-

struction and data acquisition.

A known sampling trajectory can be parametrized as a path kt through k-space as a function

of time t. It specifies which Fourier coefficients are measured and the time at which each that

measurement is taken. Though the present work only implements reconstruction on trajecto-

ries embedded on a Cartesian grid, any k-space trajectory that can be parametrized as kt can be

reconstructed using the method here; any deterministic path can be simulated. Furthermore, if

timestamps from a stochastic measurement are recorded during the scan (or known within

the precision of reconstruction time resolution), then these data can be used for enhancement-

constrained image reconstruction.

We also define a few parameters that will be useful in describing the sampling and recon-

struction processes. By N, we denote the total number of k-space points acquired during a

given scan. We use T to represent the number of time-points in an image set. Finally, V is the

number of voxels in the image volume at any single time-point.

In the standard IFFT reconstruction of a Nyquist-sampled, Cartesian-acquisition k-space

dataset, N = VT. On the other hand, when we form an “accelerated” (undersampled) set of

images from N measurements in k-space, we have N< VT. The acceleration factor is then

a ¼ VT
N . In this work, we reconstruct dynamic image sets of VT ~ 109 total voxels from N ~ 108

measurements (acceleration factor α = 14).

Though the work shown here implements a sampling scheme taken from a Cartesian grid,

we emphasize that the framework presented is highly general and can be used to invert data

from arbitrary sampling schemes. Furthermore, if the time course of the sampling scheme

used to acquire the data is either (a) deterministic with known acquisition parameters or (b)

recorded as metadata, this framework allows the retroactive reconstruction of existing data.

Virtual scanner

A virtual scanner was developed to simulate the acquisition of data from the phantoms

described above under varying k-space acquisition paths.

To simulate signal evolution during the acquisition window, phantom signal was recom-

puted for each k-space measurement (kt1
; . . . ; ktN

made by the scanner. For computational effi-

ciency, however, full re-evaluations of the virtual phantom contrast functions were only made

every 50ms of scan time; signal updates between full re-evaluations were computed as linear

interpolations between updates. Linearly interpolating between full updates allowed us to

capture and quantify mid-scan changes in contrast dynamics, which typically occur at too fine

of time-resolutions to be differentiated in standard acquisitions. These are precisely the types

of signal changes we are hoping to detect. However, using linear interpolations between func-

tion evaluations implicitly encodes the assumption that contrast concentration curves are

approximately linear in 50ms windows. and each window has sufficient SNR. While current

compartmental, population, and empirical models of enhancement suggest this assumption is

reasonable (see Fig 2 for a visual representation of this assumption on the Parker AIF)

[41,44,45] and introduces negligible error to the models used in our phantoms, contrast perfu-

sion curves are not sufficiently characterized to fully vet this assumption.

Virtual breast phantoms generated signal data under similar scan parameters as an ultrafast

acquisition. A spoiled gradient-echo signal model was used (FA = 10˚, TR/TE = 3.2/1.6 ms,

resolution = 1 mm3) for each phantom acquisition. Noise was modeled as independent Gauss-

ian distributions in k-space with variances computed from pre-contrast ultrafast data. To esti-

mate interference from noise and acquisition artifacts, temporal variances were computed at
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each k-space point across five (5) pre-contrast ultrafast images for each phantom. Each point’s

temporal variance parameterized a Gaussian distribution, from which noise realizations were

produced. Over all cases and 100 noise realizations, this method of noise generation produced

data with an average PSNR of 37dB.

Though the virtual scanner does not have parallel imaging (e.g., SENSE or GRAPPA)

[20,22] or Partial Fourier [46] implementations, path times computed from these scan parame-

ters were appropriately scaled to match standard ultrafast time resolutions. Each scan sequence

completed a Nyquist-complete k-space sample of V points every 3.5s and was later recon-

structed at a temporal resolution of 0.25s. These k-space acquisition and reconstruction times

were chosen to demonstrate the high accelerations this method can achieve (an acceleration

factor of a ¼ VT
N ¼ 14, from 3.5s to 250ms), while also allowing an investigation of the mini-

mum time resolution necessary to fully resolve enhancement dynamics of clinical interest.

