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Exposure to an immune challenge in the perinatal period has been

shown to have profound and long-lasting effects on the stress

response throughout later life. Neonatal rats treated with lipopoly-

saccharide (LPS) show a marked increase in sensitivity to stress as

adults compared to their saline-treated counterparts, revealing a

long-term programming of the hypothalamic-pituitary-adrenal

(HPA) axis responses by this early stress (1–3). The mechanism

underlying this effect of LPS is not fully understood, although LPS

administration mimics events occurring during infectious stress,

including the induction of the febrile response, increased produc-

tion of cytokines such as interleukin-1b, interleukin-6 and tumour

necrosis factor-a leading to increased cyclooxygenase-2 and prosta-

glandin-E2 (PGE2) production (4, 5). Nevertheless, neonatal LPS

exposure is associated with increased corticotrophin-releasing fac-

tor (CRF) gene expression in the paraventricular nucleus of the

hypothalamus, and an increase in the pulse frequency and ampli-

tude of corticosterone release in adulthood (1, 6). However, the

critical time period for this neonatal programming is not known.

There has been relatively little research into the interaction of

neonatal immune challenges with the hypothalamic-pituitary-gona-

dal (HPG) axis. Our own study (7) has examined the effects of LPS

administration to neonates on pulsatile luteinising hormone (LH)

secretion and CRF and CRF receptor expression in the medial pre-

optic area (mPOA), and found that an immune challenge on post-

natal days 3 and 5 provokes heightened sensitivity of the

gonadotrophin-releasing hormone (GnRH) pulse generator to the

inhibitory influence of stress in adulthood. The HPG axis, and hence

the GnRH pulse generator, is now thought to be under the central

control of the kisspeptin (Kiss1) and Kiss1r (otherwise known as

GPR54, the G-coupled receptor for kisspeptin) signalling system in

the hypothalamus. Kisspeptin was established as a potent activator

of the reproductive system via Kiss1r mediation in 2005 (8). This
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Immunological challenge experienced in early life can have long-term programming effects on

the hypothalamic-pituitary-adrenal axis that permanently influence the stress response. Similarly,

neonatal exposure to immunological stress enhances stress-induced suppression of the hypotha-

lamic-pituitary gonadal (HPG) axis in adulthood, but may also affect earlier development, includ-

ing the timing of puberty. To investigate the timing of the critical window for this programming

of the HPG axis, neonatal female rats were injected with lipopolysaccharide (LPS; 50 lg ⁄ kg i.p.)

or saline on postnatal days 3 + 5, 7 + 9, or 14 + 16 and monitored for vaginal opening and

first vaginal oestrus as markers of puberty. We also investigated the effects of neonatal pro-

gramming on the development of the expression patterns of kisspeptin (Kiss1) and its receptor

(Kiss1r) in hypothalamic sites known to contain kisspeptin-expressing neuronal populations criti-

cal to reproductive function: the medial preoptic area (mPOA) and the arcuate nucleus in neo-

natally-stressed animals. We determined that the critical period for a significant delay in

puberty as a result of neonatal LPS exposure is before 7 days of age in the female rat, and

demonstrated that Kiss1, but not Kiss1r mRNA, expression in the mPOA is down-regulated in

pre-pubertal females. These data suggest that the mPOA population of kisspeptin neurones play

a pivotal role in controlling the onset of puberty, and that their function can be affected by

neonatal stress.
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system was linked to the function of the HPG axis after it was

noticed that mutations in the Kiss1r gene result in hypogonado-

trophic hypogonadism (9, 10), and that Kiss1r knockout mice exhibit

the same disorder (10). Kisspeptin ⁄ Kiss1r signalling is considered

part of the hypothalamic circuitry that governs the hypothalamic

secretion of GnRH (11) and is strongly implicated as a ‘gatekeeper’

for the initiation of puberty. Peripheral kisspeptin administration

stimulates precocious puberty in rats (12–14) and sustained gonad-

otrophic hormone secretion in juvenile rhesus monkeys (15). Fur-

thermore, polymorphisms in the Kiss1 gene and activating

mutations in Kiss1r have been associated with precocious puberty

in humans (16, 17). Although the mechanisms controlling the tim-

ing of kisspeptin ⁄ Kiss1r activation at puberty remain to be estab-

lished, it has recently been shown that 17b-oestradiol (E2) is

important for driving the increase in hypothalamic kisspeptin

expression prior to puberty in the mouse (18).

