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Abstract

Background: Many common clustering algorithms require a two-step process that limits their efficiency. The
algorithms need to be performed repetitively and need to be implemented together with a model selection criterion.
These two steps are needed in order to determine both the number of clusters present in the data and the
corresponding cluster memberships. As biomedical datasets increase in size and prevalence, there is a growing need
for new methods that are more convenient to implement and are more computationally efficient. In addition, it is
often essential to obtain clusters of sufficient sample size to make the clustering result meaningful and interpretable
for subsequent analysis.

Results: We introduce Shrinkage Clustering, a novel clustering algorithm based on matrix factorization that
simultaneously finds the optimal number of clusters while partitioning the data. We report its performances across
multiple simulated and actual datasets, and demonstrate its strength in accuracy and speed applied to subtyping
cancer and brain tissues. In addition, the algorithm offers a straightforward solution to clustering with cluster size
constraints.

Conclusions: Given its ease of implementation, computing efficiency and extensible structure, Shrinkage Clustering
can be applied broadly to solve biomedical clustering tasks especially when dealing with large datasets.

Keywords: Clustering, Matrix factorization, Cancer subtyping, Gene expression

Background
Cluster analysis is one of the most frequently used unsu-
pervised machine learning methods in biomedicine. The
task of clustering is to automatically uncover the natural
groupings of a set of objects based on some known sim-
ilarity relationships. Often employed as a first step in a
series of biomedical data analyses, cluster analysis helps to
identify distinct patterns in data and suggest classification
of objects (e.g. genes, cells, tissue samples, patients) that
are functionally similar or related. Typical applications of
clustering include subtyping cancer based on gene expres-
sion levels [1–3], classifying protein subfamilies based
on sequence similarities [4–6], distinguishing cell pheno-
types based on morphological imaging metrics [7, 8], and
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identifying disease phenotypes based on physiological and
clinical information [9, 10].
Many algorithms have been developed over the years for

cluster analysis [11, 12], including hierarchical approaches
[13] (e.g., ward-linkage, single-linkage) and partitional
approaches that are centroid-based (e.g., K-means
[14, 15]), density-based (e.g., DBSCAN [16]), distribution-
based (e.g., Gaussian mixture models [17]), or
graph-based (e.g., Normalized Cut [18]). Notably, non-
negative matrix factorization (NMF) has received a lot of
attention in application to cluster analysis, because of its
ability to solve challenging pattern recognition problems
and the flexibility of its framework [19]. NMF-based
methods have been shown to be equivalent to a relaxed
K-means clustering and Normalized Cut spectral cluster-
ing with particular cost functions [20], and NMF-based
algorithms have been successfully applied to clustering
biomedical data [21].
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With few exceptions, most clustering algorithms group
objects into a pre-determined number of clusters, and
do not inherently look for the number of clusters in the
data. Therefore, cluster evaluation measures are often
employed and are coupled with clustering algorithms to
select the optimal clustering solution from a series of
solutions with varied cluster numbers. Commonly used
model selection methods for clustering, which vary in
cluster quality assessment criteria and sampling proce-
dures, include Silhouette [22], X-means [23], Gap Statistic
[24], Consensus Clustering [25], Stability Selection [26],
and Progeny Clustering [27]. The drawbacks of coupling
cluster evaluation with clustering algorithms include (i)
computation burden, since the clustering needs to be
performed with various cluster numbers and sometimes
multiple times to assess the solution’s stability; and (ii)
implementation burden, since the integration can be labo-
rious if algorithms are programmed in different languages
or are available on different platforms.
Here, we propose a novel clustering algorithm Shrink-

age Clustering based on symmetric nonnegative matrix
factorization notions [28]. Specifically, we utilize unique
properties of a hard clustering assignment matrix to
simplify the matrix factorization problem and to design
a fast algorithm that accomplishes the two tasks of
determining the optimal cluster number and perform-
ing clustering in one. The Shrinkage Clustering algo-
rithm is mathematically straightforward, computationally
efficient, and structurally flexible. In addition, the flex-
ible framework of the algorithm allows us to extend
it to clustering applications with minimum cluster size
constraints.