A simple but (to our knowledge) novel k-space trajectory was used to simulate acquisitions

in this study (Fig 3). By Undersampling With Repeated Advancing Phase (UnWRAP), we

allow our choice of reconstructed temporal resolution to inform the design of our sampling

trajectory. Splitting each group of V acquisitions into f disjoint subsets, we acquire the first line

of each subset before moving to the second line of the first subset: we continue in this way

until all V acquisitions have been made. This ensures that a uniform distribution of k-space

frequency bands determine each reconstructed image, which makes the subsequent recon-

struction both (a) robust to noise and (b) sensitive to fast changes in sharp features. This sam-

pling trajectory bears some similarities to kt-Blast (ref), but differs in that it enforces uniform

spectral density in the sample.

The virtual scanner pipeline is summarized in Fig 4.

IFFT reconstruction

The “standard” IFFT reconstruction is used to benchmark the ECA reconstruction. This

“reconstruction” is simply the inverse fast Fourier transform applied to the k-space dataset out-

put by the virtual scanner. This procedure represents the “ideal” ultrafast scan: it assumes a

(spatially) Nyquist complete sample is acquired at 3.5s temporal resolution using typical ultra-

fast acquisition parameters (see Table 2). Because ultrafast often relies on other methods (like

Fig 2. Sample concentration curves paired with their 50ms-interval linear approximations. The AIF curve (used in vessels) is

shown on the left and the EMM curve (used in lesion voxels) is shown on the right.

https://doi.org/10.1371/journal.pone.0258621.g002
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Fig 3. Cross-section of UnWRAP sequence in the kykz plane. In this scan sequence, k-space is divided into 14 sections, which are

each separated into 14 sheaves. Each section must have one sheaf scanned before any section can have another sheaves scanned. This

scheme ensures a nearly uniform distribution of high and low spatial frequencies are present in each reconstructed image, while still

satisfying the (spatial) Nyquist criterion when all scan data are combined.

https://doi.org/10.1371/journal.pone.0258621.g003

Fig 4. A flowchart summarizing the virtual scanner pipeline.

https://doi.org/10.1371/journal.pone.0258621.g004
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SENSE and Partial Fourier) to achieve such high temporal resolution [5,7,19], we are essen-

tially benchmarking against an assumed perfect SENSE and Partial Fourier reconstruction.

ECA reconstruction

Our enhancement-constrained acceleration (ECA) reconstruction method penalizes sharp

enhancement between reconstructed time-points and requires that new images match the

measured k-space data. The formal details of this reconstruction algorithm may be found in S1

and S2 Appendices, which can be summarized as follows:

1. Partition k-space data into time intervals of equal length; require that each measurement

constrains only the image reconstructed in the time interval containing that measurement’s

time-tag (Fig 5).

2. Denote the reconstructed image by the timeseries X = (X1, . . ., XT) and its spatial Fourier

transform as ~X ¼ ~X1; . . . ; ~XT

� �
. Define

Fig 5. An illustration of the k-space partitioning process. (Top) The sampling scheme displayed in Fig 3 is overlaid on sample k-

space data. All k-space measurements in the same time interval constrain the reconstruction of a single time-point in the accelerated

reconstruction. (Bottom) These k-space points form the “measured” partition of the reconstructed dataset. The temporal resolution

of the reconstruction determines the size of the measured partition of k-space points used for each reconstruction. The higher the

acceleration factor α, the shorter the duration of each measured partition and the more underdetermined the reconstruction

problem.

https://doi.org/10.1371/journal.pone.0258621.g005
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a. A convex, quadratic smoothness penalty on X = (X1, . . ., XT) applied separately to each

voxel v = 1, . . ., V in the spatial domain. When a voxel enhances smoothly, the penalty is

small; when it doesn’t, the penalty is large. The penalty can be weighted differently on

each voxel v, reflecting spatial variation in desired enhancement smoothness.

b. A data fidelity constraint on ~X ¼ ~X1; . . . ; ~XT

� �
, requiring that, for each t, any entry of

~Xt measured during time interval t must exactly match the data acquired during that

interval.