Kisspeptin neurones are localised in several nuclei of the hypo-

thalamus. Two of these are crucial for the regulation of gonadotro-

phic hormone secretion in the rat: the mPOA, which includes the

anteroventral periventricular nucleus (AVPV), and the arcuate

nucleus (ARC). During the onset of puberty, Kiss1 and Kiss1r

expression increases in the hypothalamus in both male and female

rats (13); a further study in mice suggests that there is differential

expression of Kiss1 from neurones in the ARC and AVPV during

puberty: the expression shows an increase in the AVPV, but remains

relatively stable in the ARC (19).

In the present study, we tested the hypotheses that a neonatal

immune challenge during a certain critical time window will delay

the onset of puberty, and that such an immune challenge will

affect Kiss1 and Kiss1r expression in the mPOA and ARC nuclei.

Our results suggest that the mPOA population of kisspeptin neuro-

nes may play a pivotal role in controlling the onset of puberty, and

that their function can be affected by neonatal stress.

Materials and methods

Animals

Pregnant Sprague-Dawley rats obtained from Charles River (Margate, UK)

were housed under controlled conditions (12 : 12 h light ⁄ dark cycle, lights

on 07.00 h; temperature 22 � 2 �C) and supplied with food and water

ad lib. Litters were reduced to a maximum of 14 pups 3 days after birth

(taking the day of birth as day 0), to standardise competition for food and

maternal attention and partially correct for gender imbalance. Litters were

weaned at postnatal (pnd) day 21, and female offspring were housed in

groups of four to six per cage. All procedures were conducted in accordance

with the United Kingdom Home Office Regulations.

Neonatal endotoxin exposure: determining a critical
window for delays in puberty as a result of neonatal
immune challenge

Litters were randomly divided into three groups. On pnd 3 and 5, the first

group were injected with 50 lg ⁄ kg endotoxin in 0.05 ml sterile saline (LPS,

serotype Esterichia coli 055:B5; Sigma-Aldrich, Poole, UK), a dose sufficient

to effect permanent HPA axis activation (1, 6). Half the pups in each litter

were designated controls, and received an i.p. injection of sterile saline

(0.05 ml). The second group were injected with LPS (50 lg ⁄ kg endotoxin in

0.15 ml) or saline on pnd 7 and 9. The third group were injected with LPS

(50 lg ⁄ kg endotoxin in 0.25 ml) or saline on pnd 14 and 16. Litters were

weaned as described, and females were monitored daily for vaginal opening

from pnd 32. Once vaginal opening occurred, a vaginal smear was taken

using a steel wire loop dipped in sterile saline. Animals were monitored until

first oestrus was observed, and weighed weekly.

Neonatal endotoxin exposure: effects on Kiss1 and Kiss1r
expression in the mPOA and ARC

On pnd 3 and 5, a separate group of pups was injected i.p. with 50 lg ⁄ kg

LPS or saline as control as described above. The animals were killed by

decapitation at various time points: pnd 14, 32, on the day of vaginal

opening (dVO), or pnd 77 (11 weeks of age, hereafter ‘Adult’). Animals from

the latter two groups were monitored for vaginal opening and oestrus

cyclicity as described above, from pnd 32; they were also weighed weekly.

The adult animals were bilaterally ovariectomised at 10 weeks of age and

implanted with a Silastic capsule (inner diameter 1.57 mm; outer diameter

3.18 mm; Sanitech, Havant, UK), filled to a length of 25 mm with E2

(Sigma-Aldrich) dissolved at a concentration of 20 lg ⁄ ml arachis oil

(Sigma–Aldrich). The E2-containing capsules were assumed to produced cir-

culating concentrations of E2 within the range observed during the dioe-

strous phase of the oestrous cycle (approximately 38.8 � 1.2 pg ⁄ ml) as

previously described by Maeda et al. (20). Surgical procedures were carried

out under ketamine (100 mg ⁄ kg i.p.; Pharmacia and Upjohn Ltd, Crawley,

UK) and Rompun (10 mg ⁄ kg i.p.; Bayer, Leverkusen, Germany) anaesthesia.

