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A dynamic and mutualistic interplay between tumor cells and the surrounding tumor
microenvironment (TME) triggered the initiation, progression, metastasis, and therapy
response of solid tumors. Recent clinical breakthroughs in immunotherapy for
gastrointestinal cancer conferred considerable attention to the estimation of TME, and the
maturity of next-generation sequencing (NGS)-based technology contributed to the availability
of increasing datasets and computational toolbox for deciphering TME compartments. In the
current review, we demonstrated the components of TME, multiple methodologies involved in
TME detection, and prognostic and predictive TME signatures derived from corresponding
methods for gastrointestinal cancer. The TME evaluation comprises traditional, radiomics, and
NGS-based high-throughput methodologies, and the computational algorithms are
comprehensively discussed. Moreover, we systemically elucidated the existing TME-
relevant signatures in the prognostic, chemotherapeutic, and immunotherapeutic settings.
Collectively, we highlighted the clinical and technological advances in TME estimation for
clinical translation and anticipated that TME-associated biomarkers may be promising in
optimizing the future precision treatment for gastrointestinal cancer.
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INTRODUCTION

The tumor microenvironment (TME) is a key component of tumor tissue and a vital determinant of
tumor evolution and therapeutic response. Apart from tumor cells, TME is primarily comprised of
tumor-infiltrating lymphocytes (TILs) (1), tumor-associated neutrophils (TANs) (2), tumor-
associated macrophages (TAMs) (3), cancer-associated fibroblasts (CAFs) (4), endothelial cells,
extracellular matrix proteins, associated inflammatory pathways (5), a variety of growth factors,
chemokines, proteolytic enzymes, and specific biochemical characteristics, such as hypoxia and low
pH (6) (Figure 1). The presence of a robust antitumor milieu characterized by a high infiltration of
CD8+ cytotoxic T cells, Th1 helper cells, and memory CD45RO+ cells; expression of cytokines; and
macrophage polarization toward M1 (3) often indicates a positive prognosis and can even lead to
tumor elimination. However, elevated TGFb levels (7), Treg cells (8), and fibroblast (9) infiltration
often indicate poor prognosis. Some of the abovementioned features have been combined into an
org May 2022 | Volume 13 | Article 8198071
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Immunoscore, which was elucidated as a putative predictor for
prognosis and immunotherapeutic response in malignant
tumors (6).

In the past few decades, cancer research attached its focus to
the tumor cell, and insufficient attention has been focused on the
crucial role of TME in carcinogenesis and progression. With the
revolutionary breakthroughs in cancer immunotherapy
including immune checkpoint blockades (ICBs), the
evergrowing investigation into the host immune response has
shed new light on the TME (10–15). Subsequently, extensive
evidence has supported its prognostic value as well as the
predictive significance in therapeutic response, covering
immunotherapy (10, 16), targeted therapy (17), and
chemotherapy (18). Moreover, the development of emerging
technologies also facilitates unveiling TME and paving the way
for individual medicine (19). To note, a recent comprehensive
study developed a brand new TME signature, i.e., TMEscore,
based on the clinical and genome-related data. The research
deciphered the pattern of infiltrating cells and corresponding
pathways within TME to construct the TMEscore as a robust
predictive biomarker for prognosis and efficacy of ICBs in gastric
cancer (6, 10) and other cancer settings.

As discussed in prior literature, intratumor heterogeneity
(ITH) (20) may be the main barrier challenging the precise
interpretation of TME-relevant biomarkers for clinical
translation (21). Despite the well-constructed molecular
subtypes in gastric cancer (22–24), comprising Epstein–Barr
virus (EBV)-infected tumors, microsatellite instability (MSI),
genome stability and chromosomally instability, and consensus
molecular subtype (CMS) (25) in colorectal cancer (CRC), ITH
may induce distinct molecular signatures in a diverse population
of cells inter- or intratumors, such as the distinct immune
landscape and treatment sensitivity of CRC in different
anatomical locations.
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Nevertheless, signatures derived from TME are still
promising in predicting prognosis and improving individual
medicine in clinical oncological practice; and comprehensive
research and systematic review of the research to deepen our
understanding of TME are still urgently needed. Here, we
elaborate on the current understanding of the TME and the
histological, radiomics, and emerging computational
methodologies to construct TME-related signatures and the
corresponding prognostic and predictive significance. The
comparison and correlations among distinct predictive models
are comprehensively discussed.

