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ABSTRACT
Background. Climate change is one of the greatest threats to biodiversity, pushing
species to shift their distribution ranges andmaking existing protected areas inadequate.
Estimating species distribution and potential modifications under climate change are
then necessary for adjusting conservation and management plans; this is especially true
for endangered species. An example of this issue is the huemul (Hippocamelus bisulcus),
an endemic endangered deer from the southern Andes Range, with less than 2,000
individuals. It is distributed in fragmented populations along a 2,000 km latitudinal
gradient, in Chile and Argentina. Several threats have reduced its distribution to<50%
of its former range.
Methods. To estimate its potential distribution and protected areas effectiveness,
we constructed a species distribution model using 2,813 huemul presence points
throughout its whole distribution range, together with 19 bioclimatic layers and altitude
information fromWorldclim. Its current distribution was projected for years 2050 and
2070 using five different Global Climate Models estimated for scenarios representing
two carbon Representative Concentration Routes (RCP)—RCP4.5 and RCP6.0.
Results. Based on current huemul habitat variables, we estimated 91,617 km2 of suitable
habitat. In future scenarios of climate change, there was a loss of suitable habitat due
to altitudinal and latitudinal variation. Future projections showed a decrease of 59.86–
60.26% for the year 2050 and 58.57–64.34% for the year 2070 according to RCP4.5
and RCP6.0, respectively. Protected areas only covered only 36.18% of the present
distribution, 38.57–34.94% for the year 2050 and 30.79–31.94% for 2070 under climate
change scenarios.
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Discussion. Modeling current and future huemul distributions should allow the
establishment of priority conservation areas in which to focus efforts and funds,
especially areas without official protection. In this way, we can improve management
in areas heavily affected by climate change to help ensure the persistence of this deer
and other species under similar circumstances worldwide.

Subjects Biogeography, Conservation Biology, Ecology, Climate Change Biology, Natural
Resource Management
Keywords Climate change, Ungulates, Protected areas, Endangered species, Species distribution
models, Conservation

INTRODUCTION
Protected areas are one of the best tools for species and ecosystems conservation (Coetzee,
2017). However, because of climate change, some species, both animals and plants,
will modify their distributions in response to new conditions, most often dispersing in
search of more suitable environments (Bateman et al., 2016; Hovick et al., 2016). Under
this scenario, many species would be pushed to change their distribution range and thus
increase population fragmentation and habitat loss, in turn reducing survival and increasing
extinction probability at local levels (Parmesan, 2006).

Disturbance of distribution ranges could also cause the existing network of protected
areas (i.e., parks and reserves) to be less effective (Monzón, Moyer-Horner & Palamar,
2011). Currently, protected areas worldwide correspond to only 14.7% of Earth’s surface
(19.8 million km2; UNEP-WCMC & IUCN, 2017), though the goal is to increase this to
17% by 2020 (CBD, 2010). Although protected areas have been described as an effective
conservation planning tool because they contain greater species richness and abundance
within their boundaries than non-protected areas, they do not necessarily offer similar
protection when considering endemism of species within them (Gray et al., 2016).

Temperatures in southern South America are projected to increase at least 2 ◦C and
precipitation decrease by 10–20% as an outcome of climate change by 2100 (Beaumont et
al., 2011). These changes are predicted to lead to distribution shifts and possible extinctions
of organisms dwelling in temperate forest and mountain (Bambach et al., 2013). Under this
scenario, it is critical to estimate which areas would be suitable for species conservation,
and for identifying climatic variables that will determine potential areas where they could
survive (Olson & Dinerstein, 2002;Marchese, 2015).

One of the largest mammals of temperate forests of the southern Neotropical region
is the huemul (Hippocamelus bisulcus), an endemic deer found in Chile and Argentina
(Corti et al., 2011). This ungulate is distributed across 2,000 km in the southern part of
the Andes mountain range (Vila et al., 2010). Here it is associated with sub-Antarctic
forests dominated by beech tree species (Nothofagus spp.), low density understory, and
periglacial areas (Vila et al., 2006). In addition, huemul is classified as Endangered by
the International Union for the Conservation of Nature (IUCN), currently being the
most threatened deer in the Neotropics (IUCN, 2016), where it is considered a flag and
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umbrella species throughout its distribution range (Povilitis, 1998; Quevedo et al., 2017).
Identified threats to huemul include habitat loss and fragmentation, poaching, diseases and
competition from domestic livestock, dog predation, and introduction of exotic species
(Corti, Wittmer & Festa-Bianchet, 2010). Nowadays, it is estimated that there are less than
2,000 individuals and their distribution range has been reduced by 50% in relation to their
historical range (Vila et al., 2006).

