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ABSTRACT

Accurate mapping of spliced RNA-Seq reads to
genomic DNA has been known as a challenging
problem. Despite significant efforts invested in
developing efficient algorithms, with the human
genome as a primary focus, the best solution
is still not known. A recently introduced tool,
TrueSight, has demonstrated better performance
compared with earlier developed algorithms such
as TopHat and MapSplice. To improve detection of
splice junctions, TrueSight uses information on stat-
istical patterns of nucleotide ordering in intronic and
exonic DNA. This line of research led to yet another
new algorithm, UnSplicer, designed for eukaryotic
species with compact genomes where functional
alternative splicing is likely to be dominated by
splicing noise. Genome-specific parameters of the
new algorithm are generated by GeneMark-ES, an
ab initio gene prediction algorithm based on
unsupervised training. UnSplicer shares several
components with TrueSight; the difference lies in
the training strategy and the classification algo-
rithm. We tested UnSplicer on RNA-Seq data
sets of Arabidopsis thaliana, Caenorhabditis
elegans, Cryptococcus neoformans and Drosophila
melanogaster. We have shown that splice junctions
inferred by UnSplicer are in better agreement with
knowledge accumulated on these well-studied
genomes than predictions made by earlier
developed tools.

INTRODUCTION

Vast volumes of RNA-Seq reads generated by next
generation sequencing (NGS) technologies carry
valuable information on patterns of gene expression.

Still, to extract this knowledge from sequence data,
RNA-Seq reads must be aligned to the reference
genome. Many software tools have been developed in
recent years to solve this problem. Notably, the problem
is 2-fold because alignment can be ungapped (full-length
read alignment) and gapped [alignment of a read spanning
one or more initially unknown splice junctions (SJs)]. The
term ‘splice junction’ refers to two adjacent
ribonucleotides along RNA that were made adjacent by
the RNA splicing and intron removing reaction.
Identification of SJs (and thus the corresponding introns
in genomic DNA) is critical for reconstructing exon–
intron structures of eukaryotic genes.
A significant reduction in the ungapped alignment com-

putational complexity was reached by application of the
Burrows-Wheeler Transform in the software tools such as
BWA (1,2), SOAP (3) and Bowtie (4). Existing software
tools that map RNA-Seq reads to genomic DNA, both in
ungapped and gapped fashions, include TopHat (5,6),
MapSplice (7), SpliceMap (8), GSNAP (9), SOAPsplice
(10), PASSion (11) and TrueSight (12). TopHat uses in-
formation from RNA-Seq reads mapped without gaps to
derive exon (and intron) boundaries. MapSplice uses an
‘anchor and extend’ approach for mapping RNA-Seq read
segments situated near and over SJs. Iterative remapping
of whole RNA-Seq reads or read segments in parallel with
SJ inference as well as filtering of false positives (FPs) in
post processing are the hallmarks of the most recently
developed tools. For instance, to eliminate incorrect align-
ments PASSion, SOAPsplice and TrueSight use paired-
end information. Still, it appears that all tools existing
to date make novel SJ predictions at a significantly
higher rate compared with tools designed to align long
Expressed Sequence Tag (EST) sequences such as BLAT
(13) and GMAP (14).
Besides bona fide novel SJs that occur in functional tran-

scripts, a significant fraction of novel SJ inferred by com-
putational tools could be erroneous in some sense. Two
major sources of inferring erroneous SJs are (i) suboptimal

*To whom correspondence should be addressed. Tel: +1 404 894 8432; Fax: +1 404 385 0383; Email: borodovsky@gatech.edu

Published online 19 November 2013 Nucleic Acids Research, 2014, Vol. 42, No. 4 e25
doi:10.1093/nar/gkt1141

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

twofold since
(
).
``
junction'' (SJ)
-
),
),
``
''
). 
: 
/


alignment methods and (ii) noisy splicing (15–17). Recent
research indicates that many instances of novel SJs are
manifestations of biochemical noise influencing the
splicing process (15–20). Because some introns are
spliced owing to random selection of one or both splice
sites, such transcripts are likely to be functionally irrele-
vant. Importantly, it was shown that patterns of occur-
rence of experimentally determined novel introns can be
closely matched by appropriate models of random splicing
errors (15). Also, many novel splice sites have little
evidence of evolutionary conservation across species
(16), which, in fact, alone does not necessarily imply
absence of biological function in the novel transcripts.
Nonetheless, other observations show that the majority
of functional transcripts are translated into proteins (21),
as well as that there is one dominant functional transcript
per gene for the majority of genes (22).
These observations allow the following statements:

(i) the majority of functional transcripts annotated in
genomes of model organisms are likely to be translated;
(ii) the majority of functional transcripts carry nucleotide
frequency patterns developed during evolution of protein-
coding genes; and (iii) annotated exon–intron structures
should play an important role in assessment of accuracy of
inference of SJs from RNA-Seq data.
Also one could argue that the relevance of statements

(i)–(iii) is higher for more compact eukaryotic genomes
that have on average relatively short intergenic regions
and thus a lower proportion of long noncoding RNAs.
In this context, we will refer to eukaryotic genomes with
length <500Mb as compact genomes. We foresee the tech-
nique described below will apply primarily to transcrip-
tomes and genomes of species with compact genomes; it is
important to note that the vast majority of species whose
genome and transcriptome sequences are available to date
have compact genomes.
Some DNA sequence patterns developed in evolution at

the exon–intron borders of functional genes have been
used in earlier developed algorithms. For instance, some
of them require the presence of intron terminal dinucleo-
tides: canonical GT–AG pairs or semi-canonical GC–AG
or AT–AC pairs. To delineate introns, the PASSion
program (11) uses a sequence ‘pattern growth’ algorithm.
Another recent program, TrueSight (12), assesses
sequence patterns by using the Markov chain models
of splice sites as well as of protein-coding and noncoding
sequences. From a set of initially identified SJs, TrueSight
selects a subset of the most confident ones as a data set
for estimation of parameters of the Markov models.
Classification of all other SJ candidates is made by
logistic regression with parameters derived by the iterative
expectation maximization (EM) algorithm.
In analysis of novel compact genomes and proteomes,