Methods
Problem formulation
Let X = {X1, . . . , XN } be a finite set of N objects. The
task of cluster analysis is to group objects that are sim-
ilar to each other and separate those that are dissimilar
to each other. The completion of a clustering task can
be broken down to two steps: (i) deriving similarity rela-
tionships among all objects (e.g., Euclidean distance); (ii)
clustering objects based on these relationships. The first
step is sometimes omitted when the similarity relation-
ships are directly provided as raw data, for example in the
case of clustering genes based on their sequence similari-
ties. Here, we assume that the similarity relationships were
already derived and are available in the form of a similar-
ity matrix SN×N , where Sij ∈[ 0, 1] and Sij = Sji. In the
similarity matrix, a larger Sij represents more resemblance
in pattern or closer proximity in space between Xi and Xj,
and vice versa.
Suppose AN×K is a clustering solution for objects with

similarity relationships SN×N . Since we are only consider-
ing the case of hard clustering, we have Aik ∈ {0, 1} and

∑K
k=1 Aik = 1. Specifically, K is the number of clusters

obtained, and Aik takes the value of 1 if Xi belongs to clus-
ter k and takes the value of 0 if it does not. The product of
A and its transpose AT represents a solution-based sim-
ilarity relationship Ŝ (i.e. Ŝ = AAT ), in which Ŝij takes
the value of 1 when Xi and Xj are in the same cluster and
0 otherwise. Unlike Sij which can take continuous values
between 0 and 1, Ŝij is a binary representation of the sim-
ilarity relationships indicated by the clustering solution. If
a clustering solution is optimal, the solution-based simi-
larity matrix Ŝ should be similar to the original similarity
matrix S if not equal.
Based on this intuition, we formulate the clustering task

mathematically as

min
A

‖S − AAT‖F

subject to Aik ∈ {0, 1},
K∑

k=1
Aik = 1,

N∑

i=1
Aik �= 0 .

(1)

The goal of clustering is therefore to find an optimal
cluster assignment matrix A, which represents similarity
relationships that best approximate the similarity matrix
S derived from the data. The task of clustering is trans-
formed into a matrix factorization problem, which can
be readily solved by existing algorithms. However, most
matrix factorization algorithms are generic (not tailored
to solving special cases like Function 1), and are therefore
computationally expensive.

Properties and rationale
In this section, we explore some special properties of the
objective Function 1 that lay the ground for Shrinkage
Clustering. Unlike traditional matrix factorization prob-
lems, the solution A we are trying to obtain has special
properties, i.e. Aik ∈ {0, 1} and ∑K

k=1 Aik = 1. This binary
property ofA greatly simplifies the objective Function 1 as
below.

min
A

‖S − AAT‖F

= min
A

N∑

i=1

N∑

j=1
(Sij − Ai • Aj)

2

= min
A

N∑

i=1

⎛

⎝
∑

j∈{j|Ai=Aj}
(Sij − 1)2 +

∑

j∈{j|Ai �=Aj}
S2ij

⎞

⎠

= min
A

⎛

⎝
N∑

i=1

∑

j∈{j|Ai=Aj}
(1 − 2Sij) +

N∑

i=1

N∑

j=1
S2ij

⎞

⎠
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Here, Ai represents the ith row of A, and the symbol •
denotes the inner product of two vectors. Note that Ai •Aj
take binary values of either 0 or 1, because Aik ∈ {0, 1} and∑K

k=1 Aik = 1. In addition,
∑N

i=1
∑N

j=1 S2ij is a constant
that does not depend on the clustering solution A. Based
on this simplification, we can reformulate the clustering
problem as

min
A

f (A) =
N∑

i=1

∑

j∈{j|Ai=Aj}

(
1 − 2Sij

)
. (2)

Let’s now consider how the value of the objective Func-
tion 2 changes when we change the cluster membership of
an object Xi. Suppose we start with a clustering solution
A, in which Xi belongs to cluster k (Aik = 1). When we
change the cluster membership of Xi from k to k′ with the
rest remaining the same, we would obtain a new cluster-
ing solution A′, in which A′

ik′ = 1 and A′
ik = 0. Since S is

symmetric (i.e. Sij = Sji), the value change of the objective
Function 2 is

�fi := f (A′) − f (A)

=
∑

j∈k′

(
1 − 2Sij

) −
∑

j∈k

(
1 − 2Sij

) +
∑

j∈k′

(
1 − 2Sji

)

−
∑

j∈k

(
1 − 2Sji

)

= 2

⎛

⎝
∑

j∈k′

(
1 − 2Sij

) −
∑

j∈k

(
1 − 2Sij

)
⎞

⎠ .

(3)

Shrinkage clustering: Base algorithm
Based on the simplified objective Function 2 and its prop-
erties with cluster changes (Function 3), we designed a
greedy algorithm Shrinkage Clustering to rapidly look
for a clustering solution A that factorizes a given simi-
larity matrix S. As described in Algorithm 1, Shrinkage
Clustering begins by randomly assigning objects to a suf-
ficiently large number of initial clusters. During each
iteration, the algorithm first removes any empty clus-
ters generated from the previous iteration, a step that
gradually shrinks the number of clusters; then it per-
mutes the cluster membership of the object that most
minimizes the objective function. The algorithm stops
when the solution converges (i.e. no cluster member-
ship permutation can further minimize the objective
function), or when a pre-specified maximum number
of iterations is reached. Shrinkage Clustering is guaran-
teed to converge to a local optimum (see Theorem 1
below).

