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Globalized simulation‑driven 
miniaturization of microwave 
circuits by means 
of dimensionality‑reduced 
constrained surrogates
Slawomir Koziel1,2, Anna Pietrenko‑Dabrowska2* & Marzieh Mahrokh1

Small size has become a crucial prerequisite in the design of modern microwave components. 
Miniaturized devices are essential for a number of application areas, including wireless 
communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, 
size reduction generally degrades the electrical performance of microwave systems. Therefore, 
trade‑off solutions have to be sought that represent acceptable compromises between the ability 
to meet the design targets and physical compactness. From an optimization perspective, this poses 
a constrained task, which is computationally expensive because a reliable evaluation of microwave 
components has to rely on full‑wave electromagnetic analysis. Furthermore, due to its constrained 
nature, size reduction is a multimodal problem, i.e., the results are highly dependent on the initial 
design. Thus, utilization of global search algorithms is advisable in principle, yet, often undoable in 
practice because of the associated computational expenses, especially when using nature‑inspired 
procedures. This paper introduces a novel technique for globalized miniaturization of microwave 
components. Our technique starts by identifying the feasible region boundary, and by constructing a 
dimensionality‑reduced surrogate model therein. Global optimization of the metamodel is followed 
by EM‑driven local tuning. Application of the domain‑confined surrogate ensures low cost of the entire 
procedure, further reduced by the incorporation of variable‑fidelity EM simulations. Our framework 
is validated using two microstrip couplers, and compared to nature‑inspired optimization, as well as 
gradient‑based size reduction. The results indicate superior miniaturization rates and low running 
cost, which make the presented algorithm a potential candidate for efficient simulation‑based design 
of compact structures.

Design of contemporary microwave passive circuits is a non-trivial endeavour. Performance and functionality 
demands have been continuously growing to satisfy the needs of the emerging application areas such as mobile 
 communications1, internet of  things2, remote  sensing3, microwave  imaging4, energy  harvesting5, autonomous 
 vehicles6, or implantable  device7. Some of the requirements include multi-band  operation8,  reconfigurability9, 
harmonic  suppression10, or custom phase  characteristics11. Furthermore, many applications impose constraints 
on the physical size of the devices, which fosters  miniaturization12–15. Miniaturization is essentially a two-stage 
process. Initially, a basic circuit architecture is selected to ensure compact  dimensions16,17, often with the use 
of techniques such as transmission line (TL) folding/meandering18, utilization of the slow-wave  phenomenon19 
(typically, in the form of compact microwave resonant cells,  CMRCs20), multi-layer  realizations21, or incor-
poration of various supplementary components  (stubs22, defected ground  structures10, substrate-integrated 
 waveguides23, shorting  pins24). All of these methods result in geometrically complex structures, whose accurate 
evaluation requires full-wave electromagnetic (EM) analysis due to the presence of cross-coupling effects in 
densely arranged circuit layouts. At the same time, geometrical modifications lead to the increase of the num-
ber of parameters that have to be simultaneously tuned in order to control both the circuit size and electrical 
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figures of merit. As size reduction is detrimental to electrical performance of the system, any practical design 
is a trade-off between compactness and functionality. Initial circuit dimensions can usually be obtained using a 
combination of equivalent networks and parametric studies, yet rigorous numerical optimization is indispensable 
to significantly enhance the system performance.

Nowadays, parameter tuning is more and more often carried out using rigorous numerical optimization meth-
ods, which is recommended due to their ability to handle multiple parameters, objectives and  constraints25–27. 
Optimization is not only used for the purpose of design closure (final tuning of geometry parameters, often 
using local  algorithms28), but also multi-criterial  design29, uncertainty quantification (tolerance  analysis30, design 
 centering31), and global  optimization32. Whatever the purpose, microwave circuit optimization is a challeng-
ing endeavor. Perhaps the most significant bottleneck is its high computational cost when executed at the level 
of EM simulation models, otherwise necessary to ensure reliability of the process. While the costs are often 
manageable in the case of local (e.g., gradient-based) tuning, global or multi-objective optimization, as well as 
statistical design, are considerably more  demanding33,34. Consequently, there have been numerous techniques 
developed to improve computational efficiency of EM-driven optimization. Some of these methods include utili-
zation of adjoint  sensitivities35,36, restricted sensitivity  updates37–39, the employment of (fast) dedicated  solvers40, 
mesh deformation  approaches41, feature-based  optimization42, or cognition-driven  design43. Yet, one of the most 
important developments in making simulation-based design more practical in terms of CPU expenses, has been 
the incorporation of surrogate modeling  methodologies44–47.

Surrogate-assisted optimization (SBO) has attracted a considerable attention in the design of high-frequency 
circuits, including microwave and antenna components, primarily because of its ability to accelerate simulation-
based procedures, including  local48, and global  optimization49, robust  design50, or multi-criterial  optimization51. 
Surrogate-assisted procedures utilize both data-driven52 or physics-based  metamodels53. Data-driven techniques 
are versatile and readily transferrable between the problem  domains54, which make them the most popular class 
of modeling methods. Specific approaches often employed in the context of high-frequency engineering include 
 kriging55, radial basis  functions56, many variations of artificial neural  networks57–59, support vector  regression60, 
Gaussian process  regression61, or polynomial chaos expansion (PCE)62. Data-driven models are cheap to evalu-
ate, but they are affected by the curse of dimensionality: the number of training data samples necessary to con-
struct reliable models quickly grows with the number of parameters and parameter ranges, and may become 
unmanageable even for medium-size problems. Physics-based surrogates are constructed using a lower-fidelity 
representation of the system of interest (e.g., equivalent  network63, or coarse-discretization EM  analysis64). The 
problem-specific knowledge embedded in the low-fidelity model enhances generalization capability of the sur-
rogates of this  class65. At the same time, it limits the applicability range because each problem requires its own 
low-fidelity model. Some of popular techniques include space  mapping66, and response correction  methods67–69, 
most of which are typically used for local optimization purposes. Surrogate-assisted frameworks allowing for 
solving expensive constrained optimization problems have been recently proposed  in70  and71.