we see further opportunity to add more information cur-
rently concealed in DNA sequence to algorithms of RNA-
Seq alignment. First, parameters of sequence models can
be obtained by effective self-training methods. Second,
information on locations of protein-coding exons pre-
dicted by the self-training algorithms should help reduce
rates of false-positive SJ predictions. Particularly, param-
eters of the sequence models can be determined by the ab

initio eukaryotic gene finder GeneMark-ES (23,24). This
algorithm derives its parameters from as yet unannotated
genomic sequence via self-training, thus skipping the time-
consuming step of training sets preparation. GeneMark-
ES finds parameters of a hidden semi-Markov model
(HSMM) that includes models of splice sites, the
Markov models of coding and noncoding regions, intron
and exon length distributions, etc. GeneMark-ES works
effectively for eukaryotic genomes with homogeneous
GC composition, which is a typical feature of compact
genomes, though many large genomes with homogeneous
GC composition are known as well. A new version
of GeneMark-ES for genomes with inhomogeneous GC
composition is now under development (Lomsadze,
Borodovsky, personal communication).

Presented here is the new algorithm and software tool
UnSplicer, related to the earlier developed TrueSight.
UnSplicer combines the DNA sequence features with
features derived from intron sequences delineated
by RNA-Seq gapped alignments. UnSplicer uses
GeneMark-ES to derive parameters of DNA sequence
models. UnSplicer uses a total of nine features to discrim-
inate functional SJs from spurious SJs generated by
mapping errors or noisy splicing. While most RNA-Seq
mapping programs accurately map ‘simulated’ reads to
compact genomes, when confronted with ‘real’ RNA-seq
data these programs produce a large number of novel and
likely functionally irrelevant SJ predictions. UnSplicer,
similarly to TrueSight, assigns a probabilistic score to
each SJ prediction. As such, the score facilitates the
ranking of predicted SJs, and the formation of a larger or
smaller final set of predictions, depending on the operator
defined score threshold. To assess the accuracy of
UnSplicer and several other programs in mapping RNA-
Seq reads to genomes we used RNA-seq data sets for four
compact genomes with reliable annotation: Arabidopsis
thaliana, Caenorhabditis elegans, Cryptococcus neoformans
and Drosophila melanogaster. These four genomes have
manually curated annotation of genes and transcripts,
which, similar to (16), we used as a standard of annotation
of functional transcripts. We have shown that for one and
the same number of predictions, UnSplicer inferred more
SJs that match annotation than other programs, as well as
short exons embedded in single reads, than the other state-
of-the-art RNA-Seq reads alignment tools.

MATERIALS AND METHODS

Data sets

Sequence data used in the project include genomes of the
plant A. thaliana, the round worm C. elegans, the insect
D. melanogaster, the fungus C. neoformans as well as
RNA-Seq data sets for the same species (Table 1).
Additional sequence data, simulated RNA-Seq data sets,
for A. thaliana, were generated by the program Maq (1).

RNA-Seq read alignments

Several read mapping algorithmic components of
UnSplicer have been developed earlier: (i) the method of
ungapped (full length) read alignment implemented in
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Bowtie, (4) and (ii) the ‘anchor and extend’ method of
initial gapped alignment to genomic sequence imple-
mented in TrueSight (12). A block diagram of the
UnSplicer algorithm is shown in Figure 1.

After the first step—attempting ungapped alignment
of all RNA reads to the genome by Bowtie—remaining
unmapped reads are divided into short (18–25 nt)
nonoverlapping segments and Bowtie is used again to
attempt ungapped segment alignments. Failure to align a
segment indicates that the segment may overlap a SJ. Such
segments are subjects for the ‘anchor and extend’ align-
ment (12). Notably, ungapped alignments of the segments
adjacent to the segment in question delimit the space in the
genome where the potential intron should be situated.
Therefore, the ‘anchor and extend’ alignment starts from
the borders with fully aligned segments and continues into
the interior of the unaligned segment with the goal to
delineate intron(s) boundaries.

Two major factors complicate the ‘anchor and extend’
read alignment. First, fragments may not be aligned if
they overlap two (or more) closely situated SJs. Second,
the algorithm requires a minimum of 8 nt overhang over
the SJ in the shorter side of alignment (to prevent incor-
rect alignments). The distance between two SJs, the exon
length, should exceed the length of a segment (18–25 nt)
for an anchor segment to be fully aligned inside. If the
exon length exceeds 50 nt, then an anchor fragment will
exist in any read that covers both SJs. Therefore, after the
initial SJs are predicted, UnSplicer attempts to align
unmapped reads to transcript sequences reconstructed
around newly determined SJs. This realignment step is a
common feature of other methods, such as PASSion and
SOAPsplice.

In more detail, a transcript around a newly predicted SJ
is reconstructed as a sequence of length 2L (where L is the
read length) by concatenating L nucleotides upstream and
L nucleotides downstream from the already identified SJ
positions in the reference genome. If other SJs (n of them)
were predicted within L nt of the given SJ, then multiple
transcripts were constructed. For each candidate SJ, a set
of 2n possible reference transcripts is formed (by splicing
or not splicing each of n neighboring intron candidates).
In practice, this approach may produce a large number of
sequences if the read length is long (�100 nt), and if there
is a large number of false-positive SJ predictions. This
number could be controlled by considering only SJs with
intron lengths <10 000 nt; the vast majority of introns in
compact genomes satisfy this requirement.

Note that for paired-end reads supposed to reside in
opposite strands, spliced alignments that are ‘not’ in the

opposite strand from a sibling’s alignment must be
removed. This filtering step is also common for other
methods, such as PASSion and SOAPsplice. Also, a pos-
ition-dependent constraint must be applied to paired-end
reads mapping: for example, a left-hand read mapped to a
positive strand must have a lower coordinate than the
right-hand read.

