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Precision genomic oncology—applying high throughput sequencing (HTS) at the point-
of-care to inform clinical decisions—is a developing precision medicine paradigm that is 
seeing increasing adoption. Simultaneously, new developments in targeted agents and 
immunotherapy, when informed by rich genomic characterization, offer potential benefit 
to a growing subset of patients. Multiple previous studies have commented on methods 
for identifying both germline and somatic variants. However, interpreting individual vari-
ants remains a significant challenge, relying in large part on the integration of observed 
variants with biological knowledge. A number of data and software resources have been 
developed to assist in interpreting observed variants, determining their potential clinical 
actionability, and augmenting them with ancillary information that can inform clinical 
decisions and even generate new hypotheses for exploration in the laboratory. Here, we 
review available variant catalogs, variant and functional annotation software and tools, 
and databases of clinically actionable variants that can be used in an ad hoc approach 
with research samples or incorporated into a data platform for interpreting and formally 
reporting clinical results.

Keywords: precision oncology, high throughput sequencing, genomic variation, cancer variants, precision 
medicine, databases, genetic

1. iNTRODUCTiON

Genomic technologies and approaches have transformed cancer research and have led to the produc-
tion of large-scale cancer genomics compendia (1, 2). The resulting molecular characterization and 
categorization of individual samples from such compendia has driven development of molecular 
subtypes cancers as well as enhanced understanding of the molecular etiologies of carcinogenesis 
(3–5). The development of novel and effective targeted therapies has proceeded in parallel with and 
been accelerated by deeper, faster, and broader genomic characterization (6), enabling early applica-
tion of molecular characterization at the point of care to inform clinical decision-making (7–10) 
and to address resistance to primary therapy (11). Genomic characterization also has applications 
in immune approaches to cancer. For example, chimeric antigen receptor T-cell (CARt) therapy has 
shown great success in diseases with well-characterized antigens that are relatively tumor-specific 
(12) as identified by genomic profiling. Variously referred to as precision oncology (13), genomics-
driven oncology (14), genomic oncology, and even simply as precision medicine, the paradigm 
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TAble 1 | Catalogs of germline and somatic variants.

Resource variant Type URl Reference

dbSNPa Germline and somatic https://www.ncbi.nlm.nih.gov/projects/SNP/ (26)
COSMICa Somatic http://cancer.sanger.ac.uk/cosmic (27)
ClinVara Germline predisposition and somatic https://www.ncbi.nlm.nih.gov/clinvar/intro/ (28)
gnomADb Germline http://gnomad.broadinstitute.org/ (29)
69 genomes from CGIc Germline http://www.completegenomics.com/public-data/69-genomes/ (30)
Personalized Genome Project Germline http://www.personalgenomes.org/ (31)
NCI Genomic Data Commons Germline and somatic https://portal.gdc.cancer.gov/ (32)
cBioPortal Somatic http://www.cbioportal.org (33, 34)
Intogen (Partial TCGA dataset) Somatic https://www.intogen.org/search (35, 36)
Pediatric Cancer Genome Project Somatic http://explorepcgp.org (37)

The most commonly used catalogs include dbSNP, COSMIC, ClinVar, and gnomAD.  
aPrimary resources useful for all studies.
bParticularly useful for exome sequencing projects.
cUseful if the Complete Genomics platform was used.
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of applying high-throughput genomic approaches to patient 
samples is rapidly changing the landscape of oncology care and 
clinical oncology research.

Conventional approaches to clinical trials design may be inad-
equate due to molecular heterogeneity of tumors derived from 
a single primary tissue (15), leading to the adoption of basket, 
umbrella, and hybrid trials designs. A number of studies are 
ongoing to determine feasibility and potential impact of precision 
genomic oncology at the point-of-care (16–18). In addition to 
studies focused on identifying targetable mutations, immune-
based therapeutic approaches are also being informed by HTS 
applied to patient samples (19–21).