As mentioned earlier, size reduction constitutes a prerequisite in the design of contemporary microwave 
components. It is normally addressed at the level of selecting the circuit  architecture72–74, yet appropriate param-
eter tuning plays just as important part. From numerical perspective, size reduction is a constrained task with 
expensive constraints that require evaluating through EM analysis (e.g., acceptance thresholds imposed on the 
circuit bandwidth, power split ratio, or phase responses)75. As size reduction is detrimental to electrical perfor-
mance, at least some of the constraints remain active at the optimal solution, which emphasizes the role of feasible 
region boundary exploration in the search  process76. These challenges can be addressed by implicit constraint 
handling using a penalty function  approach77, where the problem is reformulated into a formally unconstrained 
one. However, performance of the optimization process turns out to be contingent upon the appropriate choice of 
penalty  coefficients78, which are normally selected by trial and error. This gave rise to adaptive penalty coefficient 
 strategies79,80. Recently, explicit constraint handling methods have been  proposed81, along with the techniques for 
customized treatment of equality constraints, based on correction  procedures82. Another approach to constraint 
handling in the context of design of antennas and antenna arrays using evolutionary algorithms that allows for 
circumventing the issue of an appropriate setting of the penalty coefficients, has been proposed  in83,84.

The optimization techniques outlined in the previous paragraph are local search procedures, which are highly 
dependent on the available starting points. At the same time, miniaturized microwave components are often 
developed using transmission line  meandering85,  CMRCs20, or various geometrical  modifications86,87, which leads 
to parameter redundancy (e.g., a typical number of geometry parameters of CMRC is four to six versus two for 
a conventional TL). The increased number of degrees of freedom enables the necessary flexibility; yet, its han-
dling calls for global optimization. Conventional global search methods (e.g., nature-inspired population-based 
 algorithms88,89) are not suitable for the purpose due to poor computational efficiency. This work proposes a novel 
procedure for globalized miniaturization of passive microwave circuits, which is designed to lessen the cost of 
the search process while maintaining reliability. The presented technique is a multi-stage process, which starts 
by (roughly) approximating the feasible region boundary using a set of randomly generated parameter vectors 
coupled with initial (local) optimization runs. Subsequently, a reduced-dimensionality domain is established in 
the feasible boundary region, along with a fast surrogate model, the latter utilized to conduct a globalized size 
reduction. The search process is concluded by final miniaturization-oriented parameter tuning of the circuit. 
The abovementioned dimensionality reduction is achieved using the spectral analysis of the pre-optimized 
parameter vectors. The initial steps of the search process are executed using low-fidelity model to lower the CPU 
cost even further. Our methodology has been validated using a compact rat-race coupler and a dual-band power 
divider. The numerical results demonstrate superior performance of the proposed routine, with regard to both 
the computational efficiency and reliability, as well as constraint control, as compared to the nature-inspired 
optimization and multiple-start local search.
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The primary technical contributions of the paper can be summarized as follows: (i) the development of a novel 
framework for globalized EM-driven miniaturization of passive microwave circuits, which incorporates several 
mechanisms (variable-fidelity EM analysis, surrogate modelling, and dimensionality reduction), (ii) a demonstra-
tion of the competitive performance of the presented method as compared to the state-of-the-art methods (both 
local and global), also in terms of achievable miniaturization rates, (iii) a demonstration of the search process 
reliability, especially low variance of the optimization results (equivalent to consistent repeatability). According to 
the authors’ knowledge, the literature does not offer any size-reduction framework featuring comparable proper-
ties and performance. Consequently, the proposed approach may become an interesting alternative to existing 
methods, particularly in terms of combining computational efficiency and achievable miniaturization rates.

Globalized EM‑driven miniaturization using variable‑fidelity models and spectral 
analysis
This section provides the details of the globalized optimization procedure for passive microwave components 
introduced in the paper. The EM-driven size reduction problem is formulated in "EM-driven size reduction: 
problem statement" Section. The concept of the optimization algorithm is described in Globalized size reduction: 
explanation of the concept Section. "Feasible Region boundary approximation" Section elaborates on feasible 
region boundary approximation, one of the keystones of the presented methodology. The surrogate modeling 
stage is outlined in "Surrogate model construction",  "Surrogate model optimization for size reduction" Sections. 
delineates global optimization of surrogate model, whereas "Final parameter adjustment" Section discusses the 
final (gradient-based) design closure. The entire optimization framework is summarized in "Globalized EM-
driven size reduction: complete procedure" Section using a pseudocode and a flow diagram.

EM‑driven size reduction: problem statement. Design of compact microwave components consists 
of the two major stages: (i) a selection of the circuit geometry, and (ii) parameter tuning. The first stage is 
essential to ensure structural miniaturization (e.g., by replacing TLs with their abbreviated counterparts such as 
 CMRCs90), whereas the second allows for exploring further the size reduction potential of the chosen architec-
ture, in particular, to push the design as much as possible towards feasible region boundary, where the electrical 
performance parameters are barely satisfied in exchange for additional reduction of the circuit physical dimen-
sions.

In the following, we will use x = [x1 … xn]T for a vector of design variables, and by A(x) the circuit size (e.g., 
footprint area). The miniaturization problem is simply stated as 

where Xf is a feasible space, i.e., the region in which all design constraints are satisfied. The constraints can be 
of inequality type, gk(x) ≤ 0, k = 1, …, ng (e.g., acceptance threshold for the circuit operating bandwidth), and 
equality constraints hk(x) = 0, k = 1, …, nh (e.g., target power split ratio).

The constraints imposed on electrical characteristics of the circuit are expensive to evaluate (require EM 
simulation). Consequently, their explicit handling might be problematic, although some recent strategies dem-
onstrated promising results (e.g.81,). A convenient alternative is implicit handling using a penalty  functions77. 
According to this approach, the original objective function is supplemented by scaled constraint violations. We 
have

where the merit function U is given by

The second term in (3) consist of penalty functions ck(x) and proportionality coefficients βk; nc = ng + nh is the 
overall number of constraints. Table 1 provides a few examples of constraints that may be encountered in size 
reduction tasks. Table 2 shows example definitions of the penalty functions, often expressed through relative 
violations. It should be noted that the formulation (2), (3) corresponds to soft constraint handling, i.e., it does 
not guarantee their exact satisfaction. As a matter of fact, the constraint control is reliant on coefficients βk, 

(1)x
∗ = arg min

x∈Xf

A(x)

(2)x
∗ = argmin

x
U(x)

(3)U(x) = A(x)+
∑ng+nh

k=1
βkck(x)

Table 1.  Example constraints in size-reduction of microwave components. $ The symbol |Sjk(x,f)| stands for the 
modulus of the S-parameter Sjk at the design x, and frequency f.