Intron modeling

Another major task of UnSplicer, estimation of genome-
specific parameters of the sequence models, is accom-
plished by GeneMark-ES, the ab initio gene-finding
algorithm (23,24). GeneMark-ES estimates parameters
of a HSMM of genomic sequence by iterative unsuper-
vised training. The parameters are estimated before
running the alignment pipeline. For compact genomes
with homogeneous GC composition, GeneMark-ES
often predicts intron boundaries with 90% or better sen-
sitivity and specificity (23,24). In the HSMM, the splice

Ungapped Alignment

Gapped Alignment

unmapped  reads

unmapped  reads mapped
reads

Re-mapping

all  alignments

Classifier GeneMark-ESmodel parameters,
gene predic�ons

predicted
splice junctions

Figure 1. The UnSplicer algorithm diagram. First, RNA-Seq reads are
attempted to be aligned to the reference genome without gaps
(by Bowtie). Second, unmapped reads are attempted to be aligned
with gaps by the ‘anchor-and-extend’ algorithm (the same as in
TrueSight). Third, remaining unmapped reads are remapped to
pseudo-transcripts reconstructed using predicted SJs (by Bowtie).
Fourth, an SVM classifier with parameters derived by GeneMark-ES
is used to assign a probabilistic score to each SJ candidate and those
with scores higher than a chosen threshold are included in the final set
of predictions.

Table 1. Description of RNA-Seq data and reference genomes used in accuracy assessment

Species Data set Read length (nt) Number of pairs (millions) Genome version Annotation version

A. thaliana SRR360205 76 20.9 TAIR10 TAIR10
C. elegans SRR359066 101 12.2 Ce10 RefSeq, Ensembl
D. melanogaster SRR042297 75 13.6 r5.42 R5.42
C. neoformans SRR563164 101 5.7 Broad institutea Broad institutea

aCryptococcus neoformans var. grubii H99 Sequencing Project, Broad Institute of Harvard and MIT.
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sites hidden states emit fixed length nucleotide sequences
with frequencies defined by position-specific frequency
matrices (PSFMs); exon and intron hidden states emit
variable length sequences described by Markov chain
models. The donor PSFM spans 3 nt upstream of the
intron 50 end, and 6 nt downstream. The acceptor PSFM
spans 20 nt upstream of the intron 30 end, and 1 nt down-
stream. The PSFM models, treated as nonuniform
Markov chains, can be of either zero or first order.
Particularly, for all four genomes we worked with here,
the donor and acceptor models are first order.
To classify mapped SJs (and corresponding introns)

UnSplicer uses nine features derived from two data
sources: RNA-Seq read alignments and genomic
sequence. Alignment-based features are as follows: (i)
gapped (alignment) coverage skew, (ii) gapped alignment
depth (the number of alignments confirming a SJ), (iii) gap
(intron) length, (iv) entropy and (v) minimal read
overhang length. While these five features were described
in detail earlier (12), there are a few minor differences
(for full definitions see Supplementary Materials). The
sequence-based features are (vi) donor scores, (vii)
acceptor scores, (viii) frameshift indicator and (ix) strand
concordance indicator. The log likelihood ratio scores of
candidate SJs are computed with use of parameters of
splice site PSFMs. For a given intron, identified by a
gapped alignment of a read, a pair of donor and
acceptor site scores could be depicted by a vector in a
plane. The set of such vectors corresponding to spliced
alignments of the SRR360205 set of RNA-Seq reads to
the A. thaliana genome is shown in Figure. 2. The vectors
representing introns annotated in the TAIR 10 database
of A. thaliana genome are shown by blue dots, while the
vectors representing not-annotated introns are shown by
red dots. The sets of blue and red dots are overlapping,
however, there is a clear potential to use information on

splice site scores for discrimination between annotated
(likely correctly predicted) and not-annotated (likely erro-
neously predicted) introns.

The output of GeneMark-ES applied to a new genome
includes both the estimates of algorithm parameters and the
ab initio predicted genes. Information on locations of pre-
dicted genes is used in two additional SJ features defined by
UnSplicer, the frameshift indicator and the strand concord-
ance indicator. The frameshift indicator takes value 1 if
(i) the predicted intron is situated between protein-coding
exons and (ii) the reading frame shifts on splicing and does
not fit the coding frame initially predicted by GeneMark-
ES for the downstream exon. Otherwise, the frameshift in-
dicator takes value 0. The second feature, the strand con-
cordance indicator, takes value 1 if the mapped intron
appears in the opposite strand of a predicted gene and
value 0 otherwise (Supplementary Figure S4).

Three SJ features out of the 10 defined by TrueSight
(12) were not included in the UnSplicer algorithm: the
coding potential, the multiple mapping score and the
number of alignment mismatches.

Coding potential was removed to improve sensitivity to
SJs connecting noncoding exons. The multiple mapping
score and the mismatch score were removed since we
observed them to be less informative when mapping to
compact genomes. The former is particularly useful for
correctly mapping reads across long introns that are rare
in compact genomes. The remaining seven SJ features of
TrueSight were used in UnSplicer, along with the two new
features described above (see also Supplementary
Materials).

Classification of SJ candidates

Each gapped alignment of a read, made in the first step of
the UnSplicer run, generated a candidate SJ and intron to

Figure 2. Each point in the scatter plot represents a SJ, defined by a gapped alignment of an RNA-Seq read (SRR360205 set) to genome of
A. thaliana. The point coordinates are equal to the scores of the SJ’s donor and acceptor sites. The scores were computed with donor and acceptor
model parameters determined by GeneMark-ES. The blue dots represent SJs annotated in TAIR10. Red dots correspond to mapped SJs not found in
TAIR10 annotation.
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be assigned a probabilistic score by the classifier in the
second step. Classification of candidate SJs (introns) was
based on construction of a decision boundary in the six
dimensional SJ feature space.

We used the radial basis function support vector machine
(SVM) algorithm with Gaussian kernel (25) to classify the
candidate SJs (introns). To determine the SVM parameters
and decision boundary for each genome, we selected two
nonoverlapping sets of SJs labeled as positive and negative
examples, a training set and a development set. The training
set is used to train the classifier with two parameters c and
�selected from a finite set of parameter pairs. The develop-
ment set is used to evaluate the accuracy of each classifier in
the trained set and select a pair of (c, �) with best accuracy
on the development set (see below).