One of the most recent developments in the field of precision 
oncology is the approval of Pembrolizumab (Keytruda), an anti-
PD-1 antibody that functions as a checkpoint inhibitor, by the 
US Food and Drug Administration for treatment of solid tumors 
that show genetic evidence of mismatch repair and, therefore, 
carry very high mutational burdens (22). Pembrolizumab was 
previously approved for use in melanoma, but the most recent 
approval is the first that is targeting allows a drug to be used 
in a non-tissue-specific context in patients showing a specific 
genomic marker in any solid tumor (23).

As with any clinical testing modality, whether in a research set-
ting or at the point-of-care, a clear understanding of the goals of 
applying the test is necessary when first designing the test and its 
validation. However, the flexibility and number of potential data 
items that arise from even a limited application of HTS has lead 
the US Food and Drug Administration (FDA) to begin to define 
its regulatory role (24) and, critically, how existing knowledge 
bases can be applied in real time to address findings from clinical 
HTS testing (25).

This review aims to provide an organized set of biological 
knowledge bases with relevance to the interpretation of small vari-
ants, defined as single nucleotide variants or short (on the order 
of 20 base pairs or fewer) insertions and deletions. The catalogs of 
observed variants section list large-scale catalogs of variants, use-
ful for filtering known common polymorphisms and identifying 
previously identified cancer variants. When a variant observed in 
a clinical sample has not been seen but appears to affect the pro-
tein coding sequence, the functional annotation resources section 
presents a sampling of some of the most common software and 

databases for predicting the impact on protein function. Finally, 
we catalog several data products and knowledgebases have been 
developed to provide decision support (with strong disclaimers 
and caveats) directly linking observed variants to clinical inter-
vention in point-of-care HTS applications. Integrating the vari-
ous data sources described in this review with variants observed 
in individual patients can be accomplished with combinations of 
software tools for the manipulation of variant datasets.

1.1. Catalogs of Observed Germline  
and Somatic variants
Databases of observed variation in normal populations, diseased 
individuals, and cancer compendia form the map onto which 
observed variants in patients are projected. Because of the vast 
quantities of genomic data and, specifically, DNA variants, there 
is a tension between providing rich, highly curated information 
about individual variants and producing the largest possible 
catalog of variants with manageable levels of curation. This sec-
tion reviews some of the available catalogs (Table 1) of genomic 
variation observed in the germline as well as those that appear in 
tumors as somatic mutations. Note that many of the databases 
mentioned below overlap in data sources (some nearly com-
pletely), but they may differ in the amount and depth of curation, 
additional metadata added to each variant, speed of updates, and 
methods or formats for access.

1.2. Germline
Comprehensive catalogs of germline variants inform decisions 
about the frequency of variants as seen in the general population 
as well as to identify variants that are annotated as cancer associ-
ated. In the context of tumor sequencing, common variants are 
unlikely to be genomic drivers of carcinogenesis and are often 
filtered from a report of potential somatic variants. This filter-
ing process is particularly important when tumor sequencing is 
not accompanied by matched normal sequencing. Additional 
germline databases that catalog disease-associated variants can 
be useful to begin to address familial risk and potentially phar-
macogenomic loci (38, 39).

Perhaps the oldest of the variant catalogs, dbSNP contains 
325,658,303 individual variant records (build 150, accessed 
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May 30, 2017) and is available in multiple formats, searchable, 
and linked to records in literature and other data resources and 
databases. While the vast majority of variants in dbSNP have 
been observed in individuals without cancer, somatic variants are 
included and annotated in the database. Because dbSNP is driven 
by community submission of variants, levels of evidence vary 
among individual variants. The genome Aggregation Database, 
or gnomAD (29, 40), contains information from 123,136 exomes 
and 15,496 whole-genomes from unrelated individuals sequenced 
as part of various disease-specific and population genetic studies 
(accessed May 30, 2017). These data were collected by numer-
ous collaborations, underwent standard processing, and unified 
quality control and results area accessible as a searchable online 
database and as a downloadable VCF-format text file. ClinVar 
(28), maintained by the NIH National Center for Biotechnology 
Information (NCBI), is a freely available archive for interpreta-
tions of clinical significance of variants for reported conditions. 
Entries in ClinVar are taken directly from submitters and repre-
sent the relationship between variants and clinical significance. 
When multiple submissions concerning a single variant are 
available, ClinVar supplies high-level summaries of agreement 
or disagreement across submitters. Importantly, though, clinical 
significance in ClinVar is reported as supplied by the submitter. 
The Personalized Genome Project (31) provides a limited number 
of fully open-access genome sequencing results provided by 
volunteers with trait surveys and even some microbiome surveys 
of participants. A catalog of germline variants derived from 69 
genomes sequenced using the Complete Genomics sequencing 
platform (30) may be useful for groups who have data generated 
from the same platform, particularly for identifying sequencing-
platform-specific false positive results.