Algorithm 1 Shrinkage Clustering: Base Algorithm
Input: SN×N (similarity matrix)

K0 (intial number of clusters)
Initialization:
a. Generate a random AN×K0 (cluster assignment
matrix)
b. Compute S̃ = 1 − 2S
repeat

1. Remove empty clusters:
(a) Delete empty columns inA (i.e. {j| ∑N

i=1 Aij = 0})

2. Permute the cluster membership that minimizes
Function 2 the most:

(a) ComputeM = S̃A
(b) Compute v by vi = min

j
Mij − ∑K

j=1(M ◦ A)ij,

where
◦ represents the element-wise product

(Hadamard product)
(c) Find the object X̄ with the greatest optimiza-

tion potential,
i.e. X̄ = argmin

i
vi

(d) Permute the membership of X̄ to C′, where
C′ = argmin

j
MX̄j

until
∑N

i=1 vi = 0 or reachingmax number of iterations

Output: A (cluster assignment)

Algorithm 2 Shrinkage Clustering with Cluster Size Con-
straints

Additional Input: ω (minimum cluster size).
Updated Step 1:
(a) Remove columns in A that contain too few objects,

i.e. {j| ∑N
i=1 Aij < ω}

(b) Reassign objects in these clusters to clusters with
the greatest minimization

The main and advantageous feature of Shrinkage Clus-
tering is that it shrinks the number of clusters while
finding the clustering solution. During the process of
permuting cluster memberships to minimize the objec-
tive function, clusters automatically collapse and become
empty until the optimization process is stabilized and the
optimal cluster memberships are found. The number of
clusters remaining in the end is the optimal number of
clusters, since it stabilizes the final solution. Therefore,
Shrinkage Clustering achieves both tasks of (i) finding the
optimal number of clusters and (ii) finding the clustering
memberships.

Theorem 1 Shrinkage Clustering monotonically
converges to a (local) optimum.
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Proof We first demonstrate the monotonically decreas-
ing property of the objective Function 2 in each iteration
of the algorithm. There are two steps taken in each itera-
tion: (i) removal of empty clusters; and (ii) permutation of
cluster memberships. Step (i) does not change the value
of the objective function, because the objective function
only depends on non-empty clusters. On the other hand,
step (ii) always lowers the objective function, since a clus-
ter membership permutation is chosen based on its ability
to achieve the greatest minimization of the objective func-
tion. Combing step (i) and (ii), it is obvious that the value
of the objective function monotonically decreases with
each iteration. Since

∥
∥S −AAT∥

∥
F ≥ 0 and

∥
∥S −AAT∥

∥
F =

∑N
i=1

∑
j∈{j|Ai=Aj}

(
1 − 2Sij

)+∑N
i=1

∑N
j=1 S2ij, the objective

function has a lower bound of− ∑N
i=1

∑N
j=1 S2ij. Therefore,

a convergence to a (local) optimum is guaranteed, because
the algorithm is monotonically decreasing with a lower
bound.

Shrinkage clustering with cluster size constraints
It is well-known that K-means can generate empty clus-
ters when clustering high-dimensional data with over 20
clusters, and Hierarchical Clustering often generate tiny
clusters with few samples. In practice, clusters of too small
a size can sometimes be full of outliers, and they are often
not preferred in cluster interpretation since most statis-
tical tests do not apply to small sample sizes. Though
extensions to K-means were proposed to solve this issue
[29], the attempt to control cluster sizes has not been easy.
In contrast, the flexibility and the structure of Shrink-
age Clustering offers a straightforward and rapid solution
to enforcing constraints on cluster sizes. To generate a
clustering solution with each cluster containing at least
ω objects, we can simply modify Step 1 of the iteration
loop in Algorithm 1. Instead of removing empty clusters
in the beginning of each iteration, we now remove clus-
ters of sizes smaller than a pre-specified size ω. The base
algorithm (Algorithm 1) can be viewed as a special case
of w = 0 in the size-constrained Shrinkage Clustering
algorithm.