3. Solve for the image X = (X1, . . ., XT) that minimizes the smoothness penalty and satisfies

the data fidelity constraint on ~X ¼ ~X1; . . . ; ~XT

� �
.

Intuitively, this optimization is a search for the smoothest set of enhancement curves that

are consistent with our measured k-space data. Formulating the reconstruction in this way

relies heavily on one key assumption: enhancement is smooth on the timescale of the reconstruc-
tion’s temporal resolution. Requiring smoothness on short timescales does not limit the ability

of this algorithm to accurately measure sharp spatio-temporal changes as in the AIF, since

these changes occur on longer timescales. We chose a target temporal resolution of 0.25 sec-

onds in response to speculations in the literature [12–16] about optimal temporal resolutions

for pharmacokinetic analysis in breast DCE-MRI.

For a formal description of the partitioning process invoked above, see S1 Appendix. Since

the smoothness penalty optimized during reconstruction is a positive-definite quadratic form,

the reconstruction optimization is convex and has a unique solution. While this solution can

be defined analytically, we calculate it iteratively via conjugate gradient descent. See S2 and S3

Appendices for further details. Finally, the computation of image updates requires regulariza-

tion to converge; for a discussion on choice of regularization parameter, see S4 Appendix.

Documentation and demos for the phantom, scanner, and reconstruction pipelines are avail-

able at<github.com/tyo8/ECA_Demo>.

Data analysis

As an initial investigation of the ECA reconstruction framework, we compared images and

enhancement curves recovered from ECA and standard IFFT reconstructions. Two parame-

ters, bolus arrival time (BAT) and initial enhancement slope, were extracted from the signal

enhancement curve of vessel and lesion voxels by ECA and standard IFFT methods.

BAT was measured from time of peak enhancement in vessel voxels. In lesion voxels, BAT

was calculated as the earliest time at which voxels reached or exceeded 20% of their maximum

enhancement over baseline.

To calculate initial slope in vessel voxels, each voxel timeseries was interpolated by a modi-

fied Akima method [47]. The initial slope was the maximum first derivative of the interpolated

AIF curve. In lesion voxels, percent signal enhancement (PSE) versus time was fitted to a

piecewise empirical mathematical model (EMM):

PSEt ¼
A � ðaðt � t0ÞÞ

2

1þ ðaðt � t0ÞÞ
2
; ðt � t0Þ

0; ðt < t0Þ

8
><

>:

where t0 is the BAT in lesion voxels, A is the upper limit of percent enhancement, and α is the

uptake rate; thus, Aα is the initial enhancement slope.
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To assess image preservation, voxel-wise image fidelity was also compared between the two

methods. Ground-truth images are computed by evaluating the signal function at the center of

the temporal window surrounding each reconstructed time point. The distribution of absolute

voxel-wise signal differences between reconstructed and ground-truth images is then com-

puted and summarized.

Results

Bolus arrival time (BAT)

Sample BAT maps, computed from both the IFFT and ECA reconstructions, are shown in Fig

6. The images computed from an ECA reconstruction show more accurate and precise bolus

arrival time estimate than do the images computed from an IFFT reconstruction (Fig 7a and

7b). BAT estimation error distributions are shown (for lesion and vessel voxels) for all cases in

Fig 7a and 7b.

ECA was substantially more accurate than IFFT in most cases for predicting lesion BAT

and in all cases for predicting vessel BAT. If we treat each voxel-wise BAT measurement as an

independent sample from all possible locations in the image, then we can treat set of ratios of

measurement errors (ECA error)/(IFFT error) at each voxel as a distribution; this distribution

quantifies the distribution between the two methods. Where this ratio (bounded by confidence

intervals) is less than 1, ECA predicts BAT more accurately than IFFT; where the ratio is larger

than 1, IFFT predicts BAT better than ECA. We report the median error ratio in lesions and in

voxels over all cases, and we take a 5σ confidence interval (corresponding to p< 10−6) about

the median error ratio. In lesion voxels, we find a median error ratio of 0.210 ± 0.013, corre-

sponding to a more than 4-fold BAT accuracy improvement in ECA; in vessel voxels, we find a

median error ratio of 0.0825 ± 0.0018, corresponding to a more than 11-fold BAT accuracy

increase in the ECA reconstruction. Summary statistics over all cases are shown in Table 3.