1.3. Somatic
Whereas databases of germline variants are useful to filter out 
variants unlikely to be directly involved in carcinogenesis, data-
bases of somatic variants are useful to identify variants and their 
frequencies as observed in tumors. In some cases, identified 
variants may be associated with specific tumor types, offering 
mechanistic clues, particularly in the rare cancer setting where 
biological understanding may be limited.

Several catalogs of somatic variants have, at their core, variants 
derived from The Cancer Genome Atlas (TCGA). These data-
bases vary in the pipelines used to define the variants, the level 
of annotation associated with individual variants, the proportion 
of TCGA included, and methods for accessing or querying. 
Recently, National Cancer Institute (NCI) has established the 
Genomic Data Commons (GDC) to harmonize clinical informa-
tion and genomic results across enterprise cancer datasets (32), 
particularly those funded by NCI, such as TCGA. In addition to 
the adult tumors profiled as part of the TCGA, the NCI GDC 
also contains data from several pediatric tumors profiled as part 
of the Therapeutically Applicable Research To Generate Effective 
Treatments (TARGET) project (41). Cancer cell line data from 
the Cancer Cell Line Encyclopedia (CCLE) are also included (42) 
in the GDC data collection. The GDC is a modern data platform 
that provides multiple access methods, including a programmatic 
application programming interface (API), data file download, 

and web browser-based text and graphical queries and visualiza-
tion. The International Cancer Genome Consortium (ICGC) is a 
large, international collaboration with a collection of 76 studies 
(including TCGA studies) encompassing 21 tissue primary sites. 
Like the NCI GDC, the ICGC data portal provides modern data 
platform approaches to data access, visualization, and query (43). 
The Catalog of Somatic Mutations in Cancer (COSMIC) database 
is perhaps the largest and best-known cancer variant database. 
It presents a unified dataset consisting of curated cancer variants 
for specific genes as well as genomic screens from projects, such 
as TCGA. Several other cancer variant data resources are listed 
in Table 1.

2. FUNCTiONAl ANNOTATiON 
ReSOURCeS

When faced with variants with little or no literature or database 
support, differentiating those that variants that are likely to be 
deleterious, perhaps contributing to carcinogenesis, versus those 
that likely are tolerated by the cell is a critical task, particularly 
in the setting of clinical precision genomic oncology. Note that 
determing that a variant is deleterious is not likely to result in a 
change in diagnosis, prognosis, or therapy. However, prioritizing 
variants for further study, research interest, and for discussion 
in forums such as a molecular tumor board is a valuable and 
necessary aspect of applying genomic technologies in the clini-
cal arena.

A number of algorithms and methods have been developed 
to predict the effect of observed variants on protein structure 
and function as well as the potential for clinical impact. These 
prediction methods utilize features of the variant and its context, 
such as sequence identity, sequence conservation, evolutionary 
relationship, protein primary and secondary structure, entropy-
based protein stability, and approaches such as clustering based 
on sequence alignments and machine learning. Some of them are 
specific to the type of variant or mutation, some to a disease type, 
and some more general. Therefore, applying these functional 
annotational tools and interpreting the results in a clinical or 
research setting may require significant human curation before 
being recognized as clinically actionable. Here, we present a review 
of a representative set of approaches for predicting pathogenicity 
of different variants. For a comprehensive list of prediction tools 
and their details, see Table  2. For more detailed scientific and 
technical explanations of these methods, we refer the reader to 
a comprehensive review (44).