Results
Experiments on similarity data
Testing with simulated similaritymatrices
We first use simulated similarity matrices to test the
performance of Shrinkage Clustering and to examine its
sensitivity to the initial parameters and noise. As a proof
of concept, we generate a similarity matrix S directly from
a known cluster assignment matrix A by S = AAT . Here,
the cluster assignment matrix A100×5 is randomly gener-
ated to consist of 100 objects grouped into 5 clusters with
unequal cluster sizes (i.e. 15, 17, 20, 24 and 24 respec-
tively). The similarity matrix S100×100 generated from the

product of A and AT therefore represents an ideal case,
where there is no noise, since each entry of S only takes a
binary value of either 0 or 1.
We apply Shrinkage Clustering to this simulated similar-

ity matrix S with 20 initial random clusters and repeat the
algorithm for 1000 times. Each run, the algorithm accu-
rately generates 5 clusters with cluster assignments Ã in
perfect match with the true cluster assignments A (an
example shown in Table 1 under ω = 0), demonstrat-
ing the algorithm’s ability to perfectly recover the cluster
assignments in a non-noisy scenario. The shrinkage paths
of the first 5 runs (Fig. 1a) illustrate that most runs start
around a number of 20 clusters, and all of them shrink
down gradually to a final number of 5 clusters when the
solution reaches an optimum.
To examine whether Shrinkage Clustering is able to

accurately identify imbalanced cluster structures, we gen-
erate an alternative version of A100×5 with great differ-
ences in cluster sizes (i.e. 2, 3, 10, 35 and 50). We run the
algorithm with the same parameters as before (20 initial
random clusters repeated for 1000 times). The algorithm
generates 5 clusters with the correct cluster assignment in
every run, showing its ability to accurately find the true
cluster number and true cluster assignments in data with
imbalanced cluster sizes.
We then test whether the algorithm is sensitive to the

initial number of clusters (K0) by running it with K0 rang-
ing from 5 (true number of clusters) to 100 (maximum
number of clusters). In each case, the true cluster struc-
ture is recovered perfectly, demonstrating the robustness
of the algorithm to different initial cluster numbers. The
shrinkage paths in Fig. 1b clearly show that in spite of
starting with various initial numbers of clusters, all paths
converge to the same number of clusters at the end.
Next, we investigate the effects of size constraints on

Shrinkage Clustering ’s performance by varying ω from 1
to 5, 10, 20 and 25. The algorithm is repeated 50 times in
each case. We find that as long as ω is smaller than the
true minimum cluster size (i.e. 15), the size constrained
algorithm can perfectly recover the true cluster assign-
ments A in the same way as the base algorithm. Once

Table 1 Clustering results of simulated similarity matrices with
varying size constraints (ω), where C is the cluster generated by
Shrinkage Clustering

True Label
ω = 0 ω = 20 ω = 25

C1 C2 C3 C4 C5 C1 C2 C3 C4 C1 C2

Cluster 1 0 0 24 0 0 0 24 0 0 0 24

Cluster 2 15 0 0 0 0 15 0 0 0 15 0

Cluster 3 0 0 0 24 0 0 0 24 0 0 24

Cluster 4 0 17 0 0 0 17 0 0 0 17 0

Cluster 5 0 0 0 0 20 0 0 0 20 20 0
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a b

Fig. 1 Performances of the base algorithm on simulated similarity data. Shrinkage paths plot changes in cluster numbers through the entire
iteration process. a The first five shrinkage paths from the 1000 runs (with 20 initial random clusters) are illustrated. b Example shrinkage paths are
shown from initiating the algorithm with 5, 10, 20, 50 and 100 random clusters

ω exceeds the true minimum cluster size, clusters are
forced to merge and therefore result in a smaller number
of clusters (example clustering solutions of ω = 20 and
ω = 25 shown in Table 1). In these cases, it is impossi-
ble to find the true cluster structure because the algorithm
starts off with fewer clusters than the true number of
clusters and it works uni-directionally (i.e. only shrinks).
Besides enabling supervision on the cluster sizes, size-
constrained Shrinkage Clustering is also computationally
advantageous. Figure 2a shows that a larger ω results in
fewer iterations needed for the algorithm to converge, and
the effect reaches a plateau once ω reaches certain sizes
(e.g. ω = 10 in this case). The shrinkage paths (Fig. 2b)
show that it is the reduced number of iterations at the
beginning of a run that speeds up the entire process of
solution finding when ω is large.
In reality, it is rare to find a perfectly binary similarity

matrix similar to what we generated from a known clus-
ter assignment matrix. There is always a certain degree of
noise clouding our observations. To investigate howmuch
noise the algorithm can tolerate in the data, we add a layer

of Gaussian noise over the simulated similarity matrix.
Since Sij ∈ {0, 1}, we create a new similarity matrix SN
containing noise defined by