Because huemul is a late Pleistocene relic when cold and dry climatic conditions
prevailed (Marín et al., 2013), current warming might be a serious threat for its persistence.
Therefore, it is important to estimate probable negative effects of climate change on
ecological projected parameters such as shifts in its future distribution range. Thus,
our objectives were: (1) to estimate the current huemul distribution through a species
distribution model (SDM), using climatic variables that could determine its presence; (2)
to project current SDM into the future under different climate change scenarios; and (3) to
estimate the efficiency of current protected areas in Chile and Argentina for both current
huemul protection, and under projected climate change scenarios that potentially shift its
distribution range.

MATERIALS & METHODS
Huemul occurrence area
Presence records used to generate SDMs corresponded to 2,813 points of huemul
occurrence collected throughout the whole known huemul distribution range, from
Nevados de Chillán–Laguna del Laja (36◦50′43′′S & 71◦23′56′′W), to the Magellan Strait
(53◦28′51′′S & 70◦47′0′′W; (Vila et al., 2006; Fig. 1). This database was obtained from
available scientific literature (i.e., Corti et al., 2011;Marín et al., 2013; Quevedo et al., 2017)
and from unpublished data collected between 2007 and 2016 from direct observation
of animals and indirect records such as animal remains, tracks, and feces. To reduce
oversampling biases in a particular area, we followed the recommendations of Fourcade
et al. (2014), and restricted sampling to one presence record per km2, which resulted in a
total of 856 effective points.

Selection of environmental variables
Only climatic variables were used to build models because they give better projections
for future scenarios than do land use variables (Martin et al., 2013; Titeux et al., 2017). In
addition, vegetation variables are strongly related to the combination of temperature and
precipitation, climatic variables, giving more useful habitat approximations for huemul
(Quevedo et al., 2017). We felt that the use of multiple climatic proxies could, at least
partially, overcome the lack of realistic vegetation predictions (Wilcox et al., 2017).

Environmental variables used to construct huemul distribution models were taken from
Worldclim database (Hijmans et al., 2005), which contains information of 19 bioclimatic
layers and altitude, in raster format, with an approximate resolution of one pixel per 1 km2.
To avoid multicollinearity among variables, highly correlated ones were removed to reduce
models error rates (Heikkinen et al., 2006).Multicollinearity was estimated through Pearson
correlation coefficient (rxy), using the ‘‘VIRTUALSPECIES’’ package (Leroy et al., 2016) in
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Figure 1 Huemul distribution and sample points. Current huemul distribution according to the In-
ternational Union for Conservation Nature represented with diagonal lines (IUCN, 2016). Red triangles
represent the huemul presence data used in this work and yellow squares represent relevant geographical
landmarks along huemul distribution.

Full-size DOI: 10.7717/peerj.5222/fig-1
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R 3.4.0 (R Core Development Team, 2016). Those variables with a correlation coefficient
rxy ≥ 0.85 were removed. Variables kept after multicollinearity analysis were: altitude
(ALT), annual mean temperature (BIO1), isothermality (BIO3), temperature seasonality
(BIO4), minimum temperature of the coldest month (BIO6), annual temperature range
(BIO7), mean temperature of the wettest quarter (BIO8), mean temperature of the driest
quarter (BIO9), annual precipitation (BIO12), seasonality of precipitation (BIO15), and
precipitation of coldest quarter (BIO19).