TUMOR MICROENVIRONMENT
ASSESSMENT SYSTEMS IN THE AGE OF
IMMUNOTHERAPY

Clinical Utility of Traditional Methods in
Tumor Microenvironment Assessment
Currently, the tumor–node–metastasis (TNM) staging system
and histologic classification are used for routine prognostication
and treatment among patients with gastrointestinal cancer,
but neither of them functions well in TME estimation
and clinical-outcome prediction (18, 26). To tackle this,
immunohistochemistry (IHC), a typically cost-effective and
clinical pragmatic method to identify different subpopulations
of tumor-infiltrating cells, had been widely utilized in the
generation of signatures to meet the clinical need for
diagnosing and predicting specific therapeutic efficacy (26–29).
However, the insufficient biopsy specimens, the heavy reliance
on a limited repertoire of phenotypic markers, and interobserver
bias have contributed to the irreproducible measurement and
limitations of IHC in practical implementation and
clinical standardization.
FIGURE 1 | The graphical abstract depicts the tumor microenvironment (TME) in gastrointestinal cancer, outlines the methodologies for deciphering TME
compartments, and elucidates the existing TME-relevant biomarkers in the prognostic, chemotherapeutic, and immunotherapeutic settings. Methods for TME
assessment comprised the immunohistochemistry (IHC), the computational toolbox for NGS-based analyses, and radiomics detections. NK cell, natural killer cell;
Treg cell, regulatory T cells; DC, dendritic cell; TAM, tumor-associated macrophages; CAF, cancer-associated fibroblasts; MDSC, myeloid-derived suppressor cell;
NGS, next-generation sequencing.
May 2022 | Volume 13 | Article 819807

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ye et al. Tumor Microenvironment Evaluation for Gastrointestinal Cancer
The multi-spectral imaging analysis techniques as a natural
evolution of the conventional IHC method are promising in the
context of preclinical experiments with the merit of precise
immuno-colocalization and identification of cell interactions.
Multiplex IHC/immunofluorescence (mIHC/IF) was leveraged
to demonstrate that overexpression of SLAMF8 in macrophages
may predict better anti-programmed cell death protein 1 (anti‐
PD-1) immunotherapy efficacy in gastrointestinal cancer.
However, its implementation in dissecting TME heterogeneity
for predicting the therapy response of gastrointestinal cancer is
limited (30). The technological challenges, high costs, and low
throughput could be the primary obstacles that delay the clinical
transition of multi-spectral imaging analysis.

Despite the existing restrictions, IHC is still well-adopted in
signature construction. The IHC-estimated Immunoscore is
recognized by the European Society for Medical Oncology
(ESMO) clinical practice guideline for early-stage CRC (31).
The consensus Immunoscore is one of the IHC-based scoring
systems to summarize the density of CD3+ and CD8+ T-cell
effectors within the central tumor and its invasive margin (29)
and promisingly predict recurrence-free survival (RFS) of
patients with colon cancer (29). Moreover, an IHC-reliant
stromal signature, by estimating leukocyte and stromal factors,
is also constructed for its prognostic value in estimating
progression-free survival (PFS) of patients with resected
pancreatic ductal adenocarcinoma (28). Additionally, another
research constructed a risk signature, based on estimating the
TME landscape of tumor-infiltrating inflammatory and immune
cells by using IHC, and validated its correlation with poor RFS
and chemotherapy resistance in patients with extrahepatic
cholangiocarcinoma (27). Collectively, IHC has witnessed a
collection of TME-related predictive signatures springing up in
the preclinical studies.

Moreover, some other conventional methods like flow
cytometry are also used for complementation (28). Take for
example the aforementioned stromal signature constructed via
IHC; the leukocyte cell population via flow cytometry
(fluorescence-activated cell sorting) has functioned as a
supplementary validation of the IHC evaluation, and the
intratumoral leukocytes determined by it revealed a strong
positive correlation with IHC staining on tissue blocks (28).
Additionally, classical flow cytometry could work independently
to identify the TME compositions of tumors such as non-small
cell lung cancer to facilitate immune checkpoint inhibitor
therapy clinical trial (32).

Radiomics Interfaced With Tumor
Microenvironment Evaluation
In the past decade, the field of medical image analysis has grown
exponentially, radiomics is well-recognized as a novel form of
data reflecting not only macroscopic but also cellular and
molecular properties of tissues. The advances in radiomics
facilitate high-throughput extraction of quantitative features
and subsequent conversion of images into mineable data,
which enables the interface between radiomics and TME
estimation and improved treatment decisions (33–35).
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A recently reported radiomics signature for intratumor and
peritumor CD8 cells was capable of discriminating inflamed
tumors from immune-desert tumors, and a high baseline
radiomics score indicated an improved response for
immunotherapy and prolonged overall survival (35).
Considering the merit of non-invasiveness, radiomics is also
implemented to improve the TME prognostic or predictive
signatures derived from IHC detection. Li et al. developed an
imaging signature for an Immunoscore, which was originally
constructed utilizing IHC detection, by radiomics analysis of
pretreatment CT images (34). Another study developed a
radiological deep-learning signature for the non-invasive
estimation of tumor stroma and adjuvant chemotherapy
outcomes in patients with gastric cancer (33). The invasiveness
of estimating tumor-infiltrating lymphoid and myeloid cells
based on IHC staining of surgical specimens could be
surmounted by the implementation of radiomics.