We needed a proxy procedure that would generate the
training set of labeled examples (true or false SJ) in the ab-
sence of correct genome annotation. Analysis of distribu-
tions of values ‘shorter overhang’, ‘entropy’ and ‘coverage
skew’ in the initially detected SJs among annotated and
nonannotated SJ gave an insight how to design such a
proxy procedure.

Positive examples in the training set were selected by
sampling candidate SJs with long enough shorter
overhang (>20 nt) complemented by a high value of
entropy (>20). Distributions of values of these two vari-
ables for the set of SJs confirmed by annotation of
D. melanogaster genome and the set of SJs not confirmed
by annotation are shown in Figure 3. Notably, in the set of
SJs selected as positive SJs for D. melanogaster, >98%
were annotated in Flybase (ver. 5.42).
Negative examples in the training set were selected by

sampling candidate SJs with ‘either’ a coverage skew score
<�1, or a shorter overhang length of �2 nt. Distributions
of shorter overhang length and coverage skew scores for
the sets of confirmed and not confirmed SJs candidates
obtained by mapping RNA-Seq reads from SRR360205
set to the genome of A. thaliana are shown in Figure 4.
Among the SJs selected as a negative set, <1% were
annotated in TAIR 10.
We used the three features, overhang, entropy and

coverage skew, to select the training set of 10 000 SJs,
equally divided between positive and negative examples.
The other six features were used in the classification

Figure 4. Histograms of shorter overhang values (a) and coverage skew scores (b) for gapped alignments of A. thaliana RNA-Seq reads (SRR360205
set). The set of predicted SJs with the shortest overhang value (<3) is highly enriched with negative examples. Similarly enriched with negative
examples is the set of candidate SJs with coverage skew score <�1. SJs with scores situated in either of the regions indicated by arrows were labeled
as negatives.

Figure 3. Histograms of shorter overhang values (a) and entropy scores (b) are shown for alignments of RNA-Seq reads (SRR042297 set) to the
D. melanogaster genome. A set of positive examples was formed from read alignments having both a shorter overhang >20 nt and an entropy score
>20, as indicated by arrows.
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algorithm: donor and acceptor site scores, intron length,
frameshift indicator, strand concordance indicator and
gapped alignment depth.
For each genome, we also selected development sets

with 5000 positive and 5000 negative examples not
overlapping with the training set. The true or false label
for each mapped intron in the development set was
assigned with respect to a match of such an intron to
one of the introns predicted by GeneMark-ES in the
genomic sequence.
The SVM Gaussian kernel has two parameters: the

error cost (c) and width (�). We needed to find the
values of c and � that achieved correct classification of
the largest number of the mapped SJs. We used the
LIBSVM package (26) to train the SVM on the training
set, with parameters (c, �) taken from a finite lattice.
Because the training set cannot be used for fair evaluation
of classification quality, we have the development set for
this purpose. As the measure of quality of classification on
the development set we chose the difference between the
number of true- and false-positive predictions made by the
SVM with given parameters. Each of the trained SVMs
was used for classification of members of the development
set and then, the SVM with parameters (c*, ��), producing
the least error of classification among all (c, �) on the
lattice, was selected. For instance, the results of classifica-
tion made by the array of SVMs on development set for
the A. thaliana genome could be visualized as a heat map
on the (logc,log�) grid (Figure 5). The best values of
(c*, ��) on the grid were [exp(�7), exp(�2)].
The SVM with genome-specific parameters (c*, ��)

could be applied to classify the entire set of N candidate
SJs, (e.g. N ¼ 164 373 for the A. thaliana data set
SRR360205). Still we have made one more step.
Output of the SVM can be mapped into posterior

probabilities. A posterior probability value (a score)
pi,i ¼ 1, . . .N was assigned to a SJ with set of features x

using the following method (27):

P kjxð Þ ¼
ck

1+exp Af xð Þ+Bð Þ

where k 2 0,1f g represents label class (1 is a ‘true’ SJ label,
and 0 is ‘false’), f xð Þis the classification value for vector x
(+1 or �1, averaged over a 5-fold cross validation), A,B
are constants found by maximizing the likelihood of the
training data (27), and ck is a normalization constant
chosen so that P 0jxð Þ+P 1jxð Þ ¼ 1:
The probabilistic score assigned to each candidate SJ

facilitates ‘flexibility’ of the classification procedure. The
set of positive SJs could be identified as a subset of all
candidate SJs with scores s> S, where S is the chosen
score threshold. This set of newly predicted ‘positive’ SJs
could be readily split into the SJs confirmed by the genome
annotation (true positive, TP) and SJs not confirmed (FP).
A full receiver operating characteristic (ROC) curve can
be determined by variation of the threshold within the
[0,1] interval; conversely, any point of the ROC curve
can be chosen as an operating point for classification
(see Figures in the ‘Results’ section). Note that

normalization of the ROC curve limits to [0,1] intervals
requires knowledge of total numbers of true and FPs in
the set of objects (RNA-Seq reads with or without SJs)
presented for the analysis.

RESULTS

We assessed performance of UnSplicer (with Bowtie
version 0.12.7) as well as four other RNA-Seq alignment
programs: PASSion (v1.2), SOAPsplice (v1.9), TrueSight
(v0.06) and TopHat2 (v2.0.8, with Bowtie version 2.1.0).
We also attempted to assess performance of MapSplice (7)
and GSNAP (9); however, in the runs of these programs
we observed a significantly larger number of FPs; there-
fore, we do not cite these results. For benchmarking
purposes, simulated RNA-Seq reads were used in
addition to several real RNA-Seq data sets.

