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Abstract

Crop cultivar identification is fundamental for agricultural research, industry and policies.

This paper investigates the feasibility of using visible/near infrared hyperspectral data col-

lected with a miniaturized NIR spectrometer to identify cultivars of barley, chickpea and sor-

ghum in the context of Ethiopia. A total of 2650 grains of barley, chickpea and sorghum

cultivars were scanned using the SCIO, a recently released miniaturized NIR spectrometer.

The effects of data preprocessing techniques and choosing a machine learning algorithm on

distinguishing cultivars are further evaluated. Predictive multiclass models of 24 barley culti-

vars, 19 chickpea cultivars and 10 sorghum cultivars delivered an accuracy of 89%, 96%

and 87% on hold-out sample. The Support Vector Machine (SVM) and Partial least squares

discriminant analysis (PLS-DA) algorithms consistently outperformed other algorithms. Sev-

eral cultivars, believed to be widely adopted in Ethiopia, were identified with perfect accu-

racy. These results advance the discussion on cultivar identification survey methods by

demonstrating that miniaturized NIR spectrometers represent a low-cost, rapid and viable

tool. We further discuss the potential utility of the method for adoption surveys, field-scale

agronomic studies, socio-economic impact assessments and value chain quality control.

Finally, we provide a free tool for R to easily carry out crop cultivar identification and mea-

sure uncertainty based on spectral data.

Introduction

Crop cultivar identification is an important issue for both agricultural research and policies.

Progress toward agricultural intensification and value chains development policies in sub-

Saharan Africa must rely on valid measurements to be successful [1]. Furthermore, a large

body of scholarship relies on empirical measures of cultivars. Examples include assessing the

on-farm impact of newly developed cultivars [2, 3], estimating adoption rates of cultivars at

the national level [4, 5] or developing recommendation areas for future crop dissemination

efforts based on agro-ecological variables [6]. In addition, cultivar identification is also of tech-

nical and economic importance for the agricultural industry. At different stages of the value
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chain, assessment of cultivar uniformity is often crucial for the production of high quality

seeds or to match consumer preferences.

There is no doubt that estimating modern cultivar adoption is a challenging task. Currently,

household surveys relying on farmers’ elicitation represent the most common source of data

[5, 7]. Various other methodologies, such as sales inquiries or expert opinion estimates have

also been employed [4]. However, assessing the extent of measurement errors was impossible

in the absence of an objective benchmark. Since 2010, the technology of DNA fingerprinting

has become increasingly affordable, providing an opportunity to conduct field survey valida-

tion exercises in a variety of contexts. Recent findings on various crops have demonstrated

that no other method can match the accuracy of DNA fingerprinting [8–11]. However, DNA

fingerprinting remains costly and time-consuming to implement and can pose some logistical

challenges. Thus, there is a strong interest in exploring alternative methods of data collection

that could be used in combination.

Near-infrared (NIR) spectrometry -–a technique that collects the reflected light of a sam-

pled material in the near-infrared region of the electromagnetic spectrum–is an alternative

method that can deliver information on the biological composition and surface characteristics

of grains. Each type of molecule vibrates in its own unique way; and molecular vibrations

interact with light to create a unique spectral signature. The main sources of spectral variance

include grain size (large kernels reflecting more variations), grain shape and curvature [12] as

well as grain position and orientation during scanning. Spectroscopy has been previously

applied for varietal identification of rice [13–15], maize [16–17], wheat [18–19] and soybean

[20]. Several other studies have used the technique to assess the content and quality of a wide

diversity of agricultural products [21]. Analyses are generally performed by specialized labora-

tories and rely on different devices that generate spectral data with different wavelength

ranges. As mentioned by [22], available knowledge in the recent scientific literature has tended

to rely on partial least squares discriminant analysis (PLS-DA) under laboratory conditions,

using a small number of varieties only. It is currently unclear whether NIR spectrometry could

represent a valuable and scalable tool for cultivar identification in sub-Saharan Africa.

Recently, miniaturized, lower cost NIR spectrometers have been commercialized and could

represent an alternative to laboratory-based spectral measurements. [23] demonstrate the

practical applicability of such devices for detecting falsified artemisinin-based malaria medi-

cines. While these spectrometers have a lower resolution than laboratory-based devices, the

possibility to generate more data at a reduced cost, coupled with the use of machine learning

methods, could potentially offset this disadvantage. Applied in numerous fields of research,

methods such as Random Forest or Support Vector Machines have demonstrated their supe-

rior accuracy for classification models [15, 22].