SNij =
{ |εij| if Sij = 0
1 − |εij| if Sij = 1 ,

where εij ∼ N
(
0, σ 2). The standard deviation σ is var-

ied from 0 to 0.5, and SN is generated 1000 times by
randomly sampling εij with each σ value. Figure 3a illus-
trates the changes of the similarity distribution density as
σ increases. When σ = 0 (i.e. no noise), SN is Bernoulli
distributed. As σ becomes larger and larger, the bimodal
shape is flattened by noise. When σ = 0.5, approximately
32% of the similarity relationships are reversed, and hence
observations have been perturbed too much to infer the
underlying cluster structure. The performances of Shrink-
age Clustering in these noisy conditions are shown in
Fig. 3b. The algorithm proves to be quite robust against
noise, as the true cluster structure is 100% recovered in all
conditions except for when σ > 0.4.

a b

Fig. 2 Performances of Shrinkage Clustering with cluster size constraints. a The average number of iterations spent is plotted with ω taking values of
1 to 5, 10, 15, 20 and 25. b Example shrinkage paths are shown for ω of 1 to 5, 10, 15, 20 and 25 (path of ω = 10 is in overlap with ω = 15)
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a b

Fig. 3 Robustness of Shrinkage Clustering against noise. a The distribution density of SN is shown with a varying degree of noise, as ε is sampled with
σ from 0 to 0.5. b The probability of successfully recovering the underlying cluster structure is plotted against different noise levels. The true cluster
recovery is defined as the frequency of generating the exact same cluster assignment as the true cluster assignement when clustering the data with
noise generated 1000 times

Case Study: TCGADataset
To illustrate the performance of Shrinkage Clustering on
real biological similarity data, we apply the algorithm
to subtyping tumors from the Cancer Genome Atlas
(TCGA) dataset [30]. Derived from the TCGA database,
the dataset includes 293 samples from 3 types of can-
cers, which are Breast Invasive Carcinoma (BRCA, 207
samples), Glioblastoma Multiforme (GBM, 67 samples)
and Lung Squamous Cell Carcinoma (LUSC, 19 samples).
The data is presented in the form of a similarity matrix,
which integrates information from the gene expression
levels, DNA methylation and copy number aberration.
Since the similarity scores from the TCGA dataset are in
general skewed to 1, we first normalize the data by shift-
ing its median around 0.5 and by bounding values that are
greater than 1 and smaller than 0 to 1 and 0 respectively.
We then perform Shrinkage Clustering to cluster the can-
cer samples, the result of which is shown in comparison
to the true cancer types (Table 2). We can see that the
algorithm generates three clusters, successfully predicting
the true number of cancer types contained in the data.
The clustering assignments also demonstrate high accu-
racy, as 98% of samples are correctly clustered with only 5
samples misclassified. In addition, we compared the per-
formance of Shrinkage Clustering to that of five commonly
used clustering algorithms that directly cluster similarity

Table 2 Clustering results of the TCGA dataset, where the
clustering assignments from Shrinkage Clustering are compared
against the three known tumor types

Tumor Type Cluster 1 Cluster 2 Cluster 3

BRCA 3 204 0

GBM 0 0 67

LUSC 17 2 0

data: Spectral Clustering [31],Hierarchical Clustering [13]
(Ward’s method [32]), PAM [33], AGNES [34], and Sym-
NMF [28]. Since these five methods do not determine the
optimal cluster number, the mean Silhouette [22] width
is used to pick the optimal cluster number from a range
of 2 to 10 clusters. Notably, Shrinkage Clustering is one
of the two algorithms that estimate a three-cluster struc-
ture (with AGNES), and its accuracy outperforms the rest
(Table 5).

Experiments on feature-based data
Testing with simulated and standardized data
Since similarity matrices are not always available in
most clustering applications, we now test the perfor-
mance of Shrinkage Clustering using feature-based data
that does not directly provide the similarity informa-
tion between objects. To run Shrinkage Clustering, we
first convert the data to a similarity matrix using S =
exp

(−(D(X)/(βσ))2
)
, where [D(X)]ij is the Euclidean

distance between Xi and Xj, σ is the standard deviation
of D(X), and β = E

(
D(X)2

)
/σ 2. The same conversion

method is used for all datasets in the rest of this paper.
As a proof of concept, we first generate a simulated

three-cluster two-dimensional data set by sampling 50
points for each cluster from bivariate normal distribu-
tions with a common identity covariance matrix around
centers at (-2, 2), (-2, 2) and (0, 2) respectively. The cluster-
ing result from Shrinkage Clustering is shown in Table 3,
where the algorithm successfully determines the existence
of 3 clusters in the data and obtains a clustering solution
with high accuracy.
Next, we test the performance of Shrinkage Clustering

using two real data sets, the Iris [35] and the wine data
[36], both of which are frequently used to test cluster-
ing algorithms; and they can be downloaded from the
University of California Irvine (UCI) machine learning
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Table 3 Performances of Shrinkage Clustering on Simulated, Iris
and Wine data, where the clustering assignments are compared
against the three simulated centers, three Iris species and three
wine types respectively