Construction and evaluation of distribution models
To generate huemul distribution models we used the software MaxEnt 3.4.1k (Phillips,
Dudík & Schapire, 2004; Phillips et al., 2017), which employs a machine learning process
using the principle ofmaximum entropy, working only with presence data, and background
(Phillips, Anderson & Schapire, 2006). Background is the representation of a potentially
accessible area or one likely to be explored by the species (Peterson et al., 2011), and is used
to contrast the information of presence points, allowing training of the model (Merow et
al., 2016). To adjust the MaxEnt model, we created a training area through the software
R 3.4.0 (R Core Development Team, 2016) with the package ‘‘ADEHABITAT’’ (Calenge,
2007). Then, a habitat use model was created through the Kernel Utilization Distribution
method using all available huemul presence points (Moorcroft & Lewis, 2006). Within this
background, we sampled 10,000 points to test against presence points in MaxEnt (Fourcade
et al., 2014). Of 856 presences, MaxEnt only considered 619 points; using 434 (70%) of
them to train our model, and 185 (30%) to evaluate it. The model was adjusted using 1,000
iterations, keeping its default characteristics. The result was expressed logistically, giving an
approximation of habitat suitability with probability values ranging from 0 (not suitable)
to 1 (ideal suitability; Peterson et al., 2011).

Evaluation results were based on the area under the ROC curve (AUC) and the
regularized training gain. The ROC curve corresponds to the relationship between 1-
specificity (false positive rate) and sensitivity (true positive rate; Phillips & Dudík, 2008).
The AUC is the probability of correctly classifying the background presence points, with
values ranging from 0.5 (explained by chance) to 1 (perfect discrimination between
points of presence and background; Phillips, Anderson & Schapire, 2006). The evaluation
of regularized training gain of each variable was performed using the Jack-knife method,
where variables were individually assessed, generating a model with only one variable at
a time, to estimate how much information a model delivered (Elith et al., 2011). Next,
information contained exclusively by each variable was evaluated, calculating information
loss and gain through the consecutive removal of variables, and then adjusting amodel with
the remaining variables (Phillips, Anderson & Schapire, 2006). Our model was replicated
10 times to improve its predictive capacity, so AUC and Jack-knife values corresponded to
averages of those 10 replicates.

Projection of the distribution model of huemul under two scenarios
of climate change
To evaluate possible effects of climate change on huemul distribution, we modeled
outcomes of current huemul distribution on layers of five future Global Climate Models
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(GCM) for the years 2050 (mean of years 2030–2060) and 2070 (mean of years 2060–
2080). We selected these databases because GCM climatic projections could have regional
variations (Yan et al., 2017). Databases were obtained from Worldclim and correspond
to results of Phase 5 of Coupled Models Intercomparison (CMIP5). The GCM we used
belong to: (1) CCSM4 (NCAR-UCAR, USA), (2) HadGEM2-ES (Met Office Hadley Centre,
UK), (3) IPSL-CM5A-MR (Institute Pierre-Simon Laplace, France), (4) MRI-CGCM3
(Meteorological Research Institute, Japan), and (5) NorESM1-M (Norwegian Climate
Centre, Norway). Climatic projection models are currently presented in four scenarios
known as Representative Concentration Routes (RCP) that indicate the evolution of the
range of greenhouse gas concentrations under different states of production of those gases
(Moss et al., 2010). RCP scenarios were named in relation to their radiative value, which
corresponds to the balance alteration between incoming and outgoing radiation from the
atmosphere, causing changes in atmospheric constituents, as is the case of carbon dioxide
(Moss et al., 2010). These scenarios have been projected until the year 2100, and have values
ranging from 2.6 to 8.5 W/m2 (Van Vuuren et al., 2011a). From the four RCP available
scenarios, we only used RCP4.5 and RCP6.0 for years 2050 and 2070. Scenarios RCP2.6
(the most optimistic; Stocker et al., 2013; Van Vuuren et al., 2011b) and RCP8.5 (the least
optimistic; Riahi et al., 2011) would not be fulfilling the predictions, but current climatic
variables are getting closer to values estimated by RCP4.5 and RCP2.6 models, showing an
incremental increase in temperature from 2.0 to 4.9 ◦C (Raftery et al., 2017).