2.1. SiFT
Sorting Intolerant From Tolerant, or SIFT, that predicts functional 
impacts of amino acid substitutions (48) is one of the earliest vari-
ant effect prediction tools and represents the class of prediction 
algorithms that utilizes protein conservation. It has since been 
updated and an online version of the tool is available (67). SIFT 
uses sequence homology, as measured by protein-level conserva-
tion, to classify variants based as tolerated or deleterious based 
on the associated protein coding changes. SIFT has served as a 
benchmark against which other methods are compared because 
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TAble 2 | Tools, software, and databases for functional prediction and annotation of variant impact.

Resource URl Reference Notes 

integrated predictive methods and aggregated databases
dbNSFPa,b,c,d https://sites.google.com/site/jpopgen/dbNSFP (45) Aggregated database of variant information
myvariant.infoa http://myvariant.info/ (46) Aggregated database of variant information

Functional effect prediction software and algorithms
PolyPhen-2b http://genetics.bwh.harvard.edu/pph2 (47) Bayesian classification 
SIFTb http://sift.jcvi.org (48) Alignment scores
MutationAssessor http://mutationassessor.org (27) Conservation, naive Bayes classifier 
MutationTaster http://www.mutationtaster.org (49)
PROVEAN http://provean.jcvi.org/index.php (50)
CADDb,c http://cadd.gs.washington.edu (51)
GERP++c http://mendel.stanford.edu/SidowLab/downloads/gerp/index.html (52)
PhyloP and PhastCons http://compgen.cshl.edu/phast/index.php (53, 54)
nsSNPAnalyzer http://snpanalyzer.uthsc.edu/ (55) Random Forest
SNPs&GO http://snps-and-go.biocomp.unibo.it/snps-and-go/ (56) SVM 
SNAP2 https://rostlab.org/services/snap2web/ (57) Neural Networks
SNPs3D http://www.snps3d.org/ (58) Structure and sequence analysis
MutPred2 http://mutpred.mutdb.org/ (59) Random Forest
AUTO-MUTE http://binf2.gmu.edu/automute/ (60) Topology and statistical contact potential
Panther http://www.pantherdb.org/tools/csnpScoreForm.jsp (61) Hidden Markov Model
stSNP http://ilyinlab.org/StSNP/ (62) Comparative modeling of protein structure
Condelb http://bg.upf.edu/fannsdb/ (63) A weighted average of multiple methods
CoVEC https://sourceforge.net/projects/covec/files
CAROLb http://www.sanger.ac.uk/science/tools/carol (64) Combines PolyPhen-2 and SIFT 

Cancer-specific prediction tools 
CHASM http://wiki.chasmsoftware.org/index.php/Main_Page (65) Random Forest 
CanDrA http://bioinformatics.mdanderson.org/main/CanDrA#CanDrA (66) 96 structural, evolutionary and gene features 

aAggregated databases combine outputs of other databases and algorithms are, therefore, efficient resources to use in annotation pipelines. Adding these resources to observed 
variants is supported software in Table 4 including Ensembl VEP software (notedb in this table), Annovar (notedc), and snpEff (notedd).
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of its relative simplicity. SIFT considers the type of amino acid 
change induced by a genomic variant and the position at which 
the change/mutation occurs. SIFT relies on the presence of 
sequences from which conservation can be determined; variants 
for which such databases are limited will potentially lack robust 
predictions.

2.2. PolyPhen-2
Polymorphism Phenotyping v2, or PolyPhen2, predicts the 
effecting of coding non-synonymous SNPs on protein structure 
and function and annotates them (47). This algorithm uses a 
naive Bayes approach to combine information across a panel of 
3D structural, sequence-based, and conservation-based features. 
Trained on two datasets, HumDiv and HumVar, and associated 
non-deleterious controls, the PolyPhen2 algorithm represents a 
class of multivariate prediction algorithms that employ machine 
learning and multiple features of variant impact.

2.3. Mutation Assessor
Mutation Assessor is an algorithm and tool that, such as SIFT, uses 
a conservation-based approach. However, Mutation Assessor also 
incorporates evolutionary information in an attempt to account 
for shifts in function between subfamilies of proteins (27), poten-
tially extending the functional annotation of variants to “switch 
of function” as well as loss or gain of function. By quantifying 
the impact to conserved residues both globally and within sub-
families (residues that distinguish subfamilies from each other 
are thought to be less tolerant to change), Mutation Assessor 

defines a functional impact score to predict which variants are 
likely to be deleterious.