Mapping RNA-Seq reads from real data sets

To assess performance of RNA-Seq mapping programs
on real data sets, we used RNA-Seq data available for
A. thaliana, C. elegans, D. melanogaster and C. neoformans
(Table 1). The introns (SJs) inferred by each program we
divided into confirmed introns (matching previously
annotated) and novel introns (not annotated) are
illustrated in Figure 6. Because both UnSplicer and
TrueSight compute probabilistic scores for each SJ, a
given value of the score S (a threshold) selects a group
of inferred SJs (introns) with score s> S. Division of the
group into two numbers of novel (X) and confirmed (Y)
introns produced a point on the curve, and the whole
curve is produced when the threshold was varied from
0 to 1 with low parts of the curve corresponding to high
thresholds and the top parts corresponding to the low
threshold value. For the other three programs PASSion,
SOAPsplice and TopHat2 we used SJ read coverage values
as surrogate scores. The SJ coverage value threshold can
be used to build the ROC curves for PASSion,
SOAPsplice and TopHat2 (Figure 6a–d); the low parts

Figure 5. A heat map of values W=TP – FP produced by the SVM
classifier with parameters c,�ð Þ for the development set of A. thaliana. A
grid search was performed to find the best kernel parameters c and �
(where � ¼ 1

�2
). The optimal point with respect to W is logc,log�ð Þ=

(�7,�2).
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of the curves correspond to the sets of SJ with high value
of the coverage (high threshold), while the top parts cor-
respond to the larger sets of SJ (low threshold). TopHat2
and UnSplicer in all the experiments described below had
the max intron length restricted by 10 000, the limit
covering the range of intron length in compact genomes.
Interestingly, when TopHat2 intron length limit was
changed to 500 000, it caused only a slight change in the
results.

It was expected that the majority of those inferred
SJs (introns) that were not confirmed by annotation in
these well-annotated genomes were spurious, presumably
originating from mapping errors or splicing noise (or
both). Therefore, among two methods producing an
equal number of introns confirmed by annotation, the
one predicting fewer novel introns has better performance.

Using these criteria, UnSplicer performs better for
all four species (Figure 6a–d) and especially for
D. melanogaster and A. thaliana. Most of the time, for a
given number of predicted introns that match annotation,

UnSplicer made fewer predictions that do not match an-
notation than any other program. On the other hand, for
a given number of predictions that do not match annota-
tion, UnSplicer generated more predictions matching
annotation than any other program. The dashed lines in
Figure 6a–d correspond to the numbers of confirmed
introns (TP) produced by UnSplicer with probabilistic
score threshold 0.5. At this level of the threshold, the
default operating point, UnSplicer generated from
several hundred to several thousand fewer novel introns
than the other programs, predicting the same number of
introns confirmed by annotation. On the other hand, at
the lowest values of the thresholds that release the highest
numbers of novel introns into the inferred set of introns,
TrueSight (for C. elegans) and TrueSight and TopHat2
(for C. neoformans) are able to find a higher number of
TPs for the same number of FPs as UnSplicer (Figure 6c
and d). While we can say that UnSplicer has shown the
best performance in the tests for the four genomes, there
is no consistent runner-up, nor is there a program that

Figure 6. Performance of the five programs on real RNA-Seq data sets of A. thaliana (a), D. melanogaster (b), C. elegans (c) and C. neoformans (d).
The curves represent nonnormalized ROC curves. The UnSplicer ROC curve shows higher performance, with fewer FPs for a given number of
predicted SJs, except when TrueSight and TopHat2 show comparable performance in C. elegans (c) and C. neoformans (d) at the low value of the
score threshold (in the zone with high number of novel introns not matching annotation).
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consistently underperformed in comparison with all
others. Note that less impressive results produced by
SOAPsplice for C. elegans and C. neoformans are likely
to be caused by its default limit on the intron length (20 nt)
not available for change as an input parameter. It is
known that a large fraction of the introns in these two
species are short (<20 nt).
Because of UnSplicer dependence on the ‘protein

coding’ gene finder GeneMark-ES—several UnSplicer
features used GeneMark-ES derived parameters, and
also the development set for selection of the SVM param-
eters used introns predicted by GeneMark-ES—we specif-
ically tested the ability of UnSplicer and other programs
to detect SJs (introns) located in 50 and 30 untranslated
regions (UTRs) and RNA genes (i.e. noncoding RNA
regions) of one of the genomes we studied, A. thaliana.
Introns inferred by each program were categorized as
‘coding’ or ‘noncoding’ with respect to the genome anno-
tation (Supplementary Table S1). An intron was labeled as
‘noncoding’ only if exonic nucleotides adjacent to the
intron were noncoding in all annotated isoforms. The
ratios of ‘coding’ to ‘noncoding’ introns are shown in
the bottom row of Supplementary Table S1. In general,
the number of ‘coding’ introns is expected to be an order
of magnitude higher than the number of ‘noncoding’
introns. We observed that PASSion produced the
highest ratio among all programs except UnSplicer with
threshold 0.9 (T=0.9). As the UnSplicer threshold de-
creases, so decreases the abundance of the ‘coding’ type
introns (see also Supplementary Figure S7). When the
probability threshold decreases down to 0.1, the ratio of
‘coding’ to ‘noncoding’ introns detected by UnSplicer gets
closer to ones detected by TrueSight, TopHat2 and
SOAPsplice with default parameters.
The ‘anchor-and-extend’ technique facilitates finding

short exons embedded into the RNA-Seq reads. The
short exon detection performance was assessed using the
RNA-seq data set SRR360205 with 76 nt long reads
mapped to the A. thaliana genome. The numbers of
short exons confirmed by annotation (likely TPs) and
not confirmed by annotation (likely FPs) within eight
length bins are shown in Supplementary Table S2.
UnSplicer (T=0.1) and TrueSight predicted a similar
number of short exons 13 733 and 13 611, respectively.
Overall, the specificity of UnSplicer in short exon predic-
tion was higher than that of other programs, 92.8–96.1%,
with TrueSight’s slightly lower at 92.1% (Supplementary
Table S2). We attempted to analyze the performance of
TopHat2 (with max intron length 10 000) in finding short
exons. Because the short exons are not readily available in
the TopHat2 output, we had to extract this information
from the raw read mappings. We observed a slight
increase in TP (by �200 in comparison with UnSplicer)
with significant increase in FPs (data not shown).
Another interesting question was to find out how the

programs’ accuracy in intron identification depends on
intron length. We focused on long introns, �1000 nt,
and built ROC type curves for this group of introns for
five programs (Figure 7). At operating point T=0.5,
UnSplicer shows close performance to other programs
(300TPs and a few dozen FPs), while TopHat2, for the

same number of TPs finds �900 more introns not
matching annotation (Figure 7). Notably, with another
(lower) value of threshold, UnSplicer finds 500 confirmed
introns accompanied with 200 not matching annotation;
for 500 confirmed long introns, other programs detect
hundreds or even thousands of introns not matching
annotation (Supplementary Figure S7). Comparison of
length distributions of novel introns predicted in the
A. thaliana genome by TopHat2 and UnSplicer
(Supplementary Figure S7) substantiates the same point
with more details.