BAT differences are shown separated by case in Fig 8. ECA was substantially more accurate

than IFFT in most cases for predicting lesion BAT and in all cases for predicting vessel BAT.

(Table 3).

Images reconstructed from the ECA algorithm show much greater precision in estimation

of bolus arrival time. Errors in BAT have much smaller spread (median absolute deviation) for

ECA reconstructions than for IFFT reconstructions, especially in vessel voxels. Furthermore,

the BAT error distribution is clustered much nearer to 0 in ECA reconstructions than in IFFT

reconstructions (Fig 7a and 7b), especially in vessel voxels.

Because bolus arrival time estimates were more accurate with ECA, we conclude that ECA

reconstruction allows for more accurate and more precise bolus tracking than traditional

Fig 6. Bolus arrival time computed from the case 4 image set. From left to right: IFFT reconstruction, ECA reconstruction, and

ground truth. Times shown on the color bar are measured in seconds.

https://doi.org/10.1371/journal.pone.0258621.g006
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Fig 7. Error distributions are shown for all cases. Distributions for IFFT and ECA are shown in different colors on the same plot.

(a) and (b) show errors in the estimation of the bolus arrival time in milliseconds; (c) and (d) show the distribution of the

proportional voxel error.

https://doi.org/10.1371/journal.pone.0258621.g007

Table 3. Summary statistics for BAT and voxel intensity errors in ECA and IFFT reconstructions.

BAT Paired Error Ratio (ECA error/IFFT error)

Case 1 Case 2 Case 3 Case 4 Case 5 All Cases

Lesions 0.0803 ± 0.0049 1.46 ± 0.24 0.282 ± 0.042 0.156 ± 0.009 1.21 ± 0.12 0.210 ± 0.013

Vessels 0.0688 ± 0.0026 0.085 ± 0.006 0.1049 ± 0.0059 0.0695 ± 0.0038 0.1020 ± 0.0044 0.0825 ± 0.0018

Voxel Error (%)

Case 1 Case 2 Case 3 Case 4 Case 5 Overall

Lesion IFFT 0.079 0.003 0.12 0.058 0.054 0.007

ECA 0.56 0.40 0.51 0.53 0.27 0.47

Vessel IFFT 0.39 0.35 0.42 0.40 0.39 0.39

ECA 0.49 0.56 0.66 0.57 0.59 0.56

For BAT error, the median paired error ratio is shown with a 99% confidence interval. Median absolute deviation is reported for voxel intensity error.

https://doi.org/10.1371/journal.pone.0258621.t003
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ultrafast methods. This increase in temporal precision comes at the cost of a small decrease in

image-intensity preservation; however, the errors in voxel intensity remain very small in both

cases.

Initial slope

Enhancement curves recovered from reconstructed images closely match simulated enhance-

ment from the phantoms. Fig 9 plots ground truth versus estimate values for the initial slope,

as derived from both ECA (left) and IFFT (right) reconstructions. Compared to standard

IFFT, ECA reconstruction more accurately recovers the initial slope of the enhancement curve

in both vessel and lesion voxels. To see this, first note that the coefficient of determination in

both sets of truth-estimate fits is larger for ECA than IFFT; therefore, ECA produces lower-

variance estimates of initial slope than IFFT does. Next, compare the slopes and offsets of the

truth-estimate fits. In vessel voxels, IFFT and ECA have similar fit slopes and offsets, and

therefore introduce similar amounts of bias; in lesion voxels, ECA introduces much less bias

than IFFT. Although both methods exhibit greater error when recovering enhancement curves

with larger initial enhancement slope, ECA estimates the initial slope more accurately than

standard IFFT.

Image fidelity

ECA-reconstructed images are highly similar to ground-truth images. A sample error map is

overlaid on a phantom in Fig 10. Voxel-wise error statistic summaries are shown in Fig 11 for

the 5 phantoms tested, and a sample enhancing-voxel error distribution is shown in Fig 7c and

7d. Voxel-wise errors in the IFFT reconstruction were generally smaller than in the ECA

reconstruction, though fidelity errors were very small in both methods. The voxel intensity

error distributions shown in Fig 10 show that the increased temporal resolution comes with at

most a negligible cost in voxel intensity accuracy.