To our knowledge, no studies have assessed the feasibility of this approach in the field of

agricultural research. Here, we propose to evaluate a miniaturized spectrometer device for dis-

criminating cultivars of barley, chickpea and sorghum in Ethiopia. These three crops were cho-

sen for their important contribution to the Ethiopian agricultural system as well as their

different morphological attributes in terms of shape, size, texture and colour. Barley grains

have an elongated shape and are divided longitudinally in half by a crease extending over the

whole length of the grain. Grains are pale yellow, with very low levels of distinctness between

varieties. Chickpea is one of the principal food legumes in Ethiopia, ranking third in produc-

tion next to faba bean and haricot bean. The two main types of chickpea grown in Ethiopia are

desi (small size, coloured grain coat and angular shaped) and kabuli (large size, beige coloured

and owl’s head shaped). [24] observed a high diversity for different grain traits among chickpea

accessions. Sorghum, due to its high tolerance to drought, is the most important cereal in arid

regions of Ethiopia. Its grains are small, round to oval and can be white, creamy, yellow or red.

Barley, chickpea and sorghum cultivar identification using a miniaturized NIR spectrometer
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While visual discrimination can be achieved for chickpea cultivars by a well-trained expert, a

majority of barley and sorghum cultivars look indistinguishable to most experts.

The main objective of the research was the identification of barley, chickpea and sorghum

cultivars that have been disseminated in Ethiopia, using a miniaturized NIR spectrometer. The

second objective was to compare model performances among different preprocessing tech-

niques and choosing machine learning algorithm. Hypothesis of this study was that miniatur-

ized NIR spectrometers can be suitable for cultivar identification. The potential applications

and scalability of these tools for agricultural research, policies and industry in sub-Saharan

Africa are finally discussed.

Materials and methods

Grain samples collection and preparation

In Ethiopia, the term improved variety is used to designate a cultivar which has been tested by

breeders and evaluated for its superiority over landraces [25]. Dry cultivars of barley, chickpea

and sorghum grains were collected at the Ethiopian Institute of Agricultural Research (EIAR)

in June 2017. The EIAR issued the permission for scanning all cultivars used in this study. The

study did not involve endangered or protected species. Grains were produced in the same year

to avoid any effect of seed age. Since there is strong interest in upscaling cultivar identification

using large scale household surveys, we reproduced the conditions in which grains from a sea-

sonal harvest would be collected and dried before processing. Selected cultivars represent the

most widely adopted within Ethiopia, as well as some newly developed ones. A list of cultivars

included in the study is available in S1 Table. A total of 50 grains per cultivar were obtained,

resulting of a sample size of N = 24 cultivars and n = 1200 barley grain samples; N = 19 culti-

vars and n = 950 chickpea grain samples; and N = 10 cultivars and n = 500 sorghum grain

samples.

Spectral measurements using a miniaturized NIR spectrometer

In recent years, many companies have started to commercialize miniaturized sensors based on

the emergent and promising technique of NIR spectroscopy [26]. Compared to conventional,

laboratory-based spectrometers, miniaturized NIR spectrometers require minimal equipment

and user involvement. For the purpose of this study, the Consumer Physics SCIO, delivered as

a $1000 developer kit at the time of writing was purchased [27]. The device was operated using

a smartphone application and requires an internet connection, with spectral data stored

remotely. The device’s full wavelength coverage is 740–1070 nm (331 variables). All grain sam-

ples were carefully scanned in a similar position, as depicted in Fig 1.

Pre-processing and classification algorithms

Pre-processing methods are helpful in eliminating noise generated by spectral data. Raw spec-

tral data were thus processed using a combination of scatter corrections that include Standard

Normal Variate (SNV) as well as first and second degree derivatives. The Savitzky-Golay and

Gap-segment derivative smoothing filtering algorithms were also applied, using the R package

prospectr [28]. In our evaluation, we then compare the performance of five algorithms to

develop predictive multiclass models of grain cultivar identification: AdaBoost, Naïve Bayes,

partial least squares discriminant analysis (PLS-DA), Random Forest (RF) and Support Vector

Machine (SVM). These algorithms have achieved some degree of success in the domain of

spectral data analysis [15, 22, 16]. However, these algorithms make different assumptions and

reflect rival schools of thought [29].

Barley, chickpea and sorghum cultivar identification using a miniaturized NIR spectrometer
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AdaBoost

Adaboost is an ensemble learning technique that uses boosting to train models sequentially

[30]. A new model is trained at each round and the next model attempts to correct the errors

from the previous one. Models are added until no further improvement can be made. Finally,

the algorithm classifies observations by taking a weighted vote of their predictions within the

different models trained.