Mapping simulated RNA-Seq reads

We used Maq (1) to simulate RNA-Seq reads from 41 671
A. thaliana full-length cDNA sequences (with nucleotide
modifications modeling sequencing errors with rate 0.02).
We made three sets of reads, each containing 5 million
paired-end sequences, with lengths 50, 75 and 100 nt.
The cDNA sequences were used proportionally with the
expression levels determined by TopHat2 and Cufflinks
(18) for the RNA-Seq set SRR360205. The numbers of
true-positive introns (matching annotation) and false-
positive introns (absent in annotation) inferred in applica-
tion of each program with a given threshold, are shown in
Figure 8a–c by ROC-like curves. The ROC curves for
UnSplicer and TrueSight were generated by changing
the probabilistic score thresholds from 0 to 1 (as in
Figure 6); the dashed lines corresponds to the use of the
UnSplicer default threshold value 0.5. Curves for
PASSion, SOAPsplice and TopHat2 where generated
(similarly to the graphs in Figure 6) by use of SJ
coverage as a threshold parameter. In mapping 100 nt
long fragments (Figure 8c), the UnSplicer performance
(and ROC curve) is closely matched by performances
of SOAPsplice (for low threshold values) and TrueSight
(for high threshold values). This tendency is also seen in
Figure 8a–b for 50 and 75 nt long fragments. Notably,

Figure 7. Counts of introns (matching annotation and new introns)
with length >999 nt detected in read mapping from RNA-Seq data
set SRR360205 to genome of A. thaliana by the five RNA-seq align-
ment tools.
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SOAPsplice marginally improves over UnSplicer at the
intersection with the UnSplicer curve (T=0.5) in all
three cases (Figure 8a–c). On the other hand, when
PASSion and TopHat2 generate the same number of
TPs as UnSplicer (T=0.5), they produce �1000 and
�2000 more novel introns, respectively.
Notably, the relative numbers of novel introns identified

by all five programs are significantly lower than ones we
saw in mapping of real RNA-seq data sets. We assume
that these false introns inferred in mapping of simulated
reads, observed in relatively low number, are likely to be
erroneously predicted due to the algorithm’s imperfection.
We believe that the larger numbers of introns not
matching annotation inferred in the experiments with
real RNA-Seq data sets are due to additional ‘errors’
caused by noisy splicing producing nonfunctional
transcripts.
By design of the experiment with simulated reads, the

total number of reads aligned by each program could not
exceed 10 million. TopHat2 and SOAPsplice aligned the
largest numbers of reads (Supplementary Table S3), while
TopHat2 predicted the largest number of SJs not con-
firmed by annotation.
Read coverage is an important factor in accurate intron

(SJ) prediction. Interestingly, UnSplicer generates much
lower number of novel introns uniformly with respect to
the coverage, particularly in the low end (from 3 to 7)
where TopHat2 generates more novel introns by thou-
sands (Supplementary Figure S8). Large numbers of
novel introns produced by TopHat2 could be related
to processing of rather artifactual repeated reads that
create high coverage for spurious SJs. Several programs
are able to filter out such predictions; particularly, for this
purpose, TrueSight and UnSplicer effectively use the
entropy feature.

Computational costs

All computational experiments were performed on 16
cores multiuser Linux system. Two measures of computa-
tional cost were reported: total elapsed time (‘wall clock’
time), and the CPU time for each program. Given that all
five programs are multi-threaded, we specified eight
threads use for each program. Computational costs for
the three sets of A. thaliana simulated RNA-Seq reads
alignments to genome (wall clock time and CPU time)
are shown in two panels of Supplementary Table S4. In
the bottom rows we show the running times of alignment
of a real data set SRR360205. Because of the use of eight
threads, the CPU time was often much greater than the
wall clock time. The fastest program was TopHat2, with
SOAPsplice in second place. For the set of 100 nt long
reads, run times of UnSplicer and TrueSight were close
to SOAPsplice. The most costly program to run was
PASSion, which required 7–8 h of wall time to align the
simulated reads, and over a day (34 h) to align the reads
from SRR360205. UnSplicer and TrueSight were similar
in speed. There are �4-fold more reads in SRR360205
compared with the simulated set, yet UnSplicer,
TrueSight and TopHat2 each required less than four
times the wall clock time to align the reads from

Figure 8. Performance of the five programs on simulated RNA-Seq
data sets of A. thaliana (a) 50 nt; (b) 75 nt; (c) 100 nt. The curves rep-
resent nonnormalized ROC curves. The curves show much lower pro-
portion of FP for a given total number of predictions in comparison
with the real data set (Figure 6a).
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SRR360205 compared with the set of 75 nt long simulated
reads. PASSion required more than four times the wall
time to align the same set of real reads in comparison
with the same set of 75 nt long simulated reads.

DISCUSSION

Relationship to TrueSight

UnSplicer and TrueSight have three major differences:
(i) in derivation of DNA sequence model parameters,
(ii) in training set selection (for classification), (iii) in clas-
sification algorithm. UnSplicer derives model parameters
by use of GeneMark-ES conducting unsupervised training
on a reference genome, while TrueSight derives param-
eters directly from a set of SJs inferred by alignment
with high confidence. In general, reliance on RNA-Seq
alignments for deriving model parameters may lead to a
bias in parameters of the model of protein-coding
sequence due to overrepresentation of highly expressed
genes in the RNA-seq population. It is well known that
in prokaryotic and eukaryotic genomes, the codon usage
pattern of highly expressed genes differs from codon usage
patterns of genes expressed at moderate and low levels
(28,29). UnSplicer’s use of GeneMark-ES tends to avoid
this model bias problem by incorporating a large number
(many thousands) of genes into self-training.
The training set for the UnSplicer classifier is compiled