Comparison with standard methods

Fig 12 juxtaposes a median-quality curve from the ECA reconstruction with the IFFT recon-

struction (which assumes perfect SENSE and Partial Fourier reconstructions) of the same

voxel. Sample curves are shown for constant, vessel, and lesion voxels.Note the “undershoot”

Fig 8. Box and whisker plots of the error in bolus arrival time, by case number and reconstruction method. Red boxplots (right)

are from ECA-reconstructed data; blue boxplots (left) are from standard IFFT reconstructions. Separate sets of plots are shown for

lesion and vessel voxels.

https://doi.org/10.1371/journal.pone.0258621.g008
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Fig 9. Scatter plot between ground truth initial slope and estimated initial slope. The panels show ECA and standard IFFT in (a)

(b) vessels voxels and (c)(d) lesion voxels. The red lines and blue lines represent the linear correlations and black dashed lines show

unity.

https://doi.org/10.1371/journal.pone.0258621.g009

Fig 10. Proportional intensity error per voxel for case 4. Proportional intensity error is shown from the mean projection over time

and through the volume. From left to right: IFFT reconstruction error, ECA reconstruction error, and the ground truth image.

https://doi.org/10.1371/journal.pone.0258621.g010
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Fig 11. Box and whisker plots of the proportional enhancement error, by case and reconstruction method. Red boxplots (right)

are from ECA-reconstructed data; blue boxplots (left) are from standard IFFT reconstructions. Separate plots are shown for lesion

and vessel voxels.

https://doi.org/10.1371/journal.pone.0258621.g011

Fig 12. Comparison of sample signal curves from standard IFFT and ECA reconstruction. The ECA is more sensitive to noise

than the IFFT, but the noise is still small with respect to the signal. IFFT reconstruction estimates bolus arrival time and peak signal

less accurately than ECA reconstruction.

https://doi.org/10.1371/journal.pone.0258621.g012
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of the ECA reconstruction at the first and last time points of the reconstructed curve; it is most

visible in the constant curve, though small compared to signal intensity values in all cases.

While they are deviations from the true signal curve, they do not pose serious impediments to

pharmacokinetic analysis using ECA. This is true first and foremost because we can easily

remove the first and last time points when calculating kinetic parameters. In addition, the

“undershoot” of the curve at the first point is a straightforward product of the fact that (1) we

initialize by zero-filling and (2) low-frequency components of k-space have only been sparsely

sampled within the first 250 ms of scanning. Initializing the reconstruction with a static pre-

contrast image would likely remove this problem and is under investigation as a future strat-

egy. The undershoot at the last time point is a problem of extrapolation; our method is closely

related to splines, which interpolate very well but tend to extrapolate poorly beyond the data

domain.

Overall, the ECA reconstruction captured bolus arrival times in enhancing voxels more

accurately than the IFFT reconstruction, suffering only a small loss of accuracy in estimating

the per-time point image (Table 3 and Figs 7c and 7d and 11). While ECA proved uniformly

more accurate in recovering the BAT in the vessel, ECA and IFFT estimated lesion BAT with

similar bias in two cases; in the other three, ECA estimated the BAT with lower bias and vari-

ance. Even in cases where ECA and IFFT produced similarly biased estimations of BAT, the

ECA estimated the BAT with lower variance (Table 3 and Figs 7a and 7b and 8).

Discussion

The results from realistic phantoms reported here demonstrate that sparse uniform samples of

k-space can be used to reconstruct DCE-MRI breast images with high fidelity and very high

temporal resolution. This allows significantly more accurate arterial bolus tracking and more

accurate measurement of lesion enhancement parameters such as the bolus arrival time and

initial enhancement slope. These important diagnostic parameters have been used to improve

cancer diagnosis [5,12,48,49]. Since the early phase of enhancement is critical for distinguish-

ing cancers from background parenchymal enhancement [7,50], high fidelity high temporal

resolution images produced with ECA may significantly improve identification and characteri-

zation of small cancers.

The ECA method introduced here is based on two primary principles.