Collectively, non-invasive images are more than a visual
interpretation of tumor tissue but data containing a spectrum
of cellular and molecular information for evaluation of TME
components and construction of signature for clinical translation
and treatment-decision optimization.

Computational Tools for Decoding
Tumor Microenvironment Contexture
From Multi-Omics Profiling
Instead of traditional IHC and radiomics, the increasing
application of high-throughput next-generation sequencing
(NGS) techniques for genome, transcriptome, or epigenome
profiling has become the main source of data for cancer
immunogenomics (36). Recent advances in computational
algorithms and tools were leveraged to dissect the TME
interaction including immune cells and stromal cells (37)
(Figure 1). Tools for decoding immune contexture are
currently classified according to four proposed computational
principles: 1) machine learning-based principles, 2) gene set
enrichment analysis (GSEA)-based principles, 3) linear
regression-based principles, and 4) non-linear programming-
based principles (38).

Among machine learning-based tools, CIBERSORT proposed
by Newman et al. is the most popular methodology to refer to 22
immune cells in TME by adopting support vector regression for
deconvolution, which enables large-scale analysis of RNA
mixtures for cellular biomarkers and therapeutic targets with
promising accuracy (39). However, the intrinsic limitation of
deconvolution methods primarily lies in the fact that their
performance is intrinsically tied to how well the reference
expression matrix represents the gene expression of the
immune cells (19). Though it may weaken the representability,
CIBERSORT is still a robust computational tool to enumerate
cell subsets, generating TME-associated predictive signatures (6,
11, 12). Moreover, the recently released CIBERSORTx expands
its applicability to enumerate cell subsets and corresponding
gene expression profiles from single-cell RNA-sequencing
(RNA-seq) data (40). MethylCIBERSORT is also developed to
address the restriction of CIBERSORT in genome-wide DNA
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methylation data for accurately determining tumor purity and
cellular compositions (41).

Current GSEA-based computational tools include Tumor
Immunology miner (TIminer) (42), Xcell (43), Estimation of
STromal and Immune cells in MAlignant Tumour tissues using
Expression data (ESTIMATE) (44), and Immune Cell
Abundance Identifier (ImmunCellAI) (42). Notably, xCell is a
gene signature-based web tool to estimate 64 immune cells from
RNA-seq data and other cell subsets in bulk tumor tissue (43).
Additionally, ESTIMATE infers non-tumor contexture including
stromal and immune signatures for determining tumor purity
(44). All four tools are available for transcriptomic data analysis,
but TIminer is also suitable for DNA data (42).

Linear regression-based tools comprise Tumor Immune
Estimation Resource (TIMER) (36), Estimating the Proportion
of Immune and Cancer cells (EPIC) (45), Deconvolution for
mixed cancer transcriptomes using raw measured data (Demix)
(46), TIseq (47), MMAD (48), and Microenvironment Cell
Populationscounte Microenvironment Cell Populations counter
(MCP-counter) (37). TIMER is the first method that provides 6
major analytic modules, allowing integrative analysis of tumor
immunologic, clinical, and genomics data (49). EPIC detects the
proportion of immune and cancer cells from the expression of
genes and compares it with the gene expression profiles from
specific cells to predict the cell subpopulation landscape (45).

The non-linear programming-based principle is applied in
Population-Specific Expression Analysis (PSEA) (50) and Digital
Sorting Algorithm (DSA) and R package (51), which could
extract specific gene expression profiles of distinct cell types
without prior knowledge of their exact cell frequencies.

Additionally, the R package Immunedeconv integrates
multiple existing microenvironmental deconvolution
methodologies (52). Apart from TME deconvolution with
diverse algorithms, the functions of another tool, namely,
IOBR, cover as follows: multi-omics interpretation, including
signature score calculation and estimation of signature–
phenotype interactions, signatures derived from scRNA-seq
data and genomic landscapes in multiple cancers, and fast
signature construction (53).