Simulated Iris Wine

Center C1 C2 C3 Species C1 C2 Type C1 C2 C3

(-2,2) 0 49 1 setosa 50 0 1 0 59 0

(-2,-2) 0 1 49 versicolor 0 50 2 59 6 0

(2,0) 50 0 0 virginica 0 50 3 0 6 48

repository [37]. The clustering results from Shrinkage
Clustering for both datasets are shown in Table 3, where
the clustering assignments are compared to the true clus-
ter memberships of the Iris and the wine samples respec-
tively. In application to the wine data, Shrinkage Clustering
successfully identifies a correct number of 3 wine types
and produces highly accurate cluster memberships. For
the Iris data, though the algorithm generates two instead
of three clusters, the result is acceptable because the
species versicolor and virginica are known to be hardly
distinguishable given the features collected.

Case study 1: Breast CancerWisconsin Diagnostic (BCWD)
The BCWD dataset [38, 39] contains 569 breast cancer
samples (357 benign and 212 malignant) with 30 char-
acteristic features computed from a digitized image of a
fine needle aspirate (FNA) of a breast mass. The dataset
is available on the UCI machine learning repository [37]
and is one of the most popularly tested dataset for cluster-
ing and classification. Here, we apply Shrinkage Clustering
to the data and compare its performance against nine
commonly used clustering methods: Spectral Clustering
[31], K-means [14], Hierarchical Clustering [13] (Ward’s
method [32]), PAM [33], DBSCAN [16], Affinity Propa-
gation [40], AGNES [34], clusterdp [41], SymNMF [28].
Since K-means, Spectral Clustering, Hierarchical Cluster-
ing, PAM, AGNES and SymNMF do not inherently deter-
mine the optimal cluster number and require the cluster
number as an input, we first run these algorithms with
cluster numbers from 2 to 10, and then use the mean Sil-
houette width as the criterion to select the optimal cluster
number. For algorithms that internally select the opti-
mal cluster number (i.e. DBSCAN, Affinity Propagation
and clusterdp), we tune the parameters to generate clus-
tering solutions with cluster numbers similar to the true
cluster numbers so that the accuracy comparison is less
biased. The parameter values for each algorithm are spec-
ified in Table 4. ForDBSCAN, the clustering memberships
of non-noise samples are used for assessing accuracy.
The accuracy of all clustering solutions is evaluated using
four metrics: NormalizedMutual Information (NMI) [42],
Rand Index [42], F1 score [42], and the optimal cluster
number (K).

Table 4 Parameter values of DBSCAN, Affinity Propagation and
clusterdp

Algorithm DBSCAN Affinity propagation clusterdp

Parameter minPts eps p q rho delta

BCWD 31 3000 NA 0 20 3000

Dyrskjot-2003 2 23000 NA 0.07 3 20000

Nutt-2003-v1 2 11000 NA 0.12 1.5 3000

Nutt-2003-v3 1 8000 NA 0.1 1 7000

AIBT 5 400 NA 0 2.5 240

The performance results (Table 5) show that Shrink-
age Clustering correctly predicts a 2 cluster structure
from the data and generates the clustering assignments
with high accuracy. When comparing the cluster assign-
ments against the true cluster memberships, we can see
that Shrinkage Clustering is among the top three best
performers across all accuracy metrics.

Case study 2: Benchmarking gene expression data for
cancer subtyping
Next, we test the performance of Shrinkage Clustering as
well as the nine commonly used algorithms in application
to identifying cancer subtypes using three benchmark-
ing datasets from de Souto et al. [43]: Dyrskjot-2003 [44],
Nutt-2003-v1 [45] and Nutt-2003-v3 [45]. Dyrskjot-2003
contains the expression levels of 1203 genes in 40 well-
characterized bladder tumor biopsy samples from three
subclasses of bladder carcinoma: T2+ (9 samples), Ta (20
samples), and T1 (11 samples). Nutt-2003-v1 contains
the expression levels of 1377 genes in 50 gliomas from
four subclasses: classic gliobalstomas (14 samples), clas-
sic anaplastic oligodendrogliomas (7 samples), nonclassic
glioblastomas (14 samples), and nonclassic anaplastic
oligodendrogliomas (15 samples). Nutt-2003-v3 is a sub-
set of Nutt-2003-v1, containing 7 samples of classic
anaplastic oligodendrogliomas and 15 samples of nonclas-
sic anaplastic oligodendrogliomas with the expression of
1152 genes. All three data sets are small in sample sizes
and high in dimensions, which is often the case in clinical
research. The performance of all ten algorithms is com-
pared using the samemetrics as in the previous case study,
and the result is shown in Table 5. Though there is no clear
winning algorithm across all data sets, Shrinkage Cluster-
ing is among the top three performers in all cases, along
with other top performing algorithms such as SymNMF,
K-means and DBSCAN. Since the clustering results from
DBSCAN are compared to the true cluster assignments
excluding the noise samples, the accuracy of DBSCAN
may be slightly overestimated.