2.4. CONDel
The CONsensus DELeteriousness, or CONDEL score, is an inte-
grated prediction method for missense mutations that is rela-
tively easy to extend with additional prediction resources (63). 
Originally implemented as a weighted average of the normalized 
scores from the output of two computational tools, Mutation 
Assessor and FATHMM, CONDEL can be extended or adapted to 
data at hand and represents an “aggregator” approach to variant 
effect prediction. Condel scores can be derived for a limited set of 
specified mutations via an online web application. The Ensembl 
database provides a variation of position-specific CONDEL pre-
dictions that combine SIFT and Polyphen-2 for every possible 
amino acid substitution in all human proteins.

2.5. CHASM
Cancer-specific High-throughput Annotation of Somatic Muta-
tions, or CHASM, is a computational method that identifies and 
prioritizes the missense mutations likely to enhance tumor cell 
proliferation (65). CHASM uses machine learning to classify 
putative “driver” cancer mutations as distinct from “passenger” 
mutations. Training the CHASM model employed in silico simu-
lation to generate realistic “passenger” mutations, specifically 
modeled to represent variant context and genes that are observed 
in cancer settings. Multiple features of the variants, including their 
DNA and protein contexts, were then used to build a machine 
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TAble 3 | In a clinical setting, these databases are the most relevant, as they are maintained to provide clinically actionable and curated content.

Resource URl Reference Crowd-sourcing used bulk access

myvariant.infoa http://myvariant.info/ (46) Yes APIa

CIViCa https://civic.genome.wustl.edu/home (72) Yes API, Download
DGIdba http://dgidb.genome.wustl.edu/ (73, 74) Yes API, Download
Cancer Genome Interpretera https://www.cancergenomeinterpreter.org/home (75) Yes API
OncoKba http://oncokb.org/ (76) API
Cancer Driver Log https://candl.osu.edu/ (77) Yes Download
Clinical Knowledge Base https://www.jax.org/clinical-genomics/clinical-offerings/ckb
My Cancer Genome http://www.mycancergenome.org (78) Yes (licensed) API
Personalized Cancer Therapy https://pct.mdanderson.org Account required
PharmGKB https://www.pharmgkb.org/ (79) Yes Download
Precision Medicine Knowledge Base (Beta) https://pmkb.weill.cornell.edu/ (80) Yes

While evalutation of each database by both clinical and informatics team members, databases marked with “a” are maintained, recently (or continuously) updated, and curated. The 
myvariant.info database includes both CiVIC and Cancer Genome Interpreter data. The last column in the table notes bulk access approaches as these are relevant when including 
databases in an annotation pipeline or automated report.

5

Tsang et al. Interpreting Genomic Variants in Precision Oncology

Frontiers in Oncology | www.frontiersin.org September 2017 | Volume 7 | Article 214

learning approach that attempted to maximize the specificity of 
separating driver mutations from passenger mutations. CHASM 
represents a relatively specific algorithm focused not on “delete-
riousness” but, rather, on the likelihood that an observed variant 
is a cancer “driver.”

2.6. dbNSFP
Recognizing that applying all of the effect prediction tools avail-
able is potentially challenging (45), developed a database that 
aggregates predictions for all possible SNVs associated with 
coding changes (in Gencode gene models). With more than 
ten different prediction algorithms and extensive additional 
annotation, this database can be a useful one-stop-shop for add-
ing annotations to variant datasets. The snpEff suite (described 
below) can be used in conjunction with dbNSFP to efficiently 
annotate SNPs with the potential to effect coding genes.