Constraint Type Analytical  description$

Input matching |S11| not exceeding –20 dB over the operating bandwidth[f1 f2] Inequality |S11(x,f)|≤ − 20 dB for f ∈ [f1 f2]

Port isolation |S41| not exceeding –20 dB over the operating bandwidth [f1 f2] Inequality |S41(x,f)|≤ − 20 dB for f ∈ [f1 f2]

In-band transmission ripple not exceeding 0.2 dB over the operating bandwidth [f1 f2] Inequality |S21(x,f)|≥ − 0.2 dB for f ∈ [f1 f2]

Power split ratio between output ports 2 and 3 equal to KP at the center frequency f0 Equality |S31(x,f)|–|S21(x,f)|= KP at f = f0;

Phase difference between output ports 2 and 3 equal to 90° at the center frequency f0 Equality ∠S31(x,f)–∠S21(x,f) = 90° at f = f0;
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which should be adjusted appropriately. Too low values result in an insufficient control over constraint violations, 
whereas the values that are too high lead to numerical problems as the objective function becomes very steep at 
the feasible region boundary. This issue has been addressed by adaptive coefficient adjustment  schemes78,80, where 
the values of βk are changed based on currently-detected violations, as well as the algorithm convergence  status78.

Globalized size reduction: explanation of the concept. Miniaturization of microwave components 
is typically obtained by appropriate selection of the circuit architecture (line  folding18, slow-wave  phenomenon19, 
defected  ground10). Any deviation from conventional structures results in increasing the number of geometry 
parameters, and creating complex relations between those parameter and electrical characteristics, which are 
often counter-intuitive. From the perspective of optimization as considered in  "EM-driven size reduction: prob-
lem statement" section, this leads to multimodal tasks potentially exhibiting a number of local optima. Appro-
priate treatment of such problems requires global search methods. However, as mentioned in "Introduction" 
section, conventional algorithms (e.g., population-based  metaheuristics91) are just too expensive. On the other 
hand, surrogate-assisted  methods92 are hindered by dimensionality issues and high-nonlinearity of microwave 
component responses. This paper proposes an alternative methodology, designed to improve the efficacy of 
the optimization-based size reduction process, which includes making the search less dependent on the initial 
design quality as compared to local methods.

The central concept of the proposed technique is the boundary Xb of the feasible region Xf. We have the fol-
lowing definitions (here, X is the space of design parameters, usually, delimited by lower and upper bounds):

and

As miniaturization generally degrades the circuit performance (e.g., reduces the operating bandwidth), 
minimum-size designs normally reside in Xb as at least one of the constraints is active. Therefore, (approximate) 
identification of the spatial allocation of Xb allows for narrowing down the part of the parameter space that needs 
to be explored. The exploration involves surrogate modeling techniques, as well as final EM-driven parameter 
tuning. Figure 1 shows the overall concepts of the proposed optimization methodology. Figure 2 briefly explains 
the search stages. Detailed description will be provided in the remaining parts of this section.

To improve computational efficiency of the process, Stages 1 through 3 are carried out using the low-fidelity 
model Rc, which is based on coarse-discretization EM analysis. At these stages, the accuracy is not of a major 
concern. Stages 5 and 7 are executed using the high-fidelity model Rf, which is to ensure reliability of the search 
process. "Feasible region boundary approximation" Section through "Final parameter adjustment" provide the 
details of how all the stages are implemented. "Globalized EM-driven size reduction: complete procedure" sec-
tion summarizes the complete framework.

Feasible region boundary approximation. The parameter space for the microwave circuit of interest 
is conventionally assumed to be an interval X = [l u]. Therein, the vectors l and u represent the lower and upper 
parameter bounds. At the component level it may be written as lk ≤ xk ≤ uk, k = 1, …, n. Stages 1 through 3 of the 
search process (cf. Fig. 2) are arranged as follows. We start by generating N1 random observables xr

(j) that satisfy 
the following conditions: 

• xr
(j) ∈ X = [l u];

• A(xr
(j)) ≤ A1;

• A(xr
(j)) ≥ A2;

• xr
(j) satisfy other possible constraints (problem dependent).

Therein, A1 and A2 are optional maximum and minimum circuit size values. These might be available from 
the previous design work with the same circuit, and give the idea of what level of physical sized are achievable 
for the circuit.

(4)Xf =
{

x ∈ X : gk(x) ≤ 0 for k = 1, . . . , ng AND hk(x) = 0 for k = 1, . . . , nh
}

(5)Xb =

{

x ∈ X : gk(x) = 0 for at least one k = 1, . . . , ng
OR hk(x) = 0 for at least one k = 1, . . . , nh

}

Table 2.  Possible formulation of penalty functions for constraints of Table 1.

Constraint Penalty function

Input matching |S11| not exceeding − 20 dB over the operating bandwidth [f1 f2] c(x) =
[

max {max{f1≤f≤f2 :|S11(x,f )|}+20,0}
20

]2

Port isolation |S41| not exceeding − 20 dB over the operating bandwidth [f1 f2] c(x) =
[

max {max{f1≤f≤f2 :|S41(x,f )|}+20,0}
20

]2

In-band transmission ripple not exceeding 0.2 dB over the operating bandwidth [f1 f2] c(x) =
[

max {−min{f1≤f≤f2 :|S21(x,f )|}−0.2,0}
0.2

]2

Power split ratio between output ports 2 and 3equal to KP at the center frequency f0 c(x) =
[

|S31(x, f0)| − |S21(x, f0)| − KP

]2

Phase difference between output ports 2 and 3 equal to 90° at the center frequency f0 c(x) =
[

∠S31(x, f0)−∠S21(x, f0)− 90◦
]2
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In other words, having such data, we may initially filter out samples that correspond to circuit sizes that are 
clearly too small or too large. One may also impose additional constraints for the sake of restricting the parameter 
space regions to be sampled even further. Such constraints should be based on the designer’s knowledge and/or 
available data. The number of samples N1 is a user-defined control parameter, typically set to 500.