The rationale for ovariectomy and E2 replacement of the adult group was

to eliminate the impact of a fluctuating gonadal steroid milieu on hypotha-

lamic Kiss1 and Kiss1r mRNA expression and in addition to allow compari-

son with other studies carried out in our laboratory using different stress

paradigms (21).

Tissue collection and quantitative reverse trasncriptase-
polymerase chain reaction (RT-PCR)

Expression of Kiss1 and Kiss1r mRNA was determined by real-time quantita-

tive RT-PCR in the mPOA and ARC from animals culled at pnd 14, pnd 32,

dVO and as adults. The whole brain was carefully removed, frozen on dry

ice, and stored at )80 �C. Sections were cut at 300 lm on a cryostat

(Bright Ltd, Cambridgeshire, UK) for RT-PCR. Bilateral punches (1 mm in

diameter) from the mPOA, which included the AVPV, were taken from

bregma +0.2 to )0.4; a single midline punch (1 mm diameter) was taken

from bregma )1.7 to )3.9 to include both ARC nuclei. Co-ordinates were

obtained from the rat brain atlas of Paxinos and Watson (22) using the

micropunch method described by Palkovits (23). The punched sections were

fixed with formalin and stained with crystal violet to confirm correct punch

positioning under a microscope. Total RNA was extracted from the punched

mPOA and ARC tissues for each rat using TRI reagent (Sigma-Aldrich) in

accordance with the manufacturer’s instructions. Reverse transcription was

carried out using the reverse transcriptase Superscript II (Invitrogen, Carls-

bad, CA) and random primer following the manufacturer’s instructions. For

the qPCR, the following primers were used: Kiss1: (sense) 5¢-TGG

CACCTGTGGTGAACCCTGAAC-3¢, (antisense) 5¢-ATCAGGCGACTGCGGGTGGCAC

AC-3¢; Kiss1r: (sense) 5¢-TGTGCAAATTCGTCAACTACATCC-3¢, (antisense) 5¢-AG

CACCGGGGCG GAAACAGCTGC-3¢. 28S rRNA: (sense) 5¢-TTGAAAATCCGGG

GGAGAG-3¢, (antisense) 5¢-ACATTGTTCCAACATGCCAG-3¢. The primer pairs

selected for Kiss1 and Kiss1r detection were designed to amplify across at

least one intron, ruling out the possibility of identical size bands resulting

from genomic DNA amplification. Based on the rat Kiss1 genomic sequence
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(accession number: NM181692.1), the primers for Kiss1 will amplify a frag-

ment of 192 bp corresponding to nucleotides 74–275 of the GenBank

sequence. The Kiss1r sense primer corresponds to nucleotides 341–533 of

the Genbank sequence (NM023992.1), with cDNA products of 194 bp. The

LightCycler (Roche Biochemicals, Lewes, UK) was used for real-time quanti-

tative analysis of Kiss1 and Kiss1r mRNA expression. The sample cDNA

prepared as above was used as a template for the PCR. During PCR, the

amplified cDNA products were detected after each annealing phase in real

time using the Faststart DNA Master SYBR Green I kit (Roche Biochemicals).

Each reaction included 2 ll of sample cDNA (optimised so that sample val-

ues of the PCR product were within the standard curve), 0.5 ll each of

25 lM antisense and sense primers, 2 ll 15 mM MgCl2, 1 ll Faststart DNA

master SYBR Green mix and 4 ll of water to give a total reaction volume

of 10 ll. The Kiss1 reaction conditions were 10 min at 95 �C for one cycle,

then 10 s at 95 �C, 10 s at 56 �C and 10 s at 72 �C for 32 cycles. The

Kiss1r reaction conditions were 15 min at 94 �C for one cycle, then 15 s at

95 �C, 30 s at 63 �C and 16 s at 72 �C for 34 cycles. The 28S rRNA reaction

conditions were 10 min at 95 �C for one cycle, then 15 s at 95 �C, 10 s at

54 �C and 5 s at 72 �C for 28 cycles. Reaction conditions for Kiss1 and

Kiss1r mRNA and 28S rRNA were optimised separately to give the best

results for each primer and for the different quantities of target in samples.