To predict possible huemul environment distribution shifts, either in relation to their
current location or to suitable habitat, estimated models were converted to binary maps (0,
not suitable; 1, suitable). Next, we used a threshold thatmaximizes sensitivity and specificity
to balance commission and omission errors (Liu, White & Newell, 2013). Projections for
years 2050 and 2070 GCM models were added to generate a concordance map with values
ranging from 1 (where just one model estimated habitat suitability) to 5 (where all models
match). Then, we used only the estimated concordance area of three GCMs. The resulting
map of current estimated huemul distribution was compared to its distribution proposed
by IUCN (2016). At the same time, a comparison was made between current distribution
maps and the two future projections from climate change. All calculations were performed
in the QGIS 2.12 (Quantum GIS Development Team, 2016).

Evaluation of protected areas efficiency for huemul’s potential
habitat
To evaluate the effectiveness of keeping huemul potential habitat within the protected
areas system in Chile and Argentina, we estimated the overlap between calculated areas
through the binary map and protected area systems of both countries. These projections
corresponded to geographical information polygons, provided by the Chile’s National
Forestry Service (CONAF) and by the Working Group on Protected Areas of the Ministry
of Environment and SustainableDevelopment inArgentina.We also performed estimations
of overlap in distribution models under the two projections of climate change (RPC4.5
and RCP6.0). Results of all calculations were presented in km2 and built in to the QGIS
2.12 (Quantum GIS Development Team, 2016).
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Table 1 MaxEnt performance and environmental variables included in the model.Model performance
and relative importance of each included variable according to Jack-knife analyses. For each variable used
in the model, the first value corresponds to the gain of the adjusted model using only focal variables. The
second value corresponds to the gain of the adjusted model using all but focal variables. The most impor-
tant variables according to each criterion are bolded.

Environmental variables Training gain
with this variable

Training gain
without this variable

Altitude (ALT) 0.06 1.78
Temperature

Media annual (BIO1) 0.27 1.78
Isothermality (BIO3) 0.31 1.76
Seasonality (BIO4) 0.67 1.77
Minimum coldest month (BIO6) 0.20 1.79
Annual range (BIO7) 0.39 1.79
Media of wettest quarter (BIO8) 0.10 1.78
Media of driest quarter (BIO9) 0.31 1.77

Precipitation
Annual (BIO12) 0.59 1.70
Seasonality (BIO15) 0.57 1.74
Coldest quarter (BIO19) 0.51 1.76

RESULTS
Current huemul distribution model
The model AUC was 0.96, indicating a high predictive value. Variables contributing the
most in the model training were: seasonality of temperature (0.67), annual precipitation
(0.59), and seasonality of precipitation (0.57). When analyzing the variables together, those
ones containing the most information were annual precipitation (1.70), seasonality of
precipitation (1.74), and precipitation of the coldest quarter (1.76; Table 1). The threshold
thatmaximized sensitivity and specificity was 0.25, with which binarymaps were generated.

The total calculated suitable area for huemul current distribution was 91,617 km2,
mainly associated with the southern Andes Mountains (Fig. 2). In addition, it was possible
to observe three large areas that contained the greatest habitat suitability: (1) an isolated
area in Nevados de Chillán, (2) a large continuum running from San Martín de los Andes
in Argentina (40◦09′28′′S & 71◦21′12′′W) and ending at General Carrera Lake (46◦30′0′′S
& 72◦00′0′′W), and (3) an area expanding continuously southward and splitting into
two branches, one following the eastern edge of the Andes into the Argentine side as far
as Torres del Paine National Park in Chile, and the second running along the southern
channels and fjords of Chilean coastal Patagonia through Bernardo O’Higgins National
Park (51◦2′20′′S & 73◦7′27′′W).

Huemul distribution under climate change projections
Distribution models under climate change predicted a 59.86% habitat loss estimated in
scenario RCP4.5 for year 2050, and a 58.57% loss for 2070. For the RCP6.0 scenario
predicted a 60.26% reduction in the estimated area for 2050 and 64.34% loss for 2070
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Figure 2 MaxEnt estimated huemul distribution.Huemul habitat current distribution model presented
on a logistic scale of suitability. The suitability level is represented by a color gradient in the figure legend
from white (not suitable) to dark red (most suitable). Yellow squares represent relevant geographical land-
marks along huemul distribution.