Having the set of samples, the low-fidelity model is evaluated to obtain the circuit characteristics Rc(xr
(j)), j = 1, 

…, N1. The best subset of N2 samples, {xi
(j)}j=1,…,N2 ⊂ {xr

(j)}j=1,…,N1 is selected based on the corresponding values 
of penalty-based objective function (3). Here, we set N2 = 20. This number is a reasonable trade-off between the 
computational cost of subsequent stages and the data on the feasible region boundary Xb that can be obtained 
therefrom.

The parameter vectors xi
(j) are used as initial designs for EM-driven size reduction at the low-fidelity model 

level. Thus, for j = 1, …, N2, we solve

(6)x
(j)
c = argmin{x : U(x)}

Infeasible

region

Parameter space

Feasible

region

Feasible region

boundary Random observables

(a)                                                     (b)

Size-reduced designs

(low-fidelity)
Dimensionality-

reduced surrogate

model domain

(c)                    (d)

Training data

allocation

Surrogate model

optimum

Final design

(locally tuned

at high-fidelity)

(e)                                                     (f)

Figure 1.  Conceptual illustration of the proposed globalized size reduction procedure involving variable-
resolution EM models and dimensionality reduction: (a) Exemplary parameter space with feasible and infeasible 
region indicated along with the boundary region marked in grey, (b) Stage 1: allocation of random observables; 
the acquired EM data will be used to approximate the feasible region boundary, (c) Stages 2 and 3: selected 
observables are optimized for size reduction at low-fidelity EM level, (d) Stage 4: spectral analysis of the pre-
optimized observables is used to define the domain of the surrogate model in the boundary area, (e) Stage 5: 
training data is allocated in the domain, and kriging interpolation model is constructed, (f) Stages 6 and 7: the 
design obtained through global optimization of surrogate model is finally tuned at high-fidelity level using 
gradient-based routine.
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Again, U is the objective function (3) incorporating the penalty terms. Because the accuracy is not of the 
fundamental importance at this stage, the problem (6) uses relaxed termination criteria to reduce the CPU cost. 
In this work, the underlying optimization method is a trust-region (TR) gradient-based  algorithm94; the circuit 
response sensitivity is estimated using finite  differentiation95 (cf. "Final parameter adjustment" section).

Upon solving (6) for j = 1, …, N2, an N3- element subset of {xc
(j)}j=1,…,N2 is selected that consists of designs being 

of sufficient quality in terms of constraint violation. This is to filter out designs for which (6) was unsuccessful. 
Later on, the selected subset will be referred to as {xc

(j)}j=1,…,N3.

Surrogate model construction. In the proposed global optimization framework, the surrogate model is 
constructed to represent the circuit responses. As the objective function (3) is a function of these responses, the 
surrogate-predicted response is employed for its evaluation. Next, global optimization of the surrogate model 
is carried out, and the approximate design is rendered, which further undergoes a local refinement as shown in 
Fig. 1f.

The vectors xc
(j), j = 1, …, N3, have been obtained by optimizing the circuit for minimum size. Also, due to 

the definition of the objective function, they exhibit low constraint violations. Consequently, these designs 
reside in the vicinity of the boundary Xb of the feasible region. Based on {xc

(j)}, we will set up the domain of the 
surrogate model to be employed for global search purposes. Further, using the spectral analysis of the set {xc

(j)}, 
the dimensionality of the domain will be reduced as compared to the dimensionality of the original parameter 
space X, which is to limit the computational cost of the surrogate model rendition.

Figure 3 summarizes the process of defining the surrogate model domain. It follows the procedure proposed 
 in96 for domain-confined modelling of high-frequency devices. The main idea is to define the domain of the 
surrogate model as the smallest set spanned by the most dominant eigenvectors that contains all vectors in {xc

(j)}. 
In practice, the designs xc

(j) are strongly correlated (in the spatial sense), therefore, the dimensionality p of the 
domain can be kept small without losing too much of information. In this work, we keep p = 3 for the verification 
circuits considered in  "Demonstration examples" section. Dimensionality reduction is essential for reducing the 
number of training data samples (here, denoted as N4) necessary to build the surrogate model. In this work, we 
set N4 = 200, which results in good predictive power of the model (at the level of a few percent of relative RMS 
error). The training data is obtained from the high-fidelity EM model Rf. Figure 4 provides a graphical illustra-
tion of the surrogate model domain definition.

The surrogate model is constructed using kriging  interpolation54, although a particular selection of the mod-
eling method is not critical. The training samples, denoted as xB

(j) ∈ Xp, j = 1, …, N4, are distributed using Latin 
Hypercube Sampling (LHS)97. The design of experiments procedure (cf. Fig. 5) has to account for the fact that 
the domain is not aligned with the coordinate system axes. The surrogate model will be used to perform global 
optimization of the circuit within its domain Xp.

Surrogate model optimization for size reduction. The domain of the surrogate model covers the 
vicinity of the feasible region boundary along the most important directions, as determined using the spectral 

Stage Name Action undertaken

1
Allocation of random 

observables

Allocation of random vectors in the parameter space. Circuit responses at 

these vectors are evaluated through EM analysis, cf. Fig. 1(b)

2 Sample selection

A small subset of observables generated in Stage 1 are selected based on 

their distance to the feasible region boundary, e.g., by evaluating the values 

of design constraints therein

3 Pre-optimization
The designs selected in Stage 2 are optimized for minimum size according 

to (2), (3) at the level of low-fidelity EM model; cf. Fig. 1(c)

4

Spectral analysis and 

surrogate model 

definition

The pre-optimized designs obtained in Stage 3 undergo spectral analysis 

(here, using principal component analysis [90]), and the reduced-

dimensionality subset is defined as the domain of the surrogate model to be 

constructed, cf. Fig. 1(d). The domain is spanned by the most dominant 

eigenvectors of the pre-optimized design set

5

Data acquisition and 

surrogate model 

construction

The training data is allocated in the domain, and kriging interpolation model 

representing circuit responses is identified therein, cf. Fig. 1(e)

6
Global optimization 

of the surrogate
The surrogate model is optimized for minimum circuit size within its domain

7 Final tuning
Local (gradient-based) tuning of the circuit parameters is performed to yield 

the final design

Figure 2.  Conceptual stages of globalized size reduction of microwave components.
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analysis described in "Surrogate model construction" section (cf. Fig. 3). Having the surrogate, the next stage is 
to optimize it in a global sense within Xp. Due to low dimensionality of the domain, the search process is con-
ducted in two phases:

Exhaustive search on the grid Mp given in the form of a complete set of vectors 

Step Action Comment

1
Define the center of gravity xm = N3

–1
j = 1,…,N3xc

(j)

of the set {xc
(j)}

-

2

Define covariance matrix 
3

( ) ( )

13

1
( )( )

1

N
j j T

mcmcc
jN

S x x x x
It is assumed that N3 > n (parameter space 

dimensionality)

3

Perform spectral analysis of Sc to yield eigenvectors 

(principal components) ak, k = 1, …, n, of {xc
(j)}, and 

the corresponding eigenvalues k

Eigenvalues represent the variance of 

{xc
(j)} in the eigenspace; the eigenvalues 

are arranged in a descending order, i.e., 

we have 1 … n 0

4 Define matrices Ak = [a1 … ak]

5 Compute expansions ( )

1

nj
c jk kk

bx a Expansion is unique as {ak} forms a basis 

in the parameter space X

6

Define: 
nim.xam. max{ : }, min{ : }j kj j kjb k b b k b , 

.min .max

.0
2

j j
j

b b
b , j = 1, …, n,

-

7
Define: 

0 1.0 .0...
T

nb bb and 
1 ...

T
b bnbλ with bj

= (bj.max – bj.min)/2
-

8 Define the center point xc = xm + Anb0 -

9

Define p-dimensional model domain: 

1
(2 1)

0 1, 1,...,

k

p
c k b kk

p

k

X
k p

The set Xp contains all vectors xc(j), j = 1, 

…, N3, in the directions a1 through ap

Figure 3.  Definition of reduced-dimensionality surrogate model domain.

x1

x2x3

Xxc
a1 a2

X2

Figure 4.  Conceptual illustration of reduced-dimensionality surrogate model domain. Here, a two-dimensional 
domain X2 spanned by the two most dominant eigenvectors a1 and a2; the gray circle represents the center point 
xc (cf. Figure 3).
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where K is the grid resolution (we use K = 20). The initial design xg
(0) is found by solving

Note that xg
(0) is the design that minimizes (surrogate-evaluated) U over the intersection of the search grid 

and parameter space X (in general, Xp may extend beyond the original domain X);
Local size-reduction-oriented optimization of the surrogate within Xp ∩ X, according to (2). The optimization 

algorithm is a trust-region gradient search described in "Final parameter adjustment" section. For notational 
simplicity, the design found at this stage will be also denoted as xg

(0).

Final parameter adjustment. The final stage of the global optimization procedure proposed in this paper 
is a local tuning of the circuit parameter. For accuracy reasons, it is performed at the level of the high-fidelity 
model Rf. This step is again executed using the trust-region (TR) gradient-based  routine94, which was also used 
for initial tuning ("Feasible region boundary approximation" section), and surrogate optimization (" Surrogate 
model optimization for size reduction" section). The formulation of the TR algorithm has been recalled in Fig. 6.

Globalized EM‑driven size reduction: complete procedure. This section puts together the build-
ing blocks of the globalized size reduction algorithm discussed in " Globalized size reduction: explanation of 
the concept" section through "Final parameter adjustment", and summarizes the operating flow of the entire 
framework. The algorithm control parameters are gathered in Table 3, their meaning has been already elaborated 
on earlier. Here we provide general guidelines for their setup. Four parameters of Table 3, i.e., N1 through N4, 
pertain to the computational budget of the entire optimization framework. The number N1 of samples used for 
initial approximation of the feasible region boundary is typically set to 500, because, in most practical cases, this 
value is sufficient and allows for a satisfactory estimation of the said boundary. The next parameter, N2, i.e., the 
number of samples for which optimization-based size reduction is carried out, is typically set to 20. This value 
constitutes a reasonable trade-off between the computational cost of subsequent tuning these deigns and the 
precision of assessing the surrogate domain. The number N3 of the refined designs of sufficient quality should 
somewhat exceed a half of N2, as this allows for discarding the designs for which the tuning procedure has failed. 
The fourth parameter controlling the computational budget, i.e., the number N4 of data samples used for setting 

(7)Mp =

{

x = xc +
∑p

k=1
(2�k − 1)�bkak

�k ∈ {0, 1/K , 2/K , . . . , 1}, k = 1, . . . , p

}

(8)x
(0)
g = argmin

{

x ∈ Mp ∩ X : U(x)
}

Design of experiments (domain Xp):
1. Allocate normalized samples z(j) = [z1(j) … zp(j)]T in the p-dimensional unity interval 

XU = [0 1] … [0 1] = [0 1]p (i.e., 0 zj 1, j = 1, …, p) using LHS [94];
2. Define mapping h : XU Xp as h(z) = xc + k = 1,…,p(2zk – 1) ak, where the 

coefficients k are as in the definition of Xp (cf. Fig. 3);
3. Obtain xB(j) = h(z(j)) for j = 1, …, N4.

(a)

Unit hypercube

z

x1

x2x3

X

X2
h(z)

h

(b)

k

Figure 5.  Design of experiments (data sampling) in reduced-dimensionality domain (here, two dimensional): 
(a) sampling procedure, (b) graphical illustration: normalized samples are uniformly distributed in the unity 
interval using LHS, and mapped into X2 using the transformation h.
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up the surrogate model, should be adjusted to ensure the required accuracy of this model (e.g., at the level of a 
few percent of relative RMS error).

As for the last parameter p, which refers to the surrogate domain dimensionality, it should be kept small (of 
around one third or half of the number of design variables) to maintain the training data acquisition cost at a 
reasonable level. The values provided in the Table 3 will be used in the verification experiments of "Demonstra-
tion examples" section. The pseudocode of the algorithm can be found in Fig. 7, whereas Fig. 8 shows the flow 
diagram of the method.

It should also be emphasized that while utilization of the low-fidelity EM model at the early stages of the 
search process leads to certain inaccuracies (including identification of the feasible region boundary, where the 
constrained optimum is normally allocated), these are corrected at the final stages, where the high-fidelity EM 
model is employed to fine-tune the geometry parameters of the circuit.