3. CliNiCAl ACTiONAbiliTY

The ultimate goal for many of the abovementioned resources is to 
develop an individualized approach to the diagnosis, prevention, 
and treatment of cancer, or precision oncology. However, despite 
recent advances in HTS, determining the clinical relevance of 
experimentally observed cancer variants remains a challenge in 
the application of HTS in clinical practice. Difficulties in differ-
entiating driver and passenger mutations, lack of standards and 
guidelines in reporting and interpretation of genomic variants, 
lack of clinical evidence in associating genomic variants to clini-
cal outcome, lack of resources to disseminate clinical knowledge 
to the cancer community, and the precise definition of actionabil-
ity have been reported to contribute to the bottleneck (68–71). 
Comprehensive resources linking experimentally determined 
cancer variants and clinical actionability have been developed 
to address some of these challenges and address various aspects 
of translating research results into clinical valuable information 
to support clinical decisions in precision oncology (see Table 3). 
In recognition of the fact that central curation of information 
regarding actionability is extremely challenging, several of the 
resources below use crowdsourcing as a means of gathering 
updates and enhancing curation efforts. In addition to a web 

interface, some tools provide additional access via API, mobile 
app, and/or social media tagging to facilitate dissemination of 
information and enhance accessibility. While some of these tools 
share similar functions, in the section below, we highlight distinct 
features and capabilities for a representative set of resources that 
might be used as a “starter” set for clinical annotation of variants.

The myvariant.info database is one of the newest and attempts 
to provide a “one-stop-shop” for variants. It is included in this sec-
tion because it has recently incorporated the CIViC and Cancer 
Genome Interpreter databases. In addition, it provides annota-
tions for SNVs from multiple other data sources (a growing list, 
so see the site for updates) and aggregates functional annotations 
for variants present in its database, making it a good all-around 
tool for cancer variant annotation. It is available as a performant 
web API only at this time.

Clinical Interpretation of Variants in Cancer (CIViC) is an 
open access and open source platform for community-driven 
curation and interpretation of cancer variants. It is based on a 
crowdsourcing model where individuals in the community can 
contribute to produce a centralized knowledge base with the goal 
of disseminating knowledge and encouraging active discussion. 
Users, including patients, patient advocates, clinicians, and 
researchers, can participate, along with community editors, in 
various stages of interpreting the clinical significance of cancer 
variants using standards and guidelines developed by community 
experts (68, 72).

The Drug Gene Interaction Database (DGIdb) is an open 
source and open access platform for gene and drug annotation 
for known interaction and potential druggability. Users can cross-
reference genes of interest and drugs against up to 15 sources 
and in functionally classified gene categories (73, 74). Cancer 
Genome Interpreter (CGI) identifies mutational events that are 
biomarkers of drug response or interact with known chemical 
compounds (75). PharmGKB is a pharmacogenomic resource 
for building clinical implementation and interpretation based 
on annotating, integrating, and aggregating knowledge extracted 
from research-level publications. It provides scored clinical 
annotation, prescription annotation (drug dosing, prescribing 
information), as well as pharmacokinetics/pharmacodynamics 
(PK/PD) annotation, with primary literature reference.
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TAble 4 | Software tools for manipulating and adding annotations to variant 
datasets.

Software URl Reference

vt http://genome.sph.umich.edu/wiki/Vt (87)
bcftools http://www.htslib.org/download/ (88)
ANNOVAR http://annovar.openbioinformatics.org/en/latest/ (83)
Ensembl Variant 
Effect Predictor (VEP)

http://www.ensembl.org/vep (85)

SnpEff http://snpeff.sourceforge.net/ (84)
Oncotator https://portals.broadinstitute.org/oncotator/ (89)
vcfanno https://github.com/brentp/vcfanno (86)

Variant calling produces a list of observed variants. The tools in this table are useful for 
adding biological interpretation and for annotating the variants with information from 
resources in Tables 1–3.
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OncoKb contains information on the clinical implication 
of specific genetic alterations in cancer. Each variant is annota-
tion from multiple sources and scored using Levels of Evidence 
ranging from Level 1, which includes FDA-approved biomarker 
predictive of response to an FDA-approved drug, to Level 2, 
which includes variants for which an FDA-approved or standard 
of care treatment is available, Level 3 and Level 4 contain variants 
with investigational and hypothetical therapeutic implications, 
respectively. A similarly structured scoring system is available for 
indicating therapeutic implications for variants associated with 
resistance (76). Cancer Driver Log (CanDL), an expert-curated 
database for potential driver mutations in cancer, employs a 
similar four-level scoring system based on FDA approval, clini-
cal, pre-clinical, and experimental functional evidence (77).