Naïve Bayes

Naïve Bayes uses learning as a form of probabilistic inference, in accordance with Bayes’ theo-

rem [31]. The algorithm estimates the posterior probability P(y | x) of each class y given an

Fig 1. Photographs of the data collection protocol showing the position of barley, chickpea and sorghum seeds in the sample holder (a-c) as well as the

SCIO in scanning mode (d).

https://doi.org/10.1371/journal.pone.0193620.g001
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object’s attributes (x). Each class is defined by its probability and by the probability distribu-

tion of each attribute among the class’ members. The algorithm makes the (naïve) assumption

that the effects are independent given the cause.

Partial least squares discriminant analysis

Partial least squares discriminant analysis (PLS-DA) is based on PLS regression and has been

extensively applied in chemometrics [32]. PLS-DA extracts principal components from spec-

tral data and ranks them given the more explained variance. Once a PLS model has been

trained, the influence of predictors is captured by measuring the Variable Importance in Pro-

jection (VIP) scores derived from the PLS coefficients for the optimal set of predictors. The

algorithm maximizes the covariance value between different classes and predictors are ranked

by these scores and selected.

Random Forest

Random Forest (RF) uses sets of inductive rules that are assembled to grow a forest of decision

trees. First, decision trees are grown from a random subset of variables and observations. At

each node (or decision rule), the attribute that on average yields the lowest class entropy across

all its branches is chosen, weighted by how many observations go into each branch. Each leaf

(or final node) of the tree corresponds to a single rule with a condition consisting of the con-

junction of all edge labels on the decision path. A key feature of decision trees is that condi-

tions are selected in a way that simultaneously optimizes the example distribution in all

successors of a node [33]. In a RF model, each tree is constructed from a bootstrap sample of

the dataset. A majority vote from the number of trees grown is used to determine the final clas-

sification of an observation.

Support Vector Machine

The Support Vector Machine (SVM) algorithm uses the maximum margin principle to fit an

optimal hyperplane between observations. Support vectors are the critical elements of the

training set, as they determine the weights and thus the boundary between observations [34].

A kernel function is used as a similarity measure to construct the maximum margin models

and find the optimal hyperplane. During the training process, observations are classified

according to whether they lie beyond the margin, violate the margin or lie on the margin. The

separating hyperplane relies on data points that lie on the margin, called the “support vectors”.

SVM uses nonlinear mapping to map data into a high-dimensional feature space. In the case

of non-linearly separable data, the margin assumption is relaxed, allowing some observations

to violate the margin condition. Selection of a kernel function influence model performance.

Here, a polynomial kernel function was used.

Algorithm validation

In order to validate these algorithms, a two-step process was performed (Fig 2). Original spec-

tral data were randomly split into training and test sets in a stratified way (both sets have a sim-

ilar number of samples per cultivar: 35 samples in the training set, and the remaining 15

samples in the test set). Using five different algorithms, 5-fold cross-validation was executed

on the training set. Cross-validation consists of partitioning the dataset into M subsets that

contain the distribution of cultivars, training the model on M-1 and testing it on the remaining

subset sample. Parameters were optimized during cross-validation (See S2 Table) and the best

sets of values were then used to predict cultivars in the test set (hold-out sample). Overall

Barley, chickpea and sorghum cultivar identification using a miniaturized NIR spectrometer
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model accuracy was assessed by the percentage of correctly classified samples in the test set.

We used R [35], packages caret [36] for cross-validation on the training set as well as multiple

packages for predicting the test set [37–40]. For each device, the raw spectra and 12 prepro-

cessing techniques across five algorithms were trained and validated, totaling 390 executions

(130 for each crop).

Results

The average raw spectra of barley, chickpea and sorghum grains obtained with the SCIO are

shown in Fig 3. Chickpea grains depicted very singular spectra, while barley and sorghum

grain absorbances were more closely related. Standard deviations (s.d) were comprised in the

.07 to .08 range for all three crops.

Barley cultivar identification

The identification results are shown in Fig 4. The SVM classifier with a first derivative and

window size 5 Savitzky-Golay filtering (D1W5) yielded the highest classification accuracy

(86.9% on test set) using the SCIO. Regarding the pre-processing techniques used, we observe

that transformations involving the use of derivatives (d1 or d2) performed significantly better

than other techniques. The SVM and PLS-DA models outperformed other algorithms.