by a different set of heuristic rules (as described above), in
comparison with rules used in TrueSight. The training set
of positive examples in TrueSight was formed from the set
of all SJs with (i) canonical splice sites, (ii) no mismatch
errors in the alignment and (iii) confirmed by five or more
alignments. The set of negative examples was taken from
the set of gapped alignments spanning introns with (i) at
least one noncanonical splice site, (ii) confirmed by only
one alignment and (iii) the shorter overhang length close
to the admitted minimum of 8 nt. The training set of
positive examples was also used for deriving sequence
model parameters. The UnSplicer rules for compiling
SVM training sets were significantly different (see
‘Materials and Methods’ section).
The third major difference is in the design of the classi-

fication algorithm. TrueSight finds a decision boundary by
the EM algorithm, maximizing the likelihood of all can-
didate SJs presented to the classifier. The EM algorithm
searches for a hyperplane boundary separating positive
and negative examples in the training set. UnSplicer uses
the training set to find parameters of a Gaussian kernel
SVM that maximizes agreement with the set of introns
predicted ab initio in the development set.
In addition to the three major differences between

UnSplicer and TrueSight, there are a few more minor dif-
ferences. For instance, instead of the coding potential
feature used by TrueSight for mapped SJs classification,
UnSplicer uses two binary features, indicators of strand
and frame concordance. These indicators are assigned to a
value of zero for likely true introns (in protein-coding or
UTR regions) and a value of one for likely FPs. Also, the
two programs use different methods for assigning intron
length score. TrueSight uses an intron length-related

feature defined by the following rule: for an intron of
lengthl, the score is zero if l � L0:05, otherwise it is
log l� L0:05ð Þ, where L0:05 is the length >95% of candidate
introns. In contrast, UnSplicer uses the gap length feature,
a log likelihood of the event that a mapped intron has
a given length; this feature is computed using the intron
length distribution determined by GeneMark-ES. Earlier,
we have demonstrated that intron length distributions
derived by GeneMark-ES had a good fit to empirical dis-
tributions determined from transcript sequence alignments.
For example, length distribution of introns inferred for the
strawberry genome (Fragaria vesca) by the ab initio
program GeneMark-ES (30) and length distributions of
introns determined from transcript mapping to the same
genome nearly coincide (Supplementary Figure S3).
Finally, TrueSight uses splice site log likelihood scores
summed into a single feature, while UnSplicer has two
separate features for donor and acceptor sites.

Use of GeneMark-ES makes UnSplicer applicable
to newly sequenced genomes complemented with newly
sequenced RNA-Seq data as soon as the genome
assembly and transcriptome sequencing is finished. No add-
itional effort for obtaining any kind of manually curated
training sets is necessary. Still, dependence of GeneMark-
ES restricts UnSplicer to genomes where GeneMark-ES
runs reliably, which largely includes compact genomes
with homogeneous GC content. Fortunately, the vast
majority of genomes of fungi, plants and animals, either
already sequenced or in progress, belong to this category.
In inhomogeneous genomes, such as large genomes of
animals, model parameters needed for UnSplicer could be
derived in conventional supervised manner.

Finally, we should note that TrueSight makes
remapping and filtering steps after classification, while
UnSplicer uses opposite order. The change of order in
UnSplicer was made in consideration that remapping
allows refining the alignment depth, which enters the clas-
sification algorithm as one of the features.

Comparison of results of alignments of simulated and
real RNA-Seq data

There is a noticeable difference in the results of RNA-Seq
read mapping by each of five programs working with
simulated and real RNA-seq reads. Much larger fractions
of novel introns in the set of all predicted introns were
predicted for real data set than for simulated ones. The
difference is likely due to the presence of noisy splicing
that made its way into the real RNA-seq reads. Notably,
on simulated A. thaliana data, SOAPsplice and UnSplicer
appeared to be comparable in terms of proportions of
inferred introns that match and do not match the anno-
tation. However, working with real A. thaliana RNA-Seq
reads, UnSplicer predicted �10 000 fewer novel introns
compared with SOAPsplice; at the same time UnSplicer
mapped 33.7 million reads, while SOAPsplice mapped
only 26.1 million.

Results of the tests on real RNA-Seq data (Figure 6)
demonstrated that UnSplicer is more effective than other
programs in inference of SJs (introns) that are likely to be
functional.
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We should emphasize that the suggested restriction of
using UnSplicer for compact genomes (<500Mb, which
still covers vast majority of genomes sequenced to date)
is related to the current version of GeneMark-ES. This
version generates only one model for protein-coding
region, which will not fit equally well to all the genes in
a large genome with inhomogeneous GC content, such
as mammalian genome with isochore organization.
Current development of GeneMark-ES extension to
inhomogenous genomes will make UnSplicer applicable
to more complex genomes as well. The UnSplicer
software is available for download from topaz
.gatech.edu/GeneMark.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are very grateful to Alexandre Lomsadze for valuable
technical assistance. We thank Susan M.E. Smith for
useful comments.

FUNDING

National Institutes of Health [HG000783 to M.B.],
National Science Foundation [1054309 and 1262575 to
J.M.]; National Institutes of Health [HG006464 to J.M.].
Funding for open access charge: National Institutes of
Health [HG000783 to M.B.].

Conflict of interest statement. None declared.

REFERENCES

1. Li,H., Ruan,J. and Durbin,R. (2008) Mapping short DNA
sequencing reads and calling variants using mapping quality
scores. Genome Res., 18, 1851–1858.

2. Li,H. and Durbin,R. (2009) Fast and accurate short read
alignment with Burrows-Wheeler transform. Bioinformatics, 25,
1754–1760.

3. Li,R., Li,Y., Kristiansen,K. and Wang,J. (2008) SOAP: short
oligonucleotide alignment program. Bioinformatics, 24, 713–714.

4. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009)
Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol., 10, R25.

5. Trapnell,C., Pachter,L. and Salzberg,S.L. (2009) TopHat: discovering
splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111.

6. Kim,D., Pertea,G., Trapnell,C., Pimentel,H., Kelley,R. and
Salzberg,S.L. (2013) TopHat2: accurate alignment of
transcriptomes in the presence of insertions, deletions and gene
fusions. Genome Biol., 14, R36.