Taken together, non-linear programming-based principles do
not require the exact infiltration populations of different cell
types as prior knowledge, whereas the other three principles rely
on prior knowledge of marker genes of different immune cell
subsets. Machine learning-based principles can computationally
estimate the absolute proportion of immune cell infiltration in
tumor tissue, whereas GSEA-based principles can infer the
relative proportion of infiltrating immune cells in tumor tissue
(38). Compared with three other deconvolution methods [linear
least-squares regression (LLSR), quadratic programming (QP),
and perturbation model for gene expression deconvolution
(PERT)] under all the same test conditions, CIBERSORT is
superior to other methods. EPIC and quanTIseq are the linear
regression-based methods providing an “absolute score” that
represents a cell fraction (38). Other methods provide scores in
arbitrary units that are only meaningful in relation to another
sample of the same dataset (52). Therefore, EPIC and quanTIseq
Frontiers in Immunology | www.frontiersin.org 4
are recommended for general purpose deconvolution, whereas
MCP-counter as a relative scoring method is a good choice for
clinical trial due to its highly specific signatures that excelled in
the spillover benchmark (52). Collectively, the development and
application of sophisticated computational tools assist in the
selection of algorithms and assembly of analytical pipelines, shed
light on tumor–host interaction, and facilitate the discovery of
therapeutic targets and biomarkers for clinical translation (54).

Tumor Microenvironment-Relevant
Signatures Based on Big Data Research
and Machine Learning
The irreversible wave of artificial intelligence and machine
learning techniques gives impetus to current cancer research in
TME using big data research. Based on the abovementioned
methodologies, a collection of TME-relevant signatures was
constructed to predict prognosis and individualize oncotherapy.

Considering prognosis, PNM score, Immunoscore proposed
by Zeng et al. (11), TMEscore (10), and nomogram (55) are
CIBERSORT-based prognostic signatures of gastric cancer by
decoding the immune infiltration pattern with transcriptomic
data. Additionally, TME-associated signatures, involving
prognostic immune risk score (pIRS) (13), TME risk score
(TMRS) (12), and CSS sets (56), are the predictive clinical
outcome of patients with colon cancers. Moreover, prognostic
models, such as T cell-inflamed gene expression profile (GEP) (5,
16), TIDE (57), and TMEscore (10), are reported also to be
promising in pan-cancer settings (Figure 1).

The predictive value of most TME-related signatures is
limited not only to prognosis but also to response to specific
oncotherapy. The aforementioned GEP (5, 16), TIDE (57),
TMEscore (10), and PNM score (58) are also robust
biomarkers for response to immunotherapy. The Immunoscore
proposed by Zeng et al. (11), nomogram (59), TMRS (12), CSS
sets (56), and Tex (60) are predictive of sensitivity to adjuvant
chemotherapy in specific gastrointestinal tumor settings. Despite
evidence of the correlation between targeted therapy and
immune modulation (61), fewer TME-relevant predictive
signatures appear in this setting. The details on the predictive
value of these models and their comparisons are discussed in the
following sections.

Taken together, a combination of computational tools and
transcriptomic data is a promising approach to overcome the
technical limitations of IHC and identify diverse immune
populations in a large patient cohort. In the future, putting
forward the application of the efficient and emerging
methodologies in current machine learning might facilitate an
in-depth understanding of TME interaction and the
immunotherapy-resistance mechanism to pave the way for
individualized treatment of cancer.

Promising Tools to Conquer Intratumor
Tumor Microenvironment Heterogeneity
The ITH is one of the well-acknowledged challenges leading to
treatment resistance (20) and impairing the accuracy of currently
available predictors for diagnosis and therapeutic response (21).
May 2022 | Volume 13 | Article 819807
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However, single-cell characterization based on sorting tumor-
infiltrating cells and subsequent analysis, such as high-
throughput flow cytometry (62) and single-cell sequencing
(63), could be promising to tackle this challenge or effectively
minimize its implication. In the past few years, the progress in
single-cell isolation, nucleic acid amplification, and
transcriptome profiling technologies (64) has led to novel
single-cell sequencing (65), which will have a growing role in
the future, in particular for the phenotyping of immune cells
(66). However, despite the favorable merits, the technological
challenges, sequencing costs, and practical restrictions are
limiting the extensive utility.