Preliminary experiments were undertaken to optimise the Mg2+ concentra-

tion, to confirm PCR specificity by agarose gel electrophoresis and melting

curve analysis, and to prepare the PCR products used to generate standard

curves in real-time PCR. Kiss1 and Kiss1r were quantified against a standard

curve of samples containing known Kiss1, Kiss1r and 28S PCR product con-

centrations, using the LightCyclerTM software. The 28S rRNA was quantified

as a reference gene against a separate standard curve of samples containing

known concentrations of 28S rRNA product. The melting curves for Kiss1

and Kiss1r mRNAs and 28S rRNA generated by the LightCyclerTM software

demonstrated that single products were amplified. PCR product for Kiss1

and Kiss1r mRNAs was sequenced and analysed using an ABI PRISM 310

(Applied Biosystems, Foster City, CA, USA).

Statistical analysis

Comparisons between neonatal LPS and saline treatment groups on vaginal

opening and first oestrus were made by subjecting data to one-way ANOVA

and Dunnett’s test. A two-way ANOVA and Newman–Keuls post-hoc analysis

was used to assess the effects of LPS treatment and time on the expression

of hypothalamic Kiss1 and Kiss1r. P < 0.05 was considered statistically sig-

nificant in all cases. Data are presented as the mean � SEM.

Results

Effects of LPS exposure at different time points postnatally
on the timing of pubertal onset

Neonatal administration of LPS on pnd 3 + 5 resulted in a signifi-

cant delay in both the day of vaginal opening (Saline: 39.5 � 0.4;

LPS: 41.4 � 0.6; P < 0.05) and day of first vaginal oestrus (Saline:

39.4 � 0.5; LPS: 41.9 � 0.6; P < 0.05). There were no significant

differences between the LPS and saline-treated animals for the pnd

7 + 9 or pnd 14 + 16 animals (P > 0.05), despite a slight trend

towards a delay in the pnd 7 + 9 group (Fig 1). None of the LPS-

treated animals showed significant differences in weight compared

to their respective controls (data not shown).

Effects of neonatal LPS exposure on Kiss1 and Kiss1r
expression in the mPOA and ARC across puberty

There was a significant decrease in Kiss1 mRNA expression in the

mPOA on pnd 32 (pre-puberty) and adult for animals treated with

LPS neonatally, in comparison to the saline controls. Neither the

pnd 14 nor dVO groups showed a significant change in Kiss1 mRNA

expression as a result of neonatal LPS administration. The levels of

Kiss1 mRNA expression differed significantly between the pnd 14,

pnd 32 and dVO groups, increasing with age; in both LPS and sal-

ine-treated groups the dVO expression of Kiss1 was significantly

higher than in adults (P < 0.05; Fig.2A).

There was no significant difference in Kiss1r mRNA expression

across the pubertal transition period, and no significant effect from

LPS treatment for pnd 14, pnd 32 or dVO. There was, however, a

significant decrease in Kiss1r mRNA expression for the adult ani-

mals in comparison to the dVO group, for both LPS and saline-trea-

ted groups, and a significant up-regulation of Kiss1r mRNA

expression in the mPOA in adult animals in response to neonatal

LPS treatment (P < 0.05; Fig. 2B).

In the arcuate nucleus, no significant differences in Kiss1 mRNA

expression were observed between the LPS and saline-treated
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Fig. 1. Effects of neonatal lipopolysaccharide (LPS; 50 lg ⁄ kg i.p.) at postnatal day (pnd) 3 + 5, 7 + 9 or 14 + 16 on the timing of vaginal opening (A) or first

vaginal oestrus (B). Data are presented as the delay, in days, in vaginal opening or first oestrus due to neonatal-LPS treatment relative to neonatal saline trea-

ted controls. Only the neonatal-LPS treated rats on pnd 3 + 5 showed a significant delay in pubertal onset (P < 0.05). (mean � SEM; n = 12–26 per group).
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groups at any time point. There was a significant difference in Kiss1

mRNA expression between the pnd 14 and pnd 32 groups, and

between the pnd 14 and dVO groups, with the expression increas-

ing with age, but no significant up-regulation between pnd 32 and

dVO (P > 0.05; Fig. 2C).