Table 1 presents the confusion matrix from the SVM classifier with a first derivative and

window size 5 Savitzky-Golay filtering (D1W5) on hold-out sample. Eight varieties achieved a

perfect score, while eleven reached results above the 80% mark. The varieties Beka, HB-52 and

HB-1307, believed to have reached some levels of adoption among Ethiopian farmers [4]

Fig 2. Diagram of the different calibration and validation processes used for grain cultivar identification.

https://doi.org/10.1371/journal.pone.0193620.g002
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achieved perfect accuracy while Misccal-21 was often confused with the Sabini variety. Five

cultivars failed to pass the 80% mark, with important misclassification errors occurring for the

Holker and Shege varieties (with Holker, a widely adopted cultivar, often misclassified here as

Beka and Shege misclassified as EH-1847 and HB-1966).

Chickpea cultivar identification

Chickpea cultivars display a wide range of distinct morphological attributes [24] and predictive

models achieved the highest accuracy among the three crops. As demonstrated in Fig 5, SCIO

data analyzed with a SVM classifier outperformed AdaBoost and PLS-DA models within all

pre-processing techniques. Nearly 95% of correctly classified samples were obtained by the

SVM classifier with a first derivative and window size 5 Savitzky-Golay filtering (D1W5).

Table 2 shows the confusion matrix of this model. According to [4], the most adopted cultivars

in Ethiopia include Arerti (6.7%), Habru (2.1%), Shasho (1.6%) and Natoli (0.3%). It is note-

worthy that all cultivars are above the 80% mark, while eight cultivars were identified with per-

fect accuracy (including Arerti and Habru).

Sorghum cultivar identification

The different models presented in Fig 6 produced similar patterns for sorghum cultivar identi-

fication. Firstly, pre-processing techniques involving the use of derivatives (d1 or d2) proved

once again effective in removing the noise present in raw data. Secondly, better performances

are delivered by the SVM and PLS-DA classifiers. The overall classification accuracy was 89%

for the PLS-DA model with a second degree derivative as well as for the SVM model on raw

data. The confusion matrix of the latter is presented in Table 3. It can be observed that out of

Fig 3. Average raw spectra of barley, chickpea and sorghum samples scanned with the SCIO (740–1070 nm).

https://doi.org/10.1371/journal.pone.0193620.g003
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ten cultivars, five achieved prefect classification accuracy. The Abshir, Birhan and Teshale cul-

tivars suffered from misclassification errors and failed to pass the 80% mark.

Discussion

The findings presented in this paper demonstrate the feasibility of crop cultivar identification

using miniaturized NIR spectrometers. Twenty four barley cultivars, nineteen chickpea culti-

vars and ten sorghum cultivars were classified with an overall correct classification accuracy

respectively of 89%, 96% and 87% on hold-out sample. Previous studies have also demon-

strated the potential of NIR spectroscopy for cultivar identification, though discrimination

was achieved under laboratory conditions and using five classes or less [13, 15]. Using a large

sample size and an important number of classes to discriminate per crop, this study obtained

acceptable performances (above the 80% mark) for practical applications.

Various methodologies, such as sales inquiries, expert opinion estimates and household

survey questionnaires are currently employed for cultivar identification, each with their

own inherent limitations [4]. In the ranking of cultivar identification survey methods, minia-

turized NIR spectrometers could therefore gain in popularity. While it is impossible to deter-

mine the accuracy of other non-DNA based survey methods–household surveys, expert

opinion, and sales inquiries–NIR-based cultivar identification methods offer this feature,

through cross-validation. Because of this major advantage, we argue that use of miniaturized

NIR spectrometers should be seen as the second-best method, following the “gold standard” of

DNA fingerprinting.

Fig 4. Heatmap of the overall classification accuracy of barley cultivar identification (N = 24 varieties and n = 1200 samples) using a combination of pre-

processing methods (in rows) and models (in columns) on spectra collected with the SCIO. 1 Train represents the 5-fold cross-calibration on the training set of the

samples. 2 Test represents the test set of the samples.

https://doi.org/10.1371/journal.pone.0193620.g004
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It is striking that a similar pattern emerged for all three crops regarding the best pre-pro-

cessing techniques and chosen algorithms. Pre-processing techniques involving the use of

derivatives (d1 or d2) and a Stavitzky-Golay (SG) smooth filtering have demonstrated more

effectiveness in dealing with signal noise. In addition, the PLS-DA and SVM algorithms con-

sistently outperformed other algorithms, delivering accuracies above the 80% mark regardless

of the applied pre-processing technique. By contrast, RF performed well on all crops, but only

after data transformation. These results demonstrate that machine learning methods appear

particularly fitted for classification problems relying on spectral data. However, contrary to

other studies [15, 22, 16], we do not see evidence of the superiority of machine learning algo-

rithms over the more traditional PLS-DA method. This could partly be explained by the

Table 1. Confusion matrix of barley cultivars from the model that achieved the best score (SVM + d1 + SG window size 5). Overall classification accuracy is 86.9%.