Demonstration examples
The proposed globalized size reduction framework is validated with the use of two examples of microstrip 
circuits, a rat-race coupler (RRC) and a branch-line coupler (BLC). The structures are designed for minimum 
size, under the constraints imposed on their operating frequency, operating bandwidth, and power split ratio. 
The performance of the algorithm is compared to nature-inspired optimization using particle swarm optimizer 
(PSO), as a representative technique of this category, as well as multiple-start gradient search. This remainder 
of this Section is arranged in a following manner. "Test cases and experimental setup" Section delineates the test 

1. Initial design: x(0) = xg(0);
2. Set iteration index i = 0 and the TR radius d(0);
3. Define the first-order Taylor model L(i) as

( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i i
f fL x R x J x x x

where the Jacobian matrix J(x(i)) of Rf at x(i) is computed using finite 
differentiation;

4. Obtain candidate design 
( ) ( )

( )

|| ||
arg min ( )

i i

i
Lpmt

d
U

x x
x x

where UL(i) is defined as in (3); however, using L(i)(x) instead of Rf(x);

5. Compute gain ratio  
( )

( ) ( ) ( )

( ) ( )
( ) ( )

i
tmp

i i i
L tmp L

U U
r

U U
x x
x x

;

6. Update TR radius: if r > 0.75 then d(i+1) = 2d(i); if r < 0.25 then d(i+1) = d(i)/3;
7. If r > 0, set x(i+1) = xtmp and set i = i + 1;
8. If termination condition is not satisfied, go to 3; else END.

Figure 6.  Formulation of the trust-region gradient-based algorithm. The termination condition is based on 
convergence in argument, ||x(i+1)–x(i)||< ε, and reduction of the TR radius, d(i) < ε (whichever occurs first). The 
termination threshold ε is set to  10−3 for final tuning of the high-fidelity model, but it is relaxed to  10−2 for low-
fidelity optimization runs.

Table 3.  Control parameters of the proposed globalized size reduction algorithm.

Parameter Meaning Recommended value

N1
The number of random observables generated to obtain initial approximation of the feasible region 
boundary ("Feasible region boundary approximation" section) 500

N2
The number of observables selected to conduct size reduction optimization runs at low-fidelity level 
("Feasible region boundary approximation" section) 20

N3
The number of designs selected from the outcome of low-fidelity model optimization runs, and used 
to define the surrogate model domain ("Feasible region boundary approximation" section)  > ⌈N2/2⌉

N4
The number of training data samples for surrogate model construction ("Surrogate model construc-
tion" section) 200

p Dimensionality of the surrogate model domain ("Surrogate Model Optimization for Size Reduction" 
section) 3
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cases and the most important experimental settings. "Numerical results" section gathers the numerical results. 
"Discussion" section contains a discussion that includes qualitative comparisons between the introduced and 
the benchmark techniques concerning reliability and computational efficiency.

Test cases and experimental setup. Verification of the proposed algorithm involves two microstrip cir-
cuits, both shown in Fig. 9, and referred to as Circuit I and II, respectively. The evaluation models are rendered in 
CST Microwave Studio, and simulated with the use of its time-domain solver. The design task is posed as follows:

• Minimize the footprint area A(x) of the circuit under design;
• Satisfy inequality constraint for matching and port isolation, g1(x) = max{f ∈ F : max{|S11(x,f)|, |S41(x,f)|}} + 2

0 dB;
• Satisfy equality constraint for the power split ratio: h1(x) =| |S31(x,f0)|–|S21(x,f0)| |= 0 (both transmission 

responses are in dB);

The first constraint corresponds to a condition that both |S11(x,f)| and |S41(x,f)| should not be greater 
than − 20 dB over the operating band F. The second constraint requires the circuit to maintain an even power 
split ratio at its operating frequency f0. The objective function is formulated as in (3) with the penalty functions 
defined as in Tables 1 and 2. Table 4 provides essential parameters for both circuits, including design variables, 
parameter spaces, operating frequencies, etc.

1. Define the parameter space X and design constraints (cf. Sec�on 2.1);
2. Generate N1 random observables xr

(j) within the parameter space X (cf. 
Sec�on 2.3);

3. Evaluate low-fidelity responses Rc(xr
(j)), j = 1, …, N1;

4. Select N2-element subset {xi
(j)}j=1,…,N2 {xr

(j)}j=1,…,N1 to be used as ini�al 
designs for size reduc�on; selec�on based on constraint viola�on levels 
(the smaller, the be�er);

5. For each j = 1, …, N2, find xc
(j) = argmin{x : U(x)} star�ng from xi(j);

6. Select an N3-element subset of {xc(j)}j = 1,…,N2 based on the lowest constraint 
viola�on (cf. Sec�on 2.5);

7. Use designs {xc(j)}, j = 1, …, N3 to construct the surrogate model domain Xp
(cf. Sec�on 2.4):

Define covariance matrix Sc (cf. Fig. 3);
Perform spectral analysis of Sc;
Use p most significant eigenvectors ak of Sc to define domain Xp (cf. 
Table 3);

8. Perform design of experiments in Xp (cf. Sec�on 2.4);
9. Acquire training data and iden�fy the kriging surrogate model using high-

fidelity EM model (cf. Sec�on 2.4);
10. Perform global size-reduc�on-oriented surrogate model op�miza�on 

(Sec�on 2.5):
Define search grid Mp as in (7);
Obtain global surrogate model op�mum found as 

;

Improve xg(0) through local gradient-based op�miza�on;
11. Find the final design x* through final parameter tuning using the TR 

algorithm; op�miza�on is performed using high-fidelity EM model Rf

(cf. Sec�on 2.6);
12. END.