7. Wang,K., Singh,D., Zeng,Z., Coleman,S.J., Huang,Y.,
Savich,G.L., He,X., Mieczkowski,P., Grimm,S.A., Perou,C.M.
et al. (2010) MapSplice: accurate mapping of RNA-Seq reads for
splice junction discovery. Nucleic Acids Res., 38, e178.

8. Au,K.F., Jiang,H., Lin,L., Xing,Y. and Wong,W.H. (2010)
Detection of splice junctions from paired-end RNA-Seq data by
SpliceMap. Nucleic Acids Res., 38, 4570–4578.

9. Wu,T.D. and Nacu,S. (2010) Fast and SNP-tolerant detection of
complex variants and splicing in short reads. Bioinformatics, 26,
873–881.

10. Huang,S., Zhang,J., Li,R., Zhang,W., He,Z., Lam,T., Peng,Z. and
Yiu,S. (2011) SOAPsplice: genome-wide ab initio detection of
splice junctions from RNA-Seq data. Front. Genet., 2, 46.

11. Zhang,Y., Lameijer,E.W., Hoen,P.A., Ning,Z., Slagboom,P.E. and
Ye,K. (2012) PASSion: a pattern growth algorithm-based pipeline
for splice junction detection in paired-end RNA-Seq data.
Bioinformatics, 28, 479–486.

12. Li,Y., Li-Byarlay,H., Burns,P., Borodovsky,M., Ronbinson,G.E.
and Ma,J. (2013) TrueSight: a new algorithm for splice junction
detection using RNA-Seq. Nucleic Acids Res., 41, e51.

13. Kent,W.J. (2001) BLAT—The BLAST-like alignment tool.
Genome Res., 12, 656–664.

14. Wu,T.D. and Watanabe,C.K. (2005) GMAP: a genomic mapping
and alignment program for mRNA and EST sequences.
Bioinformatics, 21, 1859–1875.

15. Melamud,E. and Moult,J. (2009) Stochastic noise in splicing
machinery. Nucleic Acids Res., 37, 4873–4886.

16. Pickrell,J.K., Pai,A.A., Gilad,Y. and Pritchard,J.K. (2010) Noisy
splicing drives mRNA Isoform diversity in human cells. PLoS
Genet., 6, e1001236.

17. Hon,C., Weber,C., Sismeiro,O., Proux,C., Koutero,M.,
Deloger,M., Das,S., Agrahari,M., Dillies,M., Jagla,B. et al. (2012)
Quantification of stochastic noise of splicing and polyadenylation
in Entamoeba histolytica. Nucleic Acids Res., 41, 1936–1952.

18. Trapnell,C., Williams,B., Pertea,G., Mortazavi,A., Kwan,G., van
Baren,M., Salzberg,S.L., Wold,B. and Pachter,L. (2010)
Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell
differentiation. Nat. Biotechnol., 28, 511–515.

19. Marquiz,Y., Brown,J., Simpson,C., Barta,A. and Kalyna,M.
(2012) Transcriptome survey reveals increased complexity of the
alternative splicing landscape in Arabidopsis. Genome Res., 22,
1184–1195.

20. Daines,B., Wang,H., Wang,L., Li,Y., Han,Y., Emmert,D.,
Gelbart,W., Wang,X., Li,W., Gibbs,R. et al. (2011) The
Drosophila melanogaster transcriptome by paired-end RNA
sequencing. Genome Res., 21, 315–324.

21. Sheynkman,G., Shortreed,M., Frey,B. and Smith,L. (2013)
Discovery and mass spectromic analysis of novel splice-junction
peptides using RNA-seq. Mol. Cell. Proteom. 12, 2341–2353.

22. Gonzolez-Porta,M., Frankish,A., Rung,J., Harrow,J. and
Brazma,A. (2013) Transcriptome analysis of human tissues and
cell lines reveals one dominant transcript per gene. Genome Biol.,
14, R70.

23. Lomsadze,A., Ter-Hovhannisyan,V., Chernoff,Y. and
Borodovsky,M. (2005) Gene identification in novel eukaryotic
genomes by self-training algorithm. Nucleic Acids Res., 33,
6494–6506.

24. Ter-Hovhannisyan,V., Lomsadze,A., Chernoff,Y. and
Borodovsky,M. (2008) Gene prediction in novel fungal genomes
using an ab initio algorithm with unsupervised training. Genome
Res., 18, 1979–1990.

25. Schölkopf,B., Sung,K., Burges,C., Girosi,F., Niyogi,P., Poggio,T.
and Vapnik,V. (2003) Comparing support vector machines with
Gaussian kernels to radial basis functions classifiers. IEEE Trans.
Signal. Proces., 45, 2758–2765.

26. Chang,C. and Lin,C. (2011) LIBSVM:a library for support vector
machines. ACM Trans. Intell. Syst. Technol., 2, 1–27.

27. Platt,J. (2000) Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. Advances in
Large Margin Classifiers. MIT Press, Cambridge, MA.

28. Duret,L. and Mouchiroud,D. (1999) Expression pattern
and, surprisingly, gene length shape codon usage in
Caenorhabditis, Drosophila, and Arabidopsis. PNAS, 96,
4482–4487.

29. Moriyama,E.N. and Powell,J.R. (1998) Gene length
and codon usage bias in Drosophila melanogaster,
Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids
Res., 26, 3188–3193.

30. Shulaev,V., Sargent,D.J., Crownhurt,R.S., Mockler,T.C.,
Folkers,O., Delcher,A.L., Jaiswal,P., Liston,A., Mane,S.P.,
Burn,P. et al. (2011) The genome of woodland strawberry
(Fragaria vesca). Nat. Genet., 43, 109–116.

31. Keerthi,S.S. and Lin,C.J. (2003) Asymptotic behaviors of support
vector machines with Gaussian kernel. Neural Comput., 15,
1667–1689.

PAGE 11 OF 11 Nucleic Acids Research, 2014, Vol. 42, No. 4 e25

(shorter than 500Mb
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1141/-/DC1