Comparison and Contrast of Tumor
Microenvironment-Detection
Methodologies in Clinical Practice
IHC as a typically cost-effective and clinical pragmatic method to
identify different subpopulations of infiltrating cells within the TME
had been widely utilized in the generation of signatures for clinical
practice. However, the insufficient biopsy specimens, the heavy
reliance on a limited repertoire of phenotypic markers, and
interobserver bias remain the major obstacles to its practical
implementation and clinical standardization. Compared with
IHC, large-scale analysis of RNA mixtures for cellular biomarkers
is featured with high throughput and promising accuracy. Adequate
data-mature deconvolution methodologies may contribute to its
clinical utility and consequently may accelerate data accumulation.
However, signatures generated by bulk sequencing confront the
well-acknowledged challenge of intratumor TME heterogeneity,
which could be conquered by single-cell sequencing and multi-
spectral imaging analysis such as mIHC/IF. Despite the high
throughput and resolution of single-cell sequencing, the
technological challenges, sequencing costs, inadequate data, and
practical restrictions are limiting the clinical implementation.
Multi-spectral imaging analysis as a natural evolution of the
conventional IHC method is promising in the context of
preclinical experiments with the merit of precise immuno-
colocalization and identification of cell interactions but
accompanied by the drawbacks of high costs and low throughput.
Radiomics is implemented to improve the TME prognostic or
predictive signatures derived from IHC detection, considering the
merit of non-invasiveness and reflecting macroscopic properties of
the tissue. However, insufficient computational resources and ITH
may be the primary roadblock to its extensive utility.
PROGNOSTIC VALUE OF MODELS
DERIVED FROM TUMOR
MICROENVIRONMENT ASSESSMENT

Prognosis Prediction Using Models
Constructed via Traditional
Immunohistochemistry Methods
Gastrointestinal cancer, especially gastric cancer, has large
variations in the clinical prognosis even among patients with
the same TNM stage (67). The heterogeneous property of gastric
Frontiers in Immunology | www.frontiersin.org 5
cancer requires comprehensively taking account of the outcome-
relevant TME components and developing prognosis predictive
models with better accuracy and efficiency to complement the
TNM staging system.

To meet the need, several models via traditional IHC
technologies were constructed (26, 29). Jiang et al. developed a
novel model, named GC-SVM classifier. Taking account of either
immune cell density or the tumor region, and with SVM
algorithms to improve the accuracy, it comprehensively
integrated information of eight TILs and myeloid cell IHC
features (CD3IM, CD3CT, CD8IM, CD45ROCT, CD57IM,
CD66bIM, CD68CT, and CD34), along with clinicopathologic
features including patient sex, carcinoembryonic antigen (CEA)
and lymph node metastasis (26). The study validated the GC-
SVM classifier as an independent prognostic factor of overall
survival (OS) and disease-free survival (DFS) in gastric cancer
and a promising complement to the TNM staging system (26).

Additionally, Immunoscore, another prognostic model, is
primarily proposed by Galon et al., integrating type, density,
and location information of immune cells (68). Immunoscore
immunohistochemically quantifies the in situ immune
infiltration based on the enumeration of two lymphocyte
populations (CD3/CD45RO, CD3/CD8, or CD8/CD45RO) in
CRC (68) and provides a score ranging from Immunoscore 0 (I0)
to Immunoscore 4 (I4) according to calculated immune-
infiltration density (69). The five Immunoscore groups were
associated with dramatic differences in DFS and OS and relapse
in patients with early TNM stage CRC (70). Additionally,
combined evidence supported its implementation as a new
component in the classification of cancer, designated TNM-
Immune (69), which predicts survival better than the TNM
system alone (29).

Subsequently, Wang et al. first extended the feasibility of the
aforementioned Immunoscore system to predicting RFS and OS
in CRC liver metastases after liver metastasectomy (71).
Additionally, Immunoscore was significantly and negatively
associated with the clinical risk score (CRS) in which patients
with more distant metastases presented a significantly lower
density of lymphocytes (CD3, GZMB, CD8, T-Bet, CD57, and
CD45RO) in tumors (72), despite that preoperative
chemotherapy may impair the prognostic performance of the
Immunoscore (71).

In a nutshell, despite the technological restrictions of IHC, the
existing IHC-based TME estimation is still promising in
predicting the clinical outcome of patients with gastrointestinal
cancer. IHC-based estimation of immune infiltration may work
well in supplementing the TNM staging to improve the
classification system and to enhance the accuracy and
efficiency of prognosis prediction, thereafter providing the
impetus for individual medicine in cancer. Furthermore, the
feasibility of these scoring models among other malignant
tumors is under research and worth further clarification.

Prognostic Models Developed Through
Emerging Technologies
However, the technological restriction of IHC combined with the
advances in high-throughput sequencing technologies and
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machine learning contributes to the advent of a spectrum of gene
signature-based prognostic models in the setting of gastric
cancer, CRC, and pan-cancer.