Full-size DOI: 10.7717/peerj.5222/fig-2

Riquelme et al. (2018), PeerJ, DOI 10.7717/peerj.5222 8/21

https://peerj.com
https://doi.org/10.7717/peerj.5222/fig-2
http://dx.doi.org/10.7717/peerj.5222


Figure 3 MaxEnt outcomes, current suitable habitat distribution and two projections scenarios of cli-
mate change. Comparison of current huemul distribution (A), and models generated from the combina-
tion of five Global Climate Models using the projections Routes of Representative Concentration (RCP),
RCP 4.5, and RCP 6.0, RCP 4.5 projection for years 2050 (B) and 2070 (C). RCP 6.0 projection for years
2050 (D) and 2070 (E). Color scale indicates concordance levels among five generated distribution mod-
els, which go from dark green (one model match) to dark red (total models match). Yellow squares repre-
sent relevant geographical landmarks along huemul distribution.

Full-size DOI: 10.7717/peerj.5222/fig-3

(Fig. 3). Alongwith these reductions in the area of suitable habitat, a southwards contraction
in huemul distribution in all proposed scenarios was predicted. Reduction was most
dramatic at Nevados de Chillán, where the suitable area almost completely disappeared
(Fig. 3). In addition, under all scenarios, estimated distribution areas have a reduction in
their eastern portions, but an expansion to west; this effect is more marked in projections
for the year 2070 of the RCP4.5 and 6.0 models (Fig. 3).
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Estimation of the efficiency of protected areas for huemul
conservation
When comparing the estimated current huemul suitable habitat estimated distribution
with that proposed by IUCN, there was a 40.16% (62,650 km2) concordance between
them. However, when we overlapped current protected areas of Chile and Argentina on
the model-projected area, only 36.18% was protected (Fig. 4). We found at least six large
areas of high suitability that are currently not protected, and which are situated near towns,
cities, and other human perturbed areas (i.e., cattle ranching and forestry plantations): (1)
the area adjacent to Nevados de Chillán, (2) the area around San Martín de los Andes,
(3) a large area beginning at the north end of Puelo Lake, south through the mountain
range reaching the northern shore of General Carrera Lake, (4) the area located from the
southern shore of General Carrera Lake to Bernardo O’Higgins National Park, (5) small
areas located outside of Torres del Paine National Park, and (6) the last suitable area located
on a group of islands near Muñoz-Gamero peninsula (52◦32′0′′S & 73◦13′0′′W).

Under climate change projections RCP4.5 and RCP6.0, protected areas would only
cover 38.57% and 34.94% for 2050, and 30.79% and 31.94 for 2070 of huemul potential
suitable habitat. This phenomenon is more intense if when comparing with the current
total estimated area, where protection goes lower than 16% for the total potential huemul
distribution (Figs. 4 and 5). In all future scenarios, the only remaining areas that would
be unprotected were: (1) a small portion southward Nevados de Chillán, (2) one area
western of San Martín de los Andes, (3) the area between Puelo and General Carrera Lakes,
but more discontinuously than in current state, and (4) the area near Muñoz-Gamero
peninsula.

DISCUSSION
Current huemul distribution
The binary map of suitable huemul habitat distribution agreed in almost 50% with the
one IUCN (2016) estimated. However, our current distribution model corresponded to
historical distribution boundaries described for huemul, ranging from Cachapoal River
(34◦10′0′′S) in the north to Brunswick Peninsula at the southern limit (53◦52′0′′S,Vila et al.,
2006). Areas of highest suitability for huemul presence were always in the southern Andes
Mountains, which agrees with Quevedo et al. (2017) findings for the Valdivian Ecoregion,
and with Vila et al. (2006) for the total distribution. This mountain range is dominated by
tree species of genusNothofagus spp. (Donoso, 1987), which seema fundamental component
for huemul diet and shelter (Vila et al., 2010). Current discrepancy of protected areas with
estimated huemul distribution has also been recorded in other Neotropical ungulates, such
as pudu (Pudu puda; Pavez-Fox & Estay, 2016), taruka (Hippocamelus antisensis; Mata et
al., 2018), and guanaco (Lama guanicoe; Castillo et al., 2018). Thus, the findings of this
research are important to improve the efficiency of conservation areas for species under
similar circumstances of huemul, prioritizing sites suitable for animals with the potential
of being resilient to climate change (Pringle, 2017).