MyCancerGenome (MCG) is a knowledge resource highlight-
ing the implication of tumor mutation on cancer care. It allows 
users to access its content via a mobile app and provide patient-
focused information. Patients can access a database entitled DNA-
mutation Inventory to Refine and Enhance Cancer Treatment 
(DIRECT) for Epidermal Growth Factor Receptor (EGFR) 
mutation for non-small cell lung cancer (NSCLC). Personalized 
Cancer Therapy (PCT) at the MD Anderson Cancer Center is 
a resource for clinical response associated with cancer variants 
and aims to facilitate patient involvement in biomarker-related 
clinical trials. Drug effectiveness is associated with a specific 
biomarker and scored based on prospective clinical study as well 
as Food and Drug Administration (FDA) approval.

4. TOOlS FOR MANiPUlATiNG vARiANT 
DATASeTS

Processing sequence data with the goal of determining variants 
(somatic or germline) often end with a file in Variant Call Format 
(VCF format), a loose, self-describing data standard describing 
variants along a genome, associated statistical and numeric 
metrics for each variant, and information integrated from data 
resources such as those described in the preceding sections (81). 
An ecosystem of tools, listed in Table 4, has been developed for 
basic transformations, manipulations, merge operations, and for 
adding transcript, protein, and higher-level functional annota-
tions to variants in a VCF file. The vt and bcftools software suites 

perform operations such as slicing by genomic coordinate, data 
compression, and, importantly variant normalization, rendering 
variants more readily comparable across resources. Annovar 
(82, 83) and the SnpEff suite (84) add annotations relative to 
gene annotations, including information about transcript and 
protein-coding changes. The Ensembl Variant Effect Predictor 
(VEP) utilizes Ensembl gene models to annotate variants in gene 
context and offers an interesting plugin architecture that supports 
adding variant information from resources in (Table  1) (85). 
Recently, several software developers of variant annotation tools 
have developed a standard for reporting gene-centric annotations 
that has simplified post-processing of variants after annotation. 
Finally, tools such as Vcfanno (86) have been developed that can 
flexibly add fields to variants in a VCF file based on relatively 
sophisticated logic and data transformations, reducing the num-
ber of tools required to bring a new data resource into the anno-
tation pipeline.

5. DiSCUSSiON

5.1. Pragmatic Details
Despite advanced toolsets for manipulating variant files and 
increasing adoption available standard formats, practical pitfalls 
and challenges remain to the basic manipulation of variant data-
sets. Some data resources are available in multiple formats and 
not all formats contain identical information. Matching variants 
between resources and observed variants can be challenging, as 
some variants can be represented validly in multiple forms. Ideally, 
variants are cataloged with clarity with respect to a reference 
genome and, whenever possible, using HGVS nomenclature (90). 
In spite of increasing awareness and uptake of HGVS standard 
nomenclature, the critical step of matching variants across tools 
and databases in assessing clinical significance is still hampered 
by inconsistencies across tools and databases (91). Particularly, 
when handling clinical samples, an information system that 
provides results from multiple resources when assessing novel 
variants, incorporates in  silico controls when adding or updat-
ing data resources (to avoid introducing errors), and adheres 
to HGVS nomenclature wherever possible in data processing 
pipelines can increase the likelihood of discovering potentially 
relevant variants.

5.2. where to Start?
This review is meant to be comprehensive, so the reader might 
wonder “Where do we start?.” While it is difficult to make hard-
and-fast recommendations about what resources, tools, and 
databases are “the best” given the lack of gold-standard datasets 
on which to base such evalutations, annotations in Tables  1–3 
are meant to provide context for prioritization. The context for 
sequencing (clinical or not, targeted mutations, trial setting, or 
novel variant and biomarker discovery) will also drive annotation 
pipeline development. Not all data resources need to be added 
simultaneously if developing a pipeline for annotating cancer 
variants for precision oncology applications. In a clinical setting, 
targeting the reporting workflow and working with clinicians to 
understand the most relevant annotations is the most efficient 