Kiss1r mRNA expression in the arcuate nucleus showed no sig-

nificant change either with age or as a result of LPS treatment

(P < 0.05; Fig. 2D). Representative examples of mPOA and ARC

punched brain sections from pnd 77 (Adult) rats are shown in

Fig. 3; the ARC punches shown also contain small extra-arcuate cell

populations including the median eminence. None of the LPS-trea-

ted animals showed significant differences in weight compared with

their respective controls (data not shown).

Discussion

The present experiments demonstrate that there is a critical window

for the programming of the developing HPG axis by neonatal

immune challenge with LPS, and that such an insult has a signifi-

cant effect on the timing of puberty and the expression of Kiss1

mRNA in the mPOA during puberty. The effect on pubertal timing

was only significant when LPS treatment was given on pnd 3 + 5.

Of note is the absence of effect of neonatal LPS treatment on body

weight (present study, 24), a factor that is well known to affect the

timing of pubertal onset.

There have been few other studies of this phenomenon, although

a recent study by Iwasa et al. (25) reported that, in rats injected

with LPS at postnatal day 10, there was no difference in oestrous

cycle length of adult females between neonatally LPS- and saline-

treated animals, supporting our findings that an immune challenge

after pnd 7 does not overtly affect reproductive function.

We have shown for the first time that neonatal treatment with

LPS on postnatal days 3 + 5 results in a significant decrease in

Kiss1 mRNA expression in the mPOA on pnd 32, but no changes in

Kiss1r mRNA expression. This decrease in Kiss1 mRNA expression

could provide a mechanism for the observed delay of puberty. By

contrast, the lack of effect of neonatal LPS treatment on Kiss1 or

Kiss1r expression in the ARC would indicate that kisspeptin ⁄ Kiss1r

signalling in this brain region is not an obvious contributing factor

to the pubertal delay. The high levels of Kiss1 mRNA in the com-

bined mPOA and ARC of the pnd 32 groups compared to the pnd

14 groups corroborate findings by Navarro et al. (13) that kisspep-

tin is expressed at a basal level between pnd 10 and pnd 25 in the

whole hypothalamus, and is up-regulated several days before vagi-

nal opening. Navarro et al. (13) observed high expression on pnd

30, which corresponds closely to our chosen time point of pnd 32,

taking into account that we observed vaginal opening on approxi-

mately pnd 38, compared to their pnd 35 for untreated animals. By

contrast to the further marked rise in Kiss1 expression between

pnd 32 and the day of VO in the mPOA, the kisspeptin neurones in

the ARC do not appear to undergo changes during this peripubertal

period.

In the present study, Kiss1r mRNA expression showed no signifi-

cant changes between pnd 14 and pnd 32, unlike the marked

up-regulation of the receptor observed by Navarro et al. (13). This

difference may reflect the contrast between analysing specific brain
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nuclei rather than the entire hypothalamus, but nevertheless

remains puzzling. Herbison et al. (19) have shown an absence of a

change in Kiss1r expression in preoptic area GnRH neurones during

pubertal development in the male mouse. However, Plant et al. (26)

have reported an increase in Kiss1r mRNA expression across the

pubertal transition in the mediobasal hypothalamus in female rhe-

sus monkeys, although they show no differences in Kiss1r mRNA

expression between juveniles and pubescent males despite an

increase in Kiss1.