The total calculated suitable habitat area was subdivided into three main sectors:
(1) Nevados de Chillán, (2) North Patagonia (centered on Puelo Lake), and (3) South
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Figure 4 Binary map overlap with protected areas of Chile and Argentina, current and two projec-
tions of climate change. Protected areas cover of Chile and Argentina according to the current distribu-
tion model and five Global Climate Models combination under two scenarios of the climatic projections
of the Representative Concentration Routes (RCP). Current estimation (A), with RCP 4.5 for years 2050
(B), 2070 (C) and RCP 6.0 for years 2050 (D) and 2070 (E). In red projected protected areas and in blue
current protected areas for Chile and Argentina. Yellow squares represent relevant geographical landmarks
along huemul distribution.

Full-size DOI: 10.7717/peerj.5222/fig-4

Patagonia, including the Chilean fjords. This subdivision was consistent with huemul
phylogeographic information (Marín et al., 2013), where a similar distribution pattern was
obtained of three geographically separated populations. Huemul’s current distribution is
most probably an outcome of the Last Maximum Glacier (Marín et al., 2013). Woolbright
et al. (2014) indicated that species surviving glacial events, subsequently expanded from
nucleus areas or refugia, but because of changes in environmental conditions, they
fragmented their distribution after their expansion. This has also been described in other
ungulates (i.e., mountain goats Oreammos americanus; Shafer, Côté & Coltman, 2011),
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Figure 5 Total area estimated for each model and for protected areas. Calculated area (km2) for five
distribution models considering the total projected surface and protected areas: amount of modeled area
for current huemul distribution and concordant five GMC projections under two scenarios of climatic
projections of RCP, RCP 4.5 and RCP 6.0 for years 2050 and 2070 (A). Amount of modeled area inside
protected areas of Chile and Argentina. In white current distribution model and in grey scale the degree of
concordance among five Global Climate Models (B).

Full-size DOI: 10.7717/peerj.5222/fig-5
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resulting in isolated of their populations and a consequential reduction in genetic diversity,
and has been described for huemul (Corti et al., 2011).

Climatic variables influence on huemul habitat suitability
Among variables used in the models to predict the most suitable habitat areas, those giving
the most information for model construction were: seasonality of temperature, annual
precipitation, seasonality of precipitation, and precipitation during the coldest quarter.
Annual precipitation is positively correlated with above ground net primary production
at regional levels (Hsu, Powell & Adler, 2012), which could explain the mosaic of plant
communities in the Patagonian region. Here water availability is limited by landscape
topography, generating a vegetation gradient from forest, shrub lands, and steppe dry
areas (Paruelo et al., 1998; Paruelo, Jobbágy & Sala, 2001). On the other hand, seasonality
of precipitation would act as a limiting factor for vegetation growth (Hsu, Powell & Adler,
2012), since variation in water availability affects vegetation, shaping the amount of
environmental energy, and limiting available habitats (Hawkins et al., 2003). Although
precipitation during coldest quarter seemed to have no effect on primary production
(Cramer & Hoffman, 2015), the winter season does have an important effect on several
other organisms (Williams, Henry & Sinclair, 2015), decreasing survivorship in some
cases (Brodie et al., 2013). Seasonality of temperature could indicate that habitats used by
huemul can withstand a moderate variation of seasonal temperature, influencing tolerance
of vegetation associated with this deer. A similar effect has been observed for African
savannah vegetation, where the effect of variation in warm seasons reduced vegetation,
producing a reduction in abundance and changes in distribution of ungulate populations
inhabiting them (Ogutu & Owen-Smith, 2003).