Classified as

Ar Ba Be Be-1 Cr De Di EH-

1493

EH-

1847

Ex Gr HB-

1307

HB-

1533

HB-

1963

HB-

1964

HB-

1965

HB-

1966

HB-

52

Ho IB Mi Sa Sh Tr %

Ar 12 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 80

Ba 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Be 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Be-1 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Cr 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 87

De 0 0 0 0 0 14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93

Di 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

EH-

1493

0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 93

EH-

1847

0 0 0 0 0 0 0 0 14 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 93

Ex 0 0 0 0 0 2 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87

Gr 1 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 93

HB-

1307

0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 100

HB-

1533

0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 3 1 0 0 0 0 73

HB-

1963

0 0 0 0 0 2 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 87

HB-

1964

0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 100

HB-

1965

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 3 0 0 0 0 0 0 80

HB-

1966

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 10 0 0 0 0 0 3 0 67

HB-52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 100

Ho 0 0 7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 7 0 0 0 0 0 47

IB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 100

Mi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 4 0 0 73

Sa 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 0 0 87

Sh 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 4 0 0 0 0 0 8 0 53

Tr 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 93

Ar: Ardu 1260 B; Ba: Bahati; Be: Beka; Be-1: Bekoji-1; Cr: Cross 41/98; De: Deribe; Di: Dimtu; EH-1493: idem; EH-1847: idem; Ex: Explorer; Gr: Grace; HB-1307: idem;

HB-1533: idem; HB-1963: idem; HB-1964: idem; HB-1965: idem; HB-1966: idem; HB-52: idem; Ho: Holker; IB: IBON 174–03; Mi: Misccal-21; Sa: Sabini; Sh: Shege; Tr:

Traveller.

https://doi.org/10.1371/journal.pone.0193620.t001
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narrower wavelength range of miniaturized NIR spectrometers, implying a reduction in the

number of dimensions algorithms must work with.

Since the sampled grains were collected from research stations, we are unable to account

for sources of environmental variability. Although phenological traits, mostly determined by

crop genetics, are unlikely to be severely modified by growing conditions, it is crucial to better

explore this question. This should be recognized as a limitation of the study and encourage

future work to better account for potential sources of seasonal and environmental heterogene-

ity among cultivars. Particularly, future work should demonstrate the extent to which minia-

turized NIR spectrometers can detect differences in compounds that are cultivar-specific vs
differences in major grain components such as protein and lipid concentration. The question

of how surface damage due to weathering or insects influence NIR accuracy is also an impor-

tant one. The accuracy of results obtained here could certainly be improved by complementing

spectral measurements with other methods, for instance computer vision [17, 41] or more

advanced machine learning methods relying on ensemble models [33].

The high number of cultivars distinguished in the three crops has demonstrated the suit-

ability of miniaturized NIR spectrometers for future survey designs. This method would allow

fast, low-cost and non-destructive measurement of cultivar adoption, as well as the possibility

to assess measurement errors, through cross-validation. The implications of our results are dis-

cussed in terms of four potential applications: i) varietal adoption surveys; ii) field-scale agro-

nomic studies; iii) socio-economic impact assessments and iv) value chain quality control

procedures.

Fig 5. Heatmap of the overall classification accuracy of chickpea cultivar identification (N = 19 cultivars and n = 950 samples) using a combination of pre-

processing methods (in raw) and models (in columns) on spectra collected with the SCIO. 1 Train represents the 5-fold cross-calibration on the training set of the

samples. 2 Test represents the test set of the samples.

https://doi.org/10.1371/journal.pone.0193620.g005
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First, surveys whose objective is to estimate adoption rates of cultivars at a regional or

national level could lean toward a wider use of miniaturized NIR spectrometers. On the one

hand, surveys relying on large scale DNA fingerprinting would benefit from complementing

genetic identification with spectral measurements. Additional data collection costs could be as

low as $0.1 per sample after material acquisition. Indeed, the establishment of spectral refer-

ence libraries is a critical aspect of future efforts directed toward cultivar identification and

generating spectral libraries of widely adopted cultivars should be a priority. On the other

hand, adoption surveys can minimize the costs of large scale DNA fingerprinting by using a

coupled DNA fingerprinting / NIR spectrometry scheme on a stratified sub-sample. Crop

genetic identity can then be used to calibrate spectra obtained from NIR spectrometers on the

rest of the sample. The costs of cultivar identification would thus largely decrease. The mini-

mum number of grains and cultivars to be included in a reference library are crop- (variability

in grain characteristics) as well as scale-specific. Libraries that include too few samples increase

the chance of not being representative of the prediction sample.