1. If k-space data is partitioned into small subsets by acquisition time, each subset retains

important kinetic information.

Especially when enhancement is sparse (as in the early phase of contrast uptake), even

highly sub-Nyquist acquisitions contain sufficient information to almost fully constrain the

evolution of contrast kinetics. The UnWRAP sequence used in this study demonstrates this

principle in action, using simple uniform undersampling to sample a representative band-

width of spatial frequencies. We believe the UnWRAP k-space ordering scheme to be a

good choice for sampling the early phase of contrast uptake, but we emphasize that this

principle is applicable to any known/deterministic k-space sampling trajectory.

2. DCE-MRI enhancement is approximately smooth in small time intervals.

Provided kinetic processes are slow on fractional-second timescales and samples are

acquired with sufficient SNR and bandwidth, very few measurements of k-space are needed

to “tie together” the time-evolution of an image set. This is especially true when all of the

partial k-space measurements taken together form a Nyquist-complete set. We designed the

UnWRAP acquisition sequence to maximally leverage this principle, but it is applicable to

many undersampled reconstruction methods in DCE-MRI.
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The UnWRAP method introduced here maintains relatively high SNR over each subset of

k-space by sampling a mixture of high and low spatial frequencies. The extent to which both

reconstruction methods preserved voxel-wise intensity suggests the UnWRAP k-space trajec-

tory chosen offers some advantages over a standard sequential acquisition. Because it main-

tains a uniform frequency density in the scan, the UnWRAP sequence samples the k-space

center often enough to preserve signal intensity and the k-space edges often enough to cor-

rectly assign signal to spatial features. As is true for any acceleration method, effective applica-

tion of the UnWRAP method requires adequate SNR during each measurement interval.

In addition, we comment on some of the assumptions made in this simulation study with

respect to parallel imaging. While the current simulation assumed that the sweep time was the

temporal resolution of the original images (3.5 s), in this proof-of-principle study we did not

take into account that these images were acquired with parallel imaging (SENSE). However,

we do not believe the ECA method to be incompatible with parallel imaging. While ECA does

impose constraints on spatial data by applying masking in k-space, the reconstruction opti-

mizes only in the temporal domain. Since SENSE spatially optimizes image data for compati-

bility with coil sensitivity maps, the two approaches optimize with respect to non-overlapping

sources of information and thus could be combined.

The results summarized here demonstrate that ECA combined with UNWRAP sampling

has promise for improving breast cancer screening and diagnosis. However, this study had

some limitations:

• This was a simulation study, and it will be critical to test these results in vivo. These tests are

currently underway.

• Motion artifacts were not included in this work. It will be critical to evaluate effects of

motion in future simulations as well as in in vivo studies.

• Neither heart nor background enhancement were modeled in these simulations. It will be

critical to assess the capacity of ECA to reconstruct diagnostically useful enhancement in the

presence of background enhancement.

• T2� effects were not simulated. These effects are significant during the early phase of contrast

media uptake, especially in arteries.

• Other sampling trajectories were not tested; because not all scanners can implement all

undersampling trajectories, it will be important to test ECAs performance with other types

of accelerated acquisitions.

In addition to addressing the study limitations listed above, we suggest several further ave-

nues of future investigation. First and foremost, ECA requires a thorough characterization of

its performance across a wide range of noise levels. Second, because of the ubiquity of partial

Fourier, parallel imaging, and ML acceleration methods, we will integrate our acceleration

algorithm with popular implementations of these. Finally, we hope to test ECA on a wide vari-

ety of sampling trajectories and use this process to evaluate the optimality of both ECA and

these trajectories in a wider context of DCE-MRI acceleration methods.

Taken as a whole, the data presented in this work constitute an argument that “sparse +

smooth enhancement” characterize contrast kinetics in breast DCE-MRI to very high preci-

sion during the early phase of contrast media uptake. Smooth enhancement is a stringent con-

dition to impose on DCE-MRI data and, on its own, encodes a great deal of physiological

structure. Within such a constraint, even a small number of well-chosen measurements can

closely characterize early enhancement in the breast. ECA reconstruction provides a robust
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framework to increase diagnostic accuracy and improve understanding of hemodynamics in

normal breast and cancers.
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