Case Study 3: Allen Institute Brain Tissue (AIBT)
The AIBT dataset [46] contains RNA sequencing data
of 377 samples from four types of brain tissues, i.e. 99
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Table 5 Performance comparison of ten algorithms on six biological data sets, i.e. TCGA, BCWD, Dyrskjot-2003, Nutt-2003-v1,
Nutt-2003-v3 and AIBT

Data Metric Shrinkage Spectral K-means Hierarchical PAM DBSCAN Affinity AGNES Clusterdp SymNMF

TCGA

NMI 0.91 0.77 NA 0.83 0.76 NA NA 0.82 NA 0.78

Rand 0.97 0.91 NA 0.91 0.77 NA NA 0.90 NA 0.94

F1 0.98 0.92 NA 0.92 0.80 NA NA 0.92 NA 0.95

K (3) 3 2 NA 2 2 NA NA 3 NA 2

BCWD

NMI 0.50 0.29 0.46 0.09 0.50 0.20 0.45 0.09 0.20 0.56

Rand 0.77 0.68 0.75 0.55 0.77 0.64 0.76 0.55 0.53 0.83

F1 0.80 0.69 0.79 0.69 0.80 0.75 0.79 0.69 0.59 0.85

K (2) 2 2 2 2 2 2 3 2 2 2

Dyrskjot-2003

NMI 0.45 0.07 0.51 0.12 0.56 0.30 0.42 0.12 0.07 0.58

Rand 0.78 0.55 0.76 0.42 0.77 0.55 0.72 0.42 0.50 0.83

F1 0.70 0.36 0.71 0.54 0.66 0.60 0.66 0.54 0.43 0.75

K (3) 3 3 3 3 3 3 3 3 2 3

Nutt-2003-v1

NMI 0.56 0.45 0.47 0.28 0.34 0.61 0.41 0.11 0.17 0.49

Rand 0.72 0.73 0.72 0.52 0.68 0.65 0.73 0.35 0.64 0.72

F1 0.58 0.51 0.51 0.43 0.41 0.62 0.44 0.38 0.34 0.55

K (4) 4 4 4 4 4 4 5 4 4 4

Nutt-2003-v3

NMI 1.00 0.20 0.75 0.13 0.33 0.13 0.13 0.13 0.29 0.76

Rand 1.00 0.58 0.91 0.58 0.58 0.58 0.58 0.58 0.55 0.91

F1 1.00 0.59 0.92 0.71 0.60 0.71 0.71 0.71 0.57 0.91

K (2) 2 2 2 2 2 2 3 2 2 2

AIBT

NMI 0.56 0.20 0.58 0.17 0.54 0.56 0.53 0.02 0.55 0.55

Rand 0.79 0.68 0.80 0.37 0.78 0.65 0.76 0.26 0.69 0.79

F1 0.61 0.39 0.62 0.40 0.59 0.59 0.51 0.40 0.57 0.61

K (4) 4 4 4 4 4 4 5 4 3 4

Clustering accuracy is assessed via metrics including NMI (Normalized Mutual Information), Rand Index, F1 score and K (the optimal cluster number). The top three
performers in each case are highlighted in bold

samples of temporal cortex, 91 samples of parietal cor-
tex, 93 samples of cortical white matter, and 94 samples
hippocampus isolated by macro-dissection. For each sam-
ple, the expression levels of 50282 genes are included
as features, and each feature is normalized to have a
mean of 0 and a standard deviation of 1 prior to test-
ing. In contrast to the previous case study, the AIBT
data is much larger in size with significantly more fea-
tures being measured. Therefore, this would be a great
example to test both the accuracy and the speed of clus-
tering algorithms in face of greater data sizes and higher
dimensions.
Similar to the previous case studies, we apply Shrink-

age Clustering and the nine commonly used clustering
algorithms to the data, and use mean Silhouette width
to select the optimal cluster number for algorithms that
do not inherently determine the cluster number. The

performances of all ten algorithms measured across the
four accuracy metrics (i.e. NMI, Rand, F1, K) are shown
in Table 5. We can see that Shrinkage Clustering is the
second best performer among all ten algorithms in terms
of clustering quality, with comparable accuracy to the top
performer (K-means).
Next, we record and compare the speed of the ten