To this effect, Fig 7 provides interesting insights. Based on the data presented in this study,

the plot compares the accuracy of prediction per crop given the percentage of the sample DNA

fingerprinted. Assuming that a random stratified sample is DNA fingerprinted, and used as a

calibration library, it is observed that cost-effectiveness would be reached by DNA fingerprint-

ing 65% of barley grains, half of the chickpea grains and 70% of sorghum grains. Beyond these

levels, the additional costs of DNA analysis are probably not worth the gains in accuracy.

Second, studies which seek to assess the on-farm impact of specific varieties could greatly

benefit from the use of miniaturized NIR spectrometers. Field-scale studies usually comple-

ment agronomic trials, realized under controlled conditions [42, 3, 43]. Although some

Table 2. Confusion matrix of chickpea cultivars from the model that achieved the best score (SVM + d1 + SG window size 5). Overall classification accuracy is 94.7%.

Classified as

AD Ak Ar Ch Da Di Du DZ-11 DZ-4 Ej Ha Ho Ma Mi Na Sh Te Tek Wo %

AD 14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 93

Ak 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Ar 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Ch 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Da 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Di 0 0 0 0 0 14 0 0 0 0 0 0 1 0 0 0 0 0 0 93

Du 0 0 0 0 1 0 14 0 0 0 0 0 0 0 0 0 0 0 0 93

DZ-11 0 0 0 0 0 0 1 14 0 0 0 0 0 0 0 0 0 0 0 93

DZ-4 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 100

Ej 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 2 0 0 0 87

Ha 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 100

Ho 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 100

Ma 0 0 0 0 0 1 0 0 0 0 0 0 14 0 0 0 0 0 0 93

Mi 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 100

Na 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 0 0 0 0 93

Sh 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 12 0 0 0 80

Te 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 14 0 0 93

Tek 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 100

Wo 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 12 80

AD: Acos Dubie; Ak: Akaki; Ar: Arerti; Ch: Chefe; Da: Dalota; Di: Dimtu; Du: Dubie; DZ-11: DZ-10-11; DZ-4: DZ-10-4; Ej: Ejeri; Ha: Habru; Ho: Hora; Ma: Mariye;

Mi: Minjar; Na: Naatolii; Sh: Shasho; Te: Teji; Tek: Teketay; Wo: Worku.

https://doi.org/10.1371/journal.pone.0193620.t002
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caution is observed in the literature regarding the extrapolation from plot-level experiments to

farm fields [44], field-scale agronomic studies remain scarce [45]. Miniaturized NIR spectrom-

eters could be a crucial component of field-scale research. Evidence could be further generated

on the suitability of a cultivar to different environments as well as the contributing factors to

observed yield gaps.

Third, additional pieces of evidence often need to be gathered on the socio-economic

aspects of varietal adoption. While several research designs are possible, these studies typically

Fig 6. Heatmap of the overall classification accuracy of sorghum cultivar identification (N = 10 cultivars and n = 500 samples) using a combination of pre-

processing methods (in raw) and models (in columns) on spectra collected with the SCIO. 1 Train represents the 5-fold cross-calibration on the training set of the

samples. 2 Test represents the test set of the samples.

https://doi.org/10.1371/journal.pone.0193620.g006

Table 3. Confusion matrix of sorghum cultivars from the model that achieved the best score (SVM + raw data). Overall classification accuracy is 88.7%.

Classified as

76TI#23 Abshir Birhan Dekeba Gambella 1107 Gubiye Macia Meko-1 Melkam Teshale %

76TI#23 14 0 0 0 0 0 0 0 1 0 93

Abshir 4 10 1 0 0 0 0 0 0 0 67

Birhan 0 4 11 0 0 0 0 0 0 0 73

Dekeba 0 0 0 15 0 0 0 0 0 0 100

Gambella 1107 0 0 0 0 15 0 0 0 0 0 100

Gubiye 0 0 0 0 0 15 0 0 0 0 100

Macia 0 0 0 0 0 0 15 0 0 0 100

Meko-1 0 0 0 0 0 0 0 15 0 0 100

Melkam 0 0 0 0 0 0 0 2 13 0 87

Teshale 0 0 0 5 0 0 0 0 0 10 67

https://doi.org/10.1371/journal.pone.0193620.t003
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rely on two or more waves of data collection [46–48]. In field areas with high varietal diversity,

one can imagine a research design where all grains would be DNA fingerprinted and NIR

scanned during a baseline survey, while the follow-up survey could generate spectral data only

and use the calibrations obtained at baseline survey to estimate cultivar adoption. This would

greatly reduce survey costs while also providing statistical information on the accuracy of culti-

var identification. For both field-scale agronomic studies and socio-economic studies, it is usu-

ally not necessary to identify all cultivars, but only the cultivars of interest. Thus, our finding

that a total of eight barley cultivars, nine chickpea cultivars and five sorghum cultivars

achieved perfect classification accuracy contributes in establishing the validity of the method

for binary classification models (cultivar of interest vs other).