In terms of gastric cancer, Zeng et al. proposed that
Immunoscore based on the fractions of 11 immune cells is a
promising signature for estimating OS in patients with gastric
cancer, using a least absolute shrinkage and selection operator
(LASSO) Cox regression model (11). Notably, the follow-up
study in gastric cancer, with the help of principal component
analysis algorithms, has developed another robust prognostic
and predictive biomarker termed TMEscore (10) and revealed its
correlation with the intrinsic genome, metabolic characteristics,
and molecular subtypes of gastric cancer (6, 22). The high
TMEscore, which suggests prolonged overall survival, was
markedly associated with immune activation and response to
virus and IFN-g, whereas the activation of transforming growth
factor b, epithelial–mesenchymal transition, and angiogenesis
pathways was enriched in the low TMEscore subgroup, which
indicates T-cell suppression and may contribute to the poor
prognosis in gastric cancer (10). Intriguingly, the subsequent
analysis also indicated its potential application in pan-tumor
prognostic prediction (6). Additionally, Lin et al. established an
integrated PNM score system, based on RNA expression data, to
predict the clinical survival of patients with gastric cancer, which
comprises signatures of tumor protein-coding genes (P), tumor
non-coding genes (N), and immune/stromal cells in the TME
(M), a prognostic nomogram taking account of tumor size, site of
origin, and mitotic index, accurately predicting RFS in the setting
of post-resection localized primary gastrointestinal stromal
tumors (GIST) (59). However, clinical translations of biomarkers
that correlated with the efficacy of immunotherapy in
gastrointestinal cancer are still lacking. Recently, a study applied a
395-plex immune-oncology (IO)-related gene profiling platform
and machine learning strategy to determine a novel RNA signature
that may reflect the “immune-responsive feature” of both cancer
cells and the immune microenvironment, thereafter facilitating the
patient selection for ICB treatment (73).

Regarding stage II CRC, combinatory cancer hallmark-based
gene signature sets (CSS sets) were developed to identify patients
with better 5-year RFS rates (56). Moreover, the TMRS (12) and
pIRS (13) models are the latest proposed promising and novel
signatures for prognosis prediction in terms of stage I–III colon
cancer to complement TNM staging system and overcome the
IHC-technical restriction by adopting transcriptomic data.

SIGNIFICANCE OF TUMOR
MICROENVIRONMENT-RELEVANT
MODELS IN PREDICTING RESPONSE TO
ADJUVANT CHEMOTHERAPY

Predictive Models
Constructed via Traditional
Immunohistochemistry Methods
Adjuvant chemotherapy has been recommended as a standard
component of therapies for patients with stage II and III gastric
Frontiers in Immunology | www.frontiersin.org 6
cancer and improves their outcomes (74). However, only a subset
of patients could benefit from adjuvant chemotherapy, and the
criterion for the selection of candidates is still controversial (74).
The aforementioned IHC-based prognostic models could also be
a promising biomarker for adjuvant chemotherapy in
gastrointestinal cancer.

A study of the GC-SVM classifier that identified both tumor-
infiltrating immune and stromal cells revealed that adjuvant
chemotherapy significantly increased OS and DFS in the high-
gastric cancer-SVM group (26). In either stage II or III gastric
cancer, the benefit from adjuvant chemotherapy was superior
among patients with high GC-SVM (26). Before establishing the
gastric cancer-SVM classifier, the team had proposed an
ImmunoScore signature (ISGC) (18) by using IHC and another
individualized predictive nomogram (55) to identify stage II–III
gastric cancer patients who may derive clinical benefits from
adjuvant chemotherapy. Moreover, their subsequent study
developed a non-invasive imaging signature for ISGC (RIS) by
radiomics analysis of pretreatment CT images and corroborated
the consistency between RIS and ISGC (34). Recently, the N0417
trial also demonstrated that the microenvironmental features of
TIL density and tumor budding are significant variables for DFS
of patients treated in a phase III adjuvant trial of FOLFOX-based
therapy and may determine colon tumor metastatic potential
(75), which collectively suggests that the pivotal and complex
tumor-TME cell crosstalk may also impact adjuvant
chemotherapy regimens.
Models Developed by Using Emerging
Technologies and Its Role in Predicting
Adjuvant Chemotherapy Benefits
Given the significant role that TME potentially plays in adjuvant
chemotherapy, a collection of TME-related computational
models also stepped into the field of response prediction,
including part of the aforementioned prognostic signatures.