(0) argmin : ( )pg M X Ux x x

Figure 7.  Operating flow of the proposed globalized size reduction algorithm.
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Parameter space X

EM Solver

Low-

fidelity

High-

fidelity

Design constraints X

Generate random observables xr
(j) X, j = 1, ..., N1

Evaluate low-fidelity responses Rc(xr
(j)), j = 1,…,N1;

Select N2-element subset of {xr
(j)}j=1,…,N1; 

for each j = 1, …, N2, find xc
(j) = argmin{x : U(x)}

Select N3-element subset of {xc
(j)}j = 1,…,N2 based on 

lowest constraint violation

Use {xc
(j)}j = 1, …, N1 to define surrogate model 

domain Xp

Sample domain Xp, acquire training data, 

and identify surrogate model

Globally optimize the surrogate for minimum size

Fine-tune high-fidelity EM model for minimum size

Final design x*

Figure 8.  Flow diagram of the proposed globalized size reduction framework.
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Figure 9.  Microstrip structures employed as test cases for verification of the proposed size reduction 
framework: (a) compact branch-line coupler (Circuit I)98, (b) rat-race coupler with folded transmission lines 
(Circuit II)99.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16418  | https://doi.org/10.1038/s41598-022-20728-0

www.nature.com/scientificreports/

The low-fidelity models of both verification circuits are obtained by reducing discretization density of the 
structure. The proportion of simulation times between the high- and low-fidelity model is 2.2 and 2.9 for Cir-
cuit I and II, respectively, which will carry over to computational savings of the entire optimization procedure.

It should be emphasized that the search spaces are large in terms of the ranges of geometry parameters 
(average upper-to-lower bound ratio is almost seven in the case of Circuit I and over thirty for Circuit II). 
Furthermore, both circuits feature parameter redundancy, i.e., additional variables related to the specific circuit 
geometries (utilization of CMRCs for Circuit I, and transmission line meandering for Circuit II). Both factors 
make the design tasks multimodal, in particular, size reduction outcome will very much depend on the initial 
design. At the same time, global search methods are likely to exhibit limited repeatability of solutions due to the 
parameter space dimensionality and overall size. In order to take this into account, verification experiments are 
carried out in a statistical sense, by running multiple instances of the proposed and benchmark algorithms, and 
comparing statistical moments of the outcomes. More specifically, each algorithm is run ten times. The figures 
of interest to be compared are average circuit size along with the standard deviation of the size, as well as average 
violation of design constraints (and the corresponding standard deviations). Another factor to be compared is 
the computational cost of the optimization process. Table 5 briefly outlines the two benchmark methods utilized 
in this work, multiple-start gradient search, and the particle swarm optimizer (PSO).

Table 4.  Essential parameters of Circuits I and II of Fig. 9.

Circuit I98 II99

Substrate AD300
(εr = 2.97, h = 0.76 mm)

RO4003
(εr = 3.38, h = 0.762 mm)

Designable Parameters
[mm] x = [g l1r la lb w1 w2r w3r w4r wa wb]T x = [l1 l2 l3 d w w1]T

Other Parameters [mm] L = 2dL + Ls, Ls = 4w1 + 4 g + s + la + lb, W = 2dL + Ws, Ws = 4w1 + 4 g + s + 2wa, l1 = lbl1r,  w2 = waw2r, w3 = w3rwa, 
and w4 = w4rwa, wc = 1.9 mm d1 = d +|w–w1|, d = 1.0, w0 = 1.7, and l0 = 15 mm

Parameter space X l = [0.4 0.1 3.0 3.0 0.4 0.1 0.1 0.1 2.0 0.2]T

u = [1.0 0.99 15.0 25.0 1.5 0.99 0.9 0.9 12.0 1.0]T
l = [0.1 5.0 5.0 0.2 0.2 0.5]T

u = [15.0 30.0 50.0 2.0 2.0 2.0]T

Operating parameters f0 = 1.5 GHz
F = [1.45 1.55] GHz

f0 = 1.0 GHz
F = [0.95 1.05] GHz

Low-fidelity EM model  ~ 24,000 mesh cells
Simulation time 110 s

 ~ 50,000 mesh cells
Simulation time 55 s

High-fidelity EM model  ~ 160,000 mesh cells
Simulation time 240 s

 ~ 200,000 mesh cells
Simulation time 160 s

Table 5.  Benchmark algorithms.

Algorithm Description

I Local gradient-based size reduction using the trust region algorithm (cf. "Final parameter adjustment" section). The optimiza-
tion problem is formulated as in (2), (3)

II
Particle swarm optimizer (PSO)100, employed as a representative nature-inspired technique. The algorithm setup is as follows: 
swarm size of 10, maximum number of iterations 100, standard setup of control parameters (χ = 0.73, c1 = c2 = 2.05), cf.100. The 
problem formulated as in (2), (3)

Table 6.  Optimization results for Circuit I. 1  Optimized footprint area of the circuit averaged over ten 
algorithm runs. 2  Standard deviation of the optimized footprint area averaged over ten algorithm runs. 3  
Violation of inequality constraint, defined as D1 = max{f ∈ F : max{|S11(x,f)|, |S41(x,f)|}} + 20 dB, averaged over 
ten algorithm runs. 4  Standard deviation of the constraint violation D1, averaged over ten algorithm runs. 5  
Violation of equality constraint, defined as D2 =| |S31(x,f0)|–|S21(x,f0)| | dB, averaged over ten algorithm runs. 6  
Standard deviation of the constraint violation D2, averaged over ten algorithm runs. 7  Cost expressed in terms 
of equivalent number of high-fidelity EM analyzes. Numbers in brackets correspond to the running time in 
hours.

Optimization algorithm

Performance figure

Circuit size A  [mm2] 1 Std(A) 2
Inequality constraint Equality constraint

CPU  cost7Violation D1 [dB] 3 Std(D1) [dB] 4 Violation D2 [dB] 5 Std(D2) [dB] 6

Algorithm I 295.1 24.7 3.6 1.9 0.2 0.1 77 × Rf [5.2 h]

Algorithm II 541.5 240.4 5.5 6.8 0.7 0.1 1,000 × Rf [66.7 h]

Globalized search with dimensionality 
reduction (this work) 301.8 3.9 0.4 0.2 0.1 0.03 852 × Rf [56.8 h]
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Table 7.  Optimization results for Circuit II. 1  Optimized footprint area of the circuit averaged over ten 
algorithm runs. 2  Standard deviation of the optimized footprint area averaged over ten algorithm runs. 3  
Violation of inequality constraint, defined as D1 = max{f ∈ F : max{|S11(x,f)|, |S41(x,f)|}} + 20 dB, averaged over 
ten algorithm runs. 4  Standard deviation of the constraint violation D1, averaged over ten algorithm runs. 5  
Violation of equality constraint, defined as D2 =| |S31(x,f0)|–|S21(x,f0)| | dB, averaged over ten algorithm runs. 6  
Standard deviation of the constraint violation D2, averaged over ten algorithm runs. 7  Cost expressed in terms 
of equivalent number of high-fidelity EM analyzes. Numbers in brackets correspond to the running time in 
hours.