Fourth, these results are useful for governments and institutions interested in establishing

grain certification procedures and grain quality controls [49, 19]. Such a policy framework

would undoubtedly enhance the quality of commercially-available grains while providing posi-

tive feedback for smallholder farmers. Certainly, miniaturized NIR spectrometers are effective

instruments to perform quality controls along the value chain. The considerable amount of

data available on grain production units could facilitate the calibration of accurate varietal

identification models.

Conclusion

Crop cultivar identification is a major preoccupation for both research and policy and is neces-

sary information that needs to be obtained at various stages of the value chain. The time-con-

suming and costly nature of DNA fingerprinting can restrict the ability of practitioners to

Fig 7. Accuracy of multiclass predictive models of barley, chickpea and sorghum cultivar identification on test set given the percentage of DNA fingerprinted

grains used as calibration library.

https://doi.org/10.1371/journal.pone.0193620.g007
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obtain valid measurements. Our results provide empirical evidence of the applicability of mini-

aturized NIR spectrometers and machine learning methods for crop cultivar identification.

Interactions between preprocessing techniques and learning methods that contribute to model

performance were explored and a reproducible R code can be used to replicate the analysis

presented in this article. These results certainly require further validation and future research

should seek to better understand site-specific variations, grain surface damages as well as grain

moisture content status. Finally, as an added feature of this study, we provide an R code that

allows grain varietal identification by testing the full combination of pre-processing methods

and algorithms (S2 File). Cross-validation on training set and prediction on test set are output-

ted as a CSV file. Certainly, miniaturized NIR spectrometers and machine learning tools have

the ability to shed a different light on cultivar identification methods.

Supporting information

S1 Table. Cultivars of barley, chickpea and sorghum tested using miniaturized NIR spec-

trometers.

(DOCX)

S2 Table. Description of tuned parameters, R package used and average execution time of

all models on both devices.

(DOCX)

S1 File. Raw datasets. Materials submitted for reproducibility.

(XLSX)

S2 File. R code. Material submitted for reproducibility. The code allows grain cultivar identifi-

cation by testing the full combination of pre-processing methods and algorithms presented

here.

(R)

Acknowledgments

This work was supported by the Bill & Melinda Gates Foundation through the Strengthening

Impact Assessment in the CGIAR (SIAC) program [grant number OPP1009472]. We are

highly indebted to the Ethiopian Institute of Agricultural Research (EIAR), particularly Mil-

lion Eshete, Berhane Lakew and Taye Tadesse for providing access to improved seed materials.

We also would like to thank Asnake Fikre (ICRISAT) and Zewdie Bishaw (ICARDA) for pro-

viding insights. This manuscript has benefited from the comments of Michael Bolton and

Lakshmi Krishnan. We finally appreciate the helpful comments of anonymous reviewers.

Author Contributions

Conceptualization: Frédéric Kosmowski, Tigist Worku.

Data curation: Frédéric Kosmowski, Tigist Worku.

Formal analysis: Frédéric Kosmowski.

Methodology: Frédéric Kosmowski, Tigist Worku.

Project administration: Frédéric Kosmowski, Tigist Worku.

Software: Frédéric Kosmowski.

Supervision: Frédéric Kosmowski, Tigist Worku.

Barley, chickpea and sorghum cultivar identification using a miniaturized NIR spectrometer

PLOS ONE | https://doi.org/10.1371/journal.pone.0193620 March 21, 2018 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193620.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193620.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193620.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0193620.s004
https://doi.org/10.1371/journal.pone.0193620


Validation: Frédéric Kosmowski, Tigist Worku.

Visualization: Frédéric Kosmowski.

Writing – original draft: Frédéric Kosmowski.

Writing – review & editing: Frédéric Kosmowski, Tigist Worku.

References
1. de Janvry A, Macours K, Sadoulet E (eds). Learning for adopting: Technology adoption in developing

country agriculture. Ferdi. France; 2017; 978-9550779-4-8.