In the setting of gastric cancer, Lin et al. proposed the
prognostic PNM score model and demonstrated that its
combination with tumor mutational burden (TMB) could
accurately predict sensitivity to tumor-suppressive adjuvant
chemotherapy (58). Intriguingly, to some extent, adjuvant
chemotherapy may conversely impair the capacity of some
prognostic biomarkers like Immunoscore (11). However, in the
setting of GIST, another prognostic nomogram established by
Gold et al. is also suggested to be constructive for patient care,
interpretation of clinical trial results, and selection of patients for
adjuvant imatinib treatment (59).

In terms of stage II CRC after fluorouracil-based adjuvant
chemotherapy, the CSS set may facilitate determining the
treatment response. A substantial gain in survival benefits from
adjuvant chemotherapy was observed in the low-risk patient
group, with a reduction in recurrence by 30%–40% in 5 years.
Moreover, with the significant prognostic value expected, the
TMRS panel of CRC, based on TME genes, was reported to
precisely predict the efficacy of adjuvant chemotherapy and tailor
therapeutic strategies in a stage I–III setting, which partially
May 2022 | Volume 13 | Article 819807
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provides an insight into the multidimensional information
regarding the heterogeneity of TME.
TUMOR MICROENVIRONMENT-RELATED
SIGNATURES THAT FACILITATE
TAILORING IMMUNOTHERAPY

The occurrence of the immunotherapeutic era further
encourages the researchers to dissect the TME heterogeneity
and work in promoting its clinical translation to better tailor
immunotherapy. The lack of robust biomarkers that predict
beneficial and durable responses and avoid unnecessary and
unfavorable drug adverse events is the major challenge
encountered in current ICB therapy. Though programmed
death ligand-1 (PD-L1) expression level, TMB, neo-antigen
burden, copy-number alterations (CNAs) (76), mismatch
repair deficiency, antigen presentation defects, intestinal
microbiota, and molecular subtypes could influence ICB
efficacy to a certain extent, none of them could independently
and perfectly determine ICB response and resistance.

Nevertheless, benefiting from the digital analyzer, recent studies
have indicated a collection of TME-related models for assessing
immunotherapeutic benefits in pan-cancer. The T cell-inflamed
GEP score (5) is either an individual cross-tumor predictor or
combined with other predefined biomarkers like TMB (16), for
immunotherapy, especially in PD-1 blockade- or PD-L1-based
combination therapy regimens. Additionally, another pan-cancer
scoring scheme, namely, immunophenoscore, was built using
machine learning to identify determinants of tumor
immunogenicity for response to anti-cytotoxic T lymphocyte
antigen-4 (CTLA-4) and anti-PD-1 therapy (77). TIDE, a
computational method developed by Peng Jiang et al. for
pretreatment gene expression data, models two primary tumor
immune-evasion mechanisms: the induction of T-cell dysfunction
and the T-cell exclusion, which may contribute to its more precise
prediction of patient response in the setting offirst-line anti-PD-1 or
anti-CTLA-4 treatment than PD-L1 level and TMB (57).
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However, the biomarkers for immunotherapy in gastric
cancer are relatively rare, but reports in recent years still yield
an exciting breakthrough. In the PNM score system, Lin et al.
evidenced that combination of the immune/stromal cells in TME
signature, the protein-coding genes signature, and TMB would
be a promising candidate to predict gastric cancer patients’
response to anti-PD-1/PD-L1 treatment (58).

Notably, the latest TMEscore proposed by Zeng et al.
consistently supported the essential role that TME plays in ICB
treatment of gastric cancer (6, 10). The TMEscore is elevated inMSI
and EBVmolecular subtypes (22–24), which have been suggested to
be more sensitive to PD-1 immune-checkpoint blockade but could
not completely explain the therapeutic response (6, 78) in that EBV+

tumors with low mutation burden could also exhibit immune
infiltration (24, 78). However, TMEscore significantly elevated the
predictive value for ICB therapy, relative to EBV or MSI status
alone, which is potentially attributed to its close correlation with
both EBV and MSI status. Furthermore, the intrinsic metabolic and
genomic characteristics, as well as molecular subtype distribution of
gastric cancer in different TMEscore subsets, were also discussed to
explore the underlying TME-metabolic and TME-genome network,
which confer the immunotherapeutic resistance or response (6). In
this regard, two ongoing prospective observational studies are
exploring its correlation with immunotherapeutic efficacy in the
setting of advanced gastric cancer (NCT04850716) and the
perioperative treatment of locally resectable adenocarcinoma of
the esophagogastric junction or gastric cancer (NCT04850729).
Collectively, taking TME signatures or the biomarker
combination strategy into consideration may optimize the current
biomarker system of gastric cancer to further advance precision
immunotherapy (Table 1).
CONCLUSIONS

The TME has profound clinical and therapeutic implications in
gastrointestinal cancer. Comprehensive and quantitative
interrogation of TME requires the employment of traditional
TABLE 1 | The implementation and comparison of biomarkers based on TME evaluation.