Estimation of climate change effect
The predicted reduction in suitable habitat for huemul (ca. 56–64%) due to climate
change is higher than averages estimated for other South American mammals (e.g., a 37%
reduction of habitat in 87% of analyzed species; Schloss, Nunez & Lawler, 2012). In addition
to a reduction in range extension of huemul’s possible habitats, we observed latitudinal and
altitudinal variation of suitable habitat for this deer. This pattern of alteration in wildlife
distribution has been proposed globally, because species are expected to be able to adapt
to future environmental changes with regard to latitudinal and altitudinal migrations
(Chen et al., 2011). Mountain goats are an example of this habitat distribution shift, with
altitudinal variation of their habitat use expected in their response to climate change
(White, Gregovich & Levi, 2017). Similar habitat variation is expected for ibex (Capra
ibex), chamois (Rupicapra rupicapra), and red deer (Cervus elaphus; Büntgen et al., 2017).
Although for southern hemisphere ungulates there is a lack of similar information, our
results for huemul suggest comparable patterns of habitat variation. Schloss, Nunez &
Lawler (2012) suggested that sources of habitat variations from climate change would
affect most mammal species throughout the Americas, due to limitations in their dispersal
capacities. An average of 9.2% of mammal species are expected to be unable to adjust to
habitat variation, with as many as 39% in some regions of the American continent. In our
case, the possibility of huemul migration could be limited due to its low dispersal capacity
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(8 km; Gill et al., 2008), its high site fidelity, its low population density, and its frequent
population isolation and fragmentation (Corti, Wittmer & Festa-Bianchet, 2010; Corti
et al., 2011).

Protected areas effectiveness: present and future
The current distribution model showed that there is suitable habitat for the huemul in
69 protected areas of Chile and Argentina. These are mainly found in the foothills of the
southern Andes and fjords of western coastal Patagonia. However, these areas protect
only 36.18% of the total estimated huemul distribution area, and thus are inadequate if
we consider all the threats that this deer faces within and outside protected areas (Corti,
Wittmer & Festa-Bianchet, 2010). The area between Los Alerces National Park and General
Carrera Lake has a low level of protection, which is of special concern considering that
it represents an important area for huemul persistence. It represents the biogeographic
limit between two clades (Marín et al., 2013) where a possible genetic exchange between
populations might occur.

The lack in conservation areas is a global problem. Of 85% of the world’s threatened
vertebrates only 17% occur in any conservation area (Venter et al., 2014). A similar picture
is found for huemul where current protected areas are inadequate. Originally though, the
current protected areas were based on guidelines available at the time (Armesto et al., 1998),
but unfortunately these guidelines no longer meet requirements for huemul conservation.
In addition, animals might use less suitable habitats when human disturbance is reduced
(Laliberte & Ripple, 2004). Thus, some lower suitability areas, particularly forest plantations,
have shown that they can be favorable environments for huemul as long they are subject
to specific management conditions (Sandvig et al., 2016).

Conservation of flag and umbrella species like huemul, that are predicted to be affected by
climate change, could serve broader conservation actions, by protecting highly vulnerable
environments or ecosystems associated with them (Forrest et al., 2012). The conservation
of huemul and its habitat will help protect ecosystems associated with the southern Andes,
mainly the Valdivian Ecoregion,–an important biodiversity hotspot (Olson & Dinerstein,
2002; Lara et al., 2009).

CONCLUSIONS
To address huemul conservation and probable effects of climate change, conservation
recommendations should focus on areas that currently have no or a low degree of
protection, but which have a high potential for suitable huemul habitat in the future.
For example, areas between Puelo and General Carrera Lakes, and the western portion of
Muñoz-Gamero peninsula are a priority because they are sites predicted by our model to
be less affected by climate change in terms of their suitability for this deer.

It is also advisable to establish management strategies for areas of lower suitability where
there are current known huemul populations, and in areas contiguous with them to allow
connectivity among populations. Areas like Nevados de Chillán, for example, could be
strongly impacted by climate change, so the protection of lower quality habitat in this
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region will allow huemul movements, which will probably be crucial for the persistence of
this isolated population.

The future of conservation areas worldwide will face climate change challenges, where
resilience of conservation sites to these effects will be crucial for the management of
endangered species (Pringle, 2017). Thus, the identification of those resilient sites plus
buffer zones around those protected areas will be a priority in order to promote connectivity
between them (Xun, Yu &Wang, 2017), or even modify productive area management
strategies to make them suitable for wildlife.
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