2. Agegnehu G, Ghizaw A, Sinebo W. Yield performance and land-use efficiency of barley and faba bean

mixed cropping in Ethiopian highlands. Eur J Agron. 2006; 25:202–207.

3. Megersa G, Mekbib F, Lakew B. Performance of farmers’ and improved varieties of barley for yield com-

ponents and seed quality. J Plant Breed Crop Sci. 2015; 7(4):107–124.

4. Walker TS & Alwang J (eds). Crop improvement, adoption and impact of improved varieties in food

crops in sub-Saharan Africa. CGIAR Consortium of International Agricultural Research Centers and

CAB International. Croydon, UK; 2015.

5. Abate T, Fisher M, Abdoulaye T, Kassie GT, Lunduka R, Marenya P, et al. Characteristics of maize cul-

tivars in Africa: How modern are they and how many do smallholder farmers grow? Agric Food Secur.

2017; 6(30). https://dx.doi.org/10.1186/s40066-017-0108-6

6. Tanaka A, Johnson J, Senthilkumar K, Akakpo C, Segda Z, Yameogo LP, et al. On-farm rice yield and

its association with biophysical factors in sub-Saharan Africa. Eur J Agron. 2017; 85:1–11. https://dx.

doi.org/10.1016/j.eja.2016.12.010

7. Asfaw S, Shiferaw B, Simtowe F, Lipper L. Impact of modern agricultural technologies on smallholder

welfare: Evidence from Tanzania and Ethiopia. Food Policy. 2012; 37(3): 283–295.

8. Labeyrie V, Deu M, Barnaud A, Calatayud C, Glaszmann J, Leclerc C, et al. Influence of Ethnolinguistic

Diversity on the Sorghum Genetic Patterns in Subsistence Farming Systems in Eastern Kenya. PLoS

One. 2014; 9(3):e92178. https://doi.org/10.1371/journal.pone.0092178 PMID: 24637745

9. Maredia MK, Reyes BA, Manu-aduening J, Dankyi A, Hamazakaza P, Muimui K, et al. Testing Alternative

Methods of Varietal Identification Using DNA Fingerprinting: Results of Pilot Studies in Ghana and Zambia.

Michigan: Michigan State University. MSU International Development Working Paper No 149; 2016.

10. Kosmowski F, Aragaw A, Kilian A, Ambel A, Ilukor J, Yigezu B et al. Varietal identification in household

surveys: results from three household-based methods against the benchmark of DNA fingerprinting in

southern Ethiopia. Exp. Agri. 2018; In Press. https://dx.doi.org/10.1017/S0014479718000030

11. Wossen T, Tessema G, Abdoulaye T, Rabbi I, Olanrewaju A, Alene A et al. The cassava monitoring sur-

vey in Nigeria final report. IITA, Ibadan, Nigeria; 2017.

12. Agelet LE, Hurburgh CRJ. Limitations and current applications of Near Infrared Spectroscopy for single

seed analysis. Talanta. 2014; 121: 288–299. https://doi.org/10.1016/j.talanta.2013.12.038 PMID:

24607140

13. Attaviroj N, Kasemsumran S, Noomhorm A. Rapid Variety Identification of Pure Rough Rice by Fourier-

Transform Near-Infrared Spectroscopy. Cereal Chem. 2011; 88(5): 490–496.

14. Wang H, Chen J, Lin H, Yuan D, Wang H, Chen J, et al. Research on effectiveness of hyperspectral

data on identifying rice of different genotypes. Remote Sens Lett. 2010; 7058( 1:4):223–229.

15. Kong W, Zhang C, Fei L, Nie P, He Y. Rice Seed Cultivar Identification Using Near-Infrared Hyperspec-

tral Imaging and Multivariate Data Analysis. Sensors. 2013; 13:8916–8927. https://doi.org/10.3390/

s130708916 PMID: 23857260

16. Zhang X, Liu F, He Y, Li X. Application of Hyperspectral Imaging and Chemometric Calibrations for Vari-

ety Discrimination of Maize Seeds. Sensors. 2012; 12:17234–17246. https://doi.org/10.3390/

s121217234 PMID: 23235456

17. Chen X, Xun Y, Li W, Zhang J. Combining discriminant analysis and neural networks for corn variety

identification, Comput Electron Agric. 2010; 71: S48–S53. https://dx.doi.org/10.1016/j.compag.2009.

09.003.

18. Mahesh S, Manickavasagan A, Jayas DS, Paliwal J, White NDG. Feasibility of near-infrared hyperspec-

tral imaging to differentiate wheat classes, Biosyst. Eng. 2008; 101: 50–57.
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