http://genome.sph.umich.edu/wiki/Vt
http://www.htslib.org/download/
http://annovar.openbioinformatics.org/en/latest/
http://www.ensembl.org/vep
http://snpeff.sourceforge.net/
https://portals.broadinstitute.org/oncotator/
https://github.com/brentp/vcfanno
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
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approach to determining relevant resources for annotation. Devel-
oping a modular informatics pipeline, perhaps using a compu-
tational workflow framework (https://github.com/pditommaso/
awesome-pipeline) that can be easily extended and re-run on 
previously annotated data is helpful to keep pace with the rapidly 
changing and growing collection of annotation resources. Newer 
aggregation resources such as myvariant.info offer a wholistic 
solution (annotation, catalog, and clinical actionability), but with 
some risk of “lossiness” with respect to the primary resources 
contained within.

Finally, given the rapid pace of new development in this 
space, we have established a crowd-sourced list of cancer variant 
resources for precision medicine available at https://github.com/
seandavi/awesome-cancer-variant-databases.

5.3. Conclusion
Robust sequencing technologies and increasingly reliable bio-
informatics pipelines, combined with parallel development of 
therapeutics and diagnostics has bolstered the field of precision 
genomic oncology. However, the sheer number of resources 
available that can inform the interpretation of small variants is 
staggering, except for the very few variants with well-established 
clinical relevance or an associated targeted therapy. This review 
has highlighted a number of important data resources individu-
ally. For other variants, data integration remains a significant hur-
dle to the rapid turnaround required to apply HTS in a clinical 
context. Expert panel review (the molecular tumor board) has 
been effective for some groups (13, 92, 93) while other groups 
have adopted a protocol-based approach (94). Even when 
molecularly targetable lesions are identified, barriers to deliver-
ing therapy have been observed, limiting the impact of precision 
genomic oncology in some settings (95). Not covered in this 
review is the increasing utility of HTS in the burgeoning field of 
immunotherapy, where early efforts to predict response based 
on HTS results have been promising (19, 96, 97).

Some interesting trends are evident in the databases and 
resources presented in this review that highlight the overarch-
ing trends in delivering precision medicine. First is the sheer 
volume and rapid growth of numbers of observations to learn 
about the spectrum of variation cancer and normal genomes. 
Projects such as GnomAD, COSMIC, and other data sharing 
efforts enhance precision by cataloging rare variants as well as 
precise estimates of the frequencies of common variants. Second 
is the use of crowd-sourcing to produce rich clinical annotation  
(e.g., CiVIC) in response to the need for intensive human 

interaction to interpret the clinical impact of a variant or its 
relationship to potential medical intervention. On the other 
hand, with volumes of data ever-increasing, machine learning 
techniques drive many of the most commonly used approaches 
for assigning scores for impact of observed variants. As well-
annotated datasets and variant catalogs grow, application of 
machine learning will become both more common and more 
powerful.

While significant progress has been made in applying technol-
ogy to precision oncology, cancer arises in an individual after a 
typically complex and incompletely understood set of oncogenic 
events that are increasingly observable at the molecular level. 
Progress in cancer prevention, early detection, diagnosis, pro-
gnosis, and treatment is increasingly driven by insight gained 
through the analysis and interpretation of large genomic, 
proteomic, and pharmacological knowledge bases. Reductionist 
approaches to cancer biology can achieve only limited success in 
understanding cancer biology and improving therapy. Cancer is 
a disease associated with disruption of normal cellular circuitry 
and processes that leads to abnormal or uncontrolled prolifera-
tive growth, characterized by a complex spectrum of biochemical 
alterations that affects biological processes at multiple scales from 
the molecular activity and cellular homeostasis to intercellular 
and inter-tissue signaling. The cancer research community has 
made great strides in measuring the oncogenic events that lead to 
the development of cancer and therapy resistance. Because of the 
complexity inherent in protein networks, intercellular signaling, 
cellular heterogeneity, and the dynamic nature of cancer, future 
progress will require a more wholistic approach to precision 
oncology, including multiscale systems and modeling approaches 
that address the interrelatedness of the biological processes 
underlying cancer.
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