Methodology Cancer Biomarkers Prognosis Chemotherapy response Immunotherapy response

IHC GC GC-SVM classifier Yes Yes
GC Immunoscore/TNM-Immune Yes
GC ISGC Yes
CRC CRS Yes

bulk-seq GC Immunoscore Yes Yes
GC TMEscore Yes Yes
GC PNM score system Yes Yes Yes
GC/CRC IO-score Yes Yes
CRC CSS sets Yes Yes
CRC TMRS Yes Yes
CRC pIRS Yes
Pan-cancer T cell-inflamed GEP score Yes
Pan-cancer Immunophenoscore Yes
Pan-cancer TIDE Yes

Radiomics GC RIS Yes
May 2022 |
TME, tumor microenvironment; IHC, immunohistochemistry; GEP, gene expression profile.
Volume 13 | Article 819807

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ye et al. Tumor Microenvironment Evaluation for Gastrointestinal Cancer
molecular and cellular methodologies, as well as emerging
computational tools for analyzing multi-omics data. The
Immunoscore detected using IHC is adopted in the ESMO
clinical practice guideline for early-stage CRC (31). However,
the IHC is relatively labor-intensive, time-consuming, technically
challenging, and not suitable for clinical applications, as compared
to NGS technology.

The maturity of NGS-based technology triggered an ever-
increasing sophisticated toolbox for RNA-seq and the availability
of enormous amounts of datasets, which are essential
prerequisites to extract information for precision cancer
therapy and explore novel frontiers. Tumors are complex
ecosystems comprised of diverse cell populations. The
enumeration of TIL phenotypic diversity and composition in
solid tumors recently attracted considerable interest. Immune
deconvolution techniques extracted the data from RNA-seq or
microarray, providing a more comprehensive landscape of the
tumor and the microenvironment. Advances in single-cell
technology allow TILs to be profiled with increasingly high
resolution and accuracy. An in-depth understanding of TIL
biology, both at crucial clinical milestones and in relation to
therapy, would aid in the discovery of predictive and prognostic
signatures and novel treatment targets. Clinical translation of
robust biomarkers is pivotal for precision treatment
interventions and optimized therapy regimens.

However, intertumoral heterogeneity poses considerable
challenges to address the potential batch effects and fluctuating
cutoff of gene signature scores in individual patients, which could
be the primary obstacles that delay the clinical transition of most
existing signatures from bench to bedside. Both challenges could
be overcome by ceaselessly updating computational algorithms
in the upcoming years. We anticipate that existing and future
computational tools will be instrumental for detecting TME in
individual patients and will ultimately facilitate precision
treatment for malignant cancers, which provides a rationale for
optimal combination of TME-associated biomarkers and other
well-recognized biomarkers, or latent synergy among biomarkers
derived from different omics.
OUTSTANDING QUESTIONS

The advances in clinical translation of TME estimation, such as
Immunoscore and TMEscore for predicting therapeutic efficacy,
pose new challenges to unbiased spatiotemporal assessment of
microenvironment, which demands considerable research for
sophisticated computational algorithms in the upcoming future
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by experts in computational biology and artificial intelligence.
Despite the advent and development of single-cell and spatial
transcriptomics providing insights into dynamic evolution and
intercell crosstalk within TME with high resolution, the lack of
adequate single-cell data and feasible methodologies remains an
obstacle for decoding explicit phenotypical characterization of
immune cell populations, and a more comprehensive and
spatiotemporal landscape of TME contexture, as well as its
correlation with clinical outcomes. Substantial research has
evidenced the dynamic shift of local immune contexture from
a preexisting to a therapy-induced immune response that
accompanies high heterogeneity and plasticity, which
highlights TME remolding as a crucial and novel orientation
for inducing antitumor immunity. Currently, the insufficiency of
large-scale and dynamic multi-omics cohorts under a uniform
detection criterion is a major stumbling block to unraveling the
actual and perplexing correlation between spatiotemporally
heterogeneous TME and phenotypes of malignancies.
Collectively, the active collaboration between computational
biologists and physician-scientists, as well as the integration of
multi-omics biological data and emerging artificial intelligence
algorithms, warrants rational clinical translation of
investigations of univocal TME characterizations along the
process of tumorigenesis, progression, and response or
resistance for antitumor therapy.
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