Optimization algorithm

Performance figure

Circuit size A  [mm2]1 Std(A) 2
Inequality constraint Equality constraint

CPU  cost7Violation D1 [dB] 3 Std(D1) [dB] 4 Violation D2 [dB] 5 Std(D2) [dB] 6

Algorithm I 378.0 59.3 4.5 4.3 0.2 0.2 63 × Rf [2.8 h]

Algorithm II 543.1 86.8 − 1.0 1.6 0.1 0.1 1000 × Rf [44.4 h]

Globalized search with dimensionality 
reduction (this work) 370.7 20.8 0.0 0.8 0.1 0.05 584 × Rf [25.9 h]

(a)                                                      (b)

Figure 10.  Circuit I: EM-simulated scattering parameters for two selected designs obtained using the proposed 
size reduction algorithm: (a) design 1 (footprint area 305.1  mm2), (b) design 2 (footprint area 302.4  mm2). 
Target operating frequency and bandwidth indicated using the vertical and horizontal lines, respectively.

(a)          (b)

Figure 11.  Circuit II: EM-simulated scattering parameters for two selected designs obtained using the proposed 
size reduction algorithm: (a) design 1 (footprint area 370  mm2), (b) design 2 (footprint area 364  mm2). Target 
operating frequency and bandwidth indicated using the vertical and horizontal lines, respectively.
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The reason for incorporating gradient search is to demonstrate multi-modality of the considered design 
tasks. On the other hand, PSO is employed to verify whether the proposed algorithm is capable to bring any 
advantages over nature-inspired procedures, both in terms of computational efficiency and design quality. Note 
that the computational budget of PSO has been limited to 1000 EM simulations, which is clearly insufficient from 
numerical perspective, yet this number can be considered borderline from the perspective of practicality: even 
for relatively low-cost computational models of Circuit I and II, the PSO runs take a few days each.

Numerical results. The results obtained for the proposed framework and the benchmark algorithms have 
been gathered in Tables 6 and 7 for Circuit I and II, respectively. Figures 10 and 11 show the circuit S-parameters 
at the final designs found during the selected runs of the proposed procedure. As mentioned earlier, the data 
contains the mean values of the circuit size, violations of the inequality and equality constraints, as well as stand-
ard deviations thereof, all computed over the ten runs of each algorithm. The mean figures can be viewed as 
performance metrics, whereas standard deviations quantify the repeatability of solutions. 

Discussion. The performance analysis of the proposed algorithm, and the comparison with the benchmark 
methods will be carried out using the results contained in Tables 6 and 7. One can formulate the following 
observations:

• The results obtained using Algorithm I (multiple-start gradient-based optimizer) demonstrate that the con-
sidered design problems are indeed multimodal. The standard deviation of the footprint area is close to ten 
percent of the average area (Circuit I), and it exceeds fifteen percent (Circuit II). This means that the optimiza-
tion results are highly dependent on the initial design, which—in turn—indicates the need for global search. 
It should also be noted that although Algorithm I produces designs that exhibit small size on the average, the 
constraint control is poor. In particular, a typical violation of the first constraint is around four decibels.

• The performance of nature-inspired optimization (here, using PSO) is poor. The circuit sizes achieved with 
Algorithm II are significantly larger than for the remaining methods with high standard deviation. Also, 
constraint control is inferior and inconsistent between the algorithm runs. These results are partially associ-
ated with a limited computational budged assigned for Algorithm II (1000 objective function evaluations). 
It appears that achieving usable results would require significantly larger budgets, probably at the level of 
5000 to 10,000 EM simulations, which is not practical.

• The proposed algorithm exhibits the best consistency out of the entire benchmark set. The average circuit 
size is small (and comparable with Algorithm I); however, the average constraint violations are much smaller 
(only 0.4 dB and 0.0 dB for the first constraint, and 0.1 dB for the second constraint, on the average). At the 
same time, the standard deviation of the circuit area is considerable lower than for the benchmark methods: 
it is only about 1.3 percent (in relation to the average size) in the case of Circuit I, and only about five percent 
in the case of Circuit II. This corroborates truly global search capabilities of the presented method.

• Computational overhead of the presented algorithm is clearly much higher than that of local optimization, yet 
it is lower than for Algorithm II. As mentioned earlier, achieving reasonable results with the PSO algorithm 
would require increasing its computational budget by a factor five to ten, which means that the cost of the 
proposed algorithm can be estimated as one order of magnitude lower than for the nature-inspired methods.

The overall efficacy of the proposed size reduction procedure is superior over the benchmark. Within reason-
able computational budget, the algorithm produces consistent results in terms of the circuit footprint areas with 
remarkably low standard deviation over the set of repetitive runs. At the same time, it exhibits excellent control of 
the design constraints: the average violations are around a small fraction of a decibel. Competitive computational 
cost is a result of employing variable-resolution EM models but also due to dimensionality reduction at the stage 
of constructing the surrogate model for globalized search stage of the optimization process.

Conclusion
In this work, we introduced a technique for EM-driven miniaturization of passive microwave components. The 
foundation of the presented methodology is parameter pre-screening and initial optimization runs (both carried 
out using low-fidelity simulation model), oriented towards identification of the special location of the feasible 
region boundary. The reduced-dimensionality surrogate model established in this region is employed to perform 
global size reduction, followed by gradient-based parameter tuning. The last two stages are executed using high-
fidelity EM model for reliability reasons. The combination of the developed algorithmic approaches results in an 
optimization framework that enables globalized size reduction at low computational expenses. Comprehensive 
validation involving two microstrip couplers corroborates the efficacy of the proposed technique, and its superi-
ority over local (gradient-based) parameter tuning as well as nature-inspired optimization, here, represented by 
the particle swarm optimization algorithm. The numerical results demonstrate global search capability, as well 
as consistent results, both in terms of the achieved circuit footprint, constraint control, and the computational 
cost. The latter is a consequence of the implemented mechanisms, i.e., dimensionality reduction and variable-
fidelity EM simulations. One of the objectives of the future work will be to improve the feasible region boundary 
identification stage of the algorithm, as well as extending the range of applicability to include a larger variety of 
microwave components and antenna structures.
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