Although we have shown very early neonatal exposure to LPS

may delay puberty as a results of long-term changes in Kiss1

mRNA expression in the mPOA, the underlying mechanism of action

of LPS remains to be established. LPS acts to provoke a febrile

immune response through the production of cytokines which stim-

ulate the production of cyclooxygenase-2 and PGE2 (4). PGE2

administration in neonates has been shown to mimic the action of

oestradiol in orchestrating sexually dimorphic neuronal organisation

in the preoptic area, and is linked to masculinisation of sexual

behaviour in female rats (27, 28). Because the LPS administration

on pnd 3 + 5 falls within a critical window during which this sex-

ual dimorphism in the preoptic has been shown to arise (29, 30), it

is possible that there is a link between the action of PGE2 and an

alteration of the normal sexual dimorphism of the kisspeptin neuro-

nes in the AVPV; it has previously been demonstrated that neonatal

androgen administration in the rat plays a role in determining the

sexual dimorphism in the AVPV, but not the ARC (31). It has yet to

be determined whether PGE2 affects the sexually dimorphic organi-

sation of the kisspeptin neurones, but if this is the case, it offers a

possible explanation for the lack of long-term effects on the HPG

axis as a result of LPS treatment on pnd 7 + 9 and 14 + 16

because the timing of these injections may fall outside the (cur-

rently unknown) critical period during which the differentiation

takes place. Further work is required to address these issues.

In adult animals, we found a significant increase in mPOA Kiss1r

mRNA expression in response to neonatal LPS administration. This

up-regulation of kisspeptin’s receptor may represent a compensa-

tory effect to allow some reproductive function despite reduced

Kiss1 expression possibly through increased detection of the ligand

by increased receptor presence, although, at the present time, this

is just speculation. Nevertheless, we observed the same down-regu-

lation of Kiss1 and corresponding up-regulation of Kiss1r in

response to both acute and chronic corticosterone administration in

ovariectomised adults, although, in contrast to neonatal LPS treat-

ment, corticosterone significantly alters expression profiles in both

the mPOA and ARC (21). We have previously shown that adult

animals treated neonatally with LPS exhibit chronic hypercorticoste-

ronaemia, as well as persistent elevation in response to a mild

stressor (6), but neither acute nor chronic stress levels of cortico-

sterone had any effect on pulsatile LH secretion (21). The possible

compensation mechanism for up-regulating Kiss1r in the presence

of low Kiss1 levels in adults would agree with previous reports that,

under nonstressed conditions, pulsatile LH secretion is unaffected

by neonatal treatment with LPS in ovariectomised females (7), sug-

gesting that the altered expression of Kiss1 and its receptor in the

mPOA does not affect the basal operation of the HPG axis, at least

in agonadal female rats. However, we have observed that pnd

3 + 5 LPS treatment has a disruptive effect on oestrus cyclicity,

with many more LPS than saline-treated animals exhibiting irregular

oestrus cycles, both immediately post-puberty and as adults (32),

indicating that the change in Kiss1 ⁄ Kiss1r expression profiles as a

result of neonatal LPS may be the first manifestation of more long-

lasting changes to the HPG axis, namely the sensitisation to stress-

induced suppression of the GnRH pulse generator in adulthood (7).

The present study is the first to demonstrate that a neonatal

immune challenge can have direct effects on the timing of puberty,

concordant with altered hypothalamic Kiss1 expression. That such

an early insult is capable of such long-term effects is not entirely

unexpected. Many studies of perinatal programming (33) have con-

tributed to the understanding that adverse early environments can

have long-lasting effects on adult health, with these changes corre-

sponding to the stages of brain development that continue to

mature both before and after birth. Similar to many epigenetic fac-

tors that influence development, immunological challenge has come

under scrutiny recently, and neonatal LPS administration has been

discovered to programme a wide range of adult phenotypes, includ-

ing an attenuation of the febrile response (34), insulin sensitivity

(35), susceptibility to stress-induced suppression of reproductive

function (7), and adult anxiety-related behaviour (36). It is apparent

LV

(A) (B)

D3V

1 mm 1 mm

Fig. 3. Representative examples of 300 lm coronal sections of pnd 77 (Adult) rat brain stained with crystal violet, showing the position of the punched med-

ial preoptic area (mPOA) at approximately anteroposterior )0.28 mm from bregma (A) and arcuate nucleus at approximately )4.16 mm from bregma (B). Lat-

eral ventricles (LV) and the dorsal third ventricle (D3V) are also indicated.
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that a stressful environment in the perinatal period can program

an animal’s immune, metabolic and reproductive functions later in

life; it remains to be shown which changes are adaptations that

allow the animals to better cope with a stressful adult environment,

and which represent disadvantages resulting from disruption at key

points in development.
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