algorithms for clustering the data. The speed compari-
son results, shown in Fig. 4, demonstrate the unparalleled
speed of Shrinkage Clustering compared to the rest of
the algorithms. Compared to algorithms that automati-
cally select optimal number of clsuters (DBSCAN, Affin-
ity Propagation and Clusterdp), Shrinkage Clustering is
two times faster in speed; compared to algorithms that
are coupled with external cluster validation algorithms
for cluster number selection, Shrinkage Clustering is at
least 14 times faster. In particular, the same data that
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Fig. 4 Speed comparison using the AIBT data. The computation time of Shrinkage Clustering is recorded and compared against other commonly
used clustering algorithms

takes Shrinkage Clustering only 73 s to cluster can take
Spectral clustering more than 20 h.

Discussion
From the biological case studies, we showed that
Shrinkage Clustering is computationally advantageous in
speed with comparable clustering accuracy to top per-
forming clustering algorithms and higher clustering accu-
racy than algorithms that internally select cluster numbers.
The advantage in speed mainly comes from the fact that
Shrinkage Clustering integrates the clustering of the data
and the determination of the optimal cluster number into
one seamless process, so the algorithm only needs to run
once in order to complete the clustering task. In con-
trast, algorithms like K-means, PAM, Spectral Clustering,
AGNES and SymNMF perform clustering on a single clus-
ter number basis, therefore they need to be repeatedly
run for all cluster numbers of interest before a clustering
evaluation method can be applied. Notably, the clustering
evaluation method Silhouette that we used in this experi-
ment does not perform any repetitive clustering validation
and therefore is a much faster method compared to other
commonly usedmethods that require repetitive validation
[27]. This means that Shrinkage Clustering would have an
even greater advantage in computation speed compared
to the methods tested in this paper if we use a cluster eval-
uation method that has a repetitive nature (e.g. Consensus
Clustering, Gap Statistics, Stability Selection).
One prominent feature of Shrinkage Clustering is its

flexibility to add the constraint of minimum cluster sizes.
The size constraints can help prevent generating empty
or tiny clusters (which are often observed in Hierarchical
Clustering and sometimes in K-means applications), and
can produce clusters of sufficiently large sample sizes as
required by the user. This is particularly useful when we
need to perform subsequent statistical analyses based on

the clustering solution, since clusters of too small a size
can make a statistical testing infeasible. For example, one
application of cluster analysis in clinical studies is iden-
tifying subpopulations of cancer patients based on their
gene expression levels, which is usually followed with a
survival analysis to determine the prognostic value of the
gene expression patterns. In this case, clusters that con-
tain too few patients can hardly generate any significant
or meaningful patient outcome comparison. In addition,
it is difficult to take actions based on tiny patient clusters
(e.g. in the context of designing clinical trials), because
these clusters are hard to validate. Since adding minimum
size constraints is essentially merging tiny clusters into
larger ones andmight result in less homogeneous clusters,
this approach is unfavorable if the researcher wishes to
identify the outliers in the data or to obtainmore homoge-
neous clusters. In these scenarios, we would recommend
using the base algorithm without adding the minimum
size constraint.
Despite its superior speed and high accuracy, Shrinkage

Clustering has a couple of limitations. First, the auto-
matic convergence to an optimal cluster number is a
double-edged sword. This feature helps to determine the
optimal cluster number and speeds up the clustering pro-
cess dramatically, however it can be unfavorable when the
researcher has a desired cluster number in mind that is
different from the cluster number identified by the algo-
rithm. Second, the algorithm is based on the assumption
of hard clustering, therefore it currently does not pro-
vide probabilistic frameworks as those offered by soft
clustering. In addition, due to the similarity between sym-
NMF and K-means, the algorithm likely prefers spher-
ical clusters if the similarity matrix is derived from
Euclidean distances. Interesting future research directions
include exploring and extending the capability of Shrink-
age Clustering to identify oddly-shaped clusters, to deal
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with missing data or incomplete similarity matrices, as
well as to handle semi-supervised clustering tasks with
must-link and cannot-link constraints.

Conclusions
In summary, we developed a new NMF-based clustering
method, Shrinkage Clustering, which shrinks the number
of clusters to an optimum while simultaneously optimiz-
ing the cluster memberships. The algorithm performed
with high accuracy on both simulated and actual data,
exhibited excellent robustness to noise, and demonstrated
superior speeds compared to some of the commonly used
algorithms. The base algorithm has also been extended
to accommodate requirements on minimum cluster sizes,
which can be particularly beneficial to clinical studies and
the general biomedical community.
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