Hindawi

Applied Bionics and Biomechanics
Volume 2020, Article ID 8850036, 12 pages
https://doi.org/10.1155/2020/8850036

Research Article

A Modified Quasisteady Aerodynamic Model for a Sub-100mg
Insect-Inspired Flapping-Wing Robot

Chenyang Wang (", Weiping Zhang

, Junqi Hu

, Jiaxin Zhao (9, and Yang Zou

National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and
Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Correspondence should be addressed to Weiping Zhang; zhangwp@sjtu.edu.cn

Received 24 July 2020; Revised 9 November 2020; Accepted 8 December 2020; Published 22 December 2020

Academic Editor: Weijie Fu

Copyright © 2020 Chenyang Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

This study proposes a modified quasisteady aerodynamic model for the sub-100-milligram insect-inspired flapping-wing robot
presented by the authors in a previous paper. The model, which is based on blade-element theory, considers the aerodynamic
mechanisms of circulation, dissipation, and added-mass, as well as the inertial effect. The aerodynamic force and moment acting
on the wing are calculated based on the two-degree-of-freedom (2-DOF) wing kinematics of flapping and rotating. In order to
validate the model, we used a binocular high-speed photography system and a customized lift measurement system to perform
simultaneous measurements of the wing kinematics and the lift of the robot under different input voltages. The results of these
measurements were all in close agreement with the estimates generated by the proposed model. In addition, based on the model,
this study analyzes the 2-DOF flapping-wing dynamics of the robot and provides an estimate of the passive rotation—the main
factor in generating lift—from the measured flapping kinematics. The analysis also reveals that the calculated rotating
kinematics of the wing under different input voltages accord well with the measured rotating kinematics. We expect that the

model presented here will be useful in developing a control strategy for our sub-100 mg insect-inspired flapping-wing robot.

1. Introduction

For decades, researchers have been interested in exploring
the flapping mechanism of insects and developing insect-
inspired flapping-wing micro air vehicles (FMAVs) [1-9].
In [6], we presented the world’s smallest electromagnetically
driven flapping-wing robot capable of liftoff, shown in
Figure 1. To further develop the control strategy of the robot,
its flapping aerodynamics must be analyzed and modeled.
The flapping flight of insects is characterized by a high
angle of attack and a high rotational component, causing a
large number of separations of the boundary layer and poten-
tially generating vortices attached to the leading and trailing
edges of the wings. These complex boundary conditions
make it difficult to build an accurate steady aerodynamic
model. Instead, researchers have attempted to develop qua-
sisteady or unsteady aerodynamic models both for the flap-
ping flight of insects and for insect-inspired robots [10-21].
For example, by studying a dynamically scaled model of the

fruit fly (Drosophila melanogaster) [10], Dickinson et al.
identify three mechanisms—delayed stall, rotational circula-
tion, and wake capture—to explain how insects produce high
lift at low Reynolds numbers. In a subsequent study, Sane
and Dickinson [11] use blade element theory (BET) to
develop a quasisteady aerodynamic model for insect flapping.
From studies of free-falling cards [22-24], Bergou et al. [12]
propose a 2-DOF quasisteady aerodynamic model for insect
flapping that considers the circulation, dissipation, added
mass, and inertial effect. In recent years, several improved
models have been presented. For example, Nabawy and
Crowther [16] propose a quasisteady aerodynamic model
for the evaluation of the steady translational force coefficients
of flapping wings in normal hover. The model is generic in
that it can be applied to wings of arbitrary morphology and
kinematics without the use of experimental data, and the
aerodynamic components of the model are linked directly
to morphology and kinematics via physical relationships.
On this basis, Nabawy and Crowthe [17] propose a novel
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F1GURE 1: The sub-100 mg insect-inspired flapping-wing robot used
as the prototype in this paper.

lifting-line theory introducing the concept of the equivalent
angle of attack, which enables the capture of the steady non-
linear aerodynamics at high angles of attack and allows accu-
rate estimation of aerodynamic forces from geometry and
kinematic information alone. For detailed studies of the aero-
dynamic moment and the movement of the center of pres-
sure on an insect wing, Han et al. [18] present an improved
quasisteady aerodynamic model of a hawkmoth-scale flap-
ping wing that considers the movement of the center of pres-
sure. They find that the model becomes more suitable when
the center of pressure is assumed to be at the half-chord
rather than the quarter-chord. Nakata et al. [19] propose a
novel CFD-informed quasisteady model which assumes that
the aerodynamic forces on a flapping wing can be decom-
posed into quasisteady forces and parameterized based on
CFD results and which is capable of predicting flapping-
wing aerodynamic forces and power with higher accuracy.
Lee et al. [20] present an improved quasisteady aerodynamic
force and power model for rigid flapping by considering the
effects of Reynolds numbers, Rossby numbers, wing aspect
ratios, and taper ratios. Their model has the advantage of
being applicable over a wider range of flow conditions with-
out prior tuning or calibration. Wang et al. [21] propose a
predictive quasisteady model by considering the wing’s
translation, rotation, and coupling, as well as the added-
mass effect. This model shows high accuracy in predicting
the center of pressure, the aerodynamic loads, and the passive
pitching motion for various Reynolds numbers without any
empirical parameters.

Based on the nonrigid connection of a flexible hinge, the
artificial wing used in the robot we designed generates lift
through its passive rotation while flapping. The kinematics
of the wing can be considered as 2-DOF of flapping and
rotating. In addition, since the observed deformation of the
wing during flapping is negligible, it can be regarded as a
rigid plate, similar to the approximation of a two-
dimensional rigid plate (or wing) in Wang et al. [12, 23].
However, the latter assumes that the axis of rotation of the
plate is on its midline and that the chord length is maintai-
ned—characteristics not found in insect wings or in insect-
inspired robots.

The purpose of the present study is to provide a more
accurate estimate of the lift and passive rotation generated
by the robot’s artificial wing. We first develop a quasisteady
aerodynamic model based on BET by modifying the terms
of dissipation and added-mass from [12]. We then report
the findings of experiments performed to assess the model.
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The wing kinematics and the lift generated by the robot were
captured simultaneously by a binocular high-speed photog-
raphy system and a customized lift measurement system,
respectively. The lift and passive rotation were calculated
both on the basis of the model and from the experimentally
captured wing kinematics under different input voltages.
The results predicted by our model are in close accord with
the experimental measurements.

2. Description of the Artificial Wing

2.1. Morphology. The artificial wing studied in this paper is
morphologically similar to the Eristalis tenax wing [25], as
shown in Figure 2.

To reduce the complexity of the artificial wing, the wing
root, veins, and thickness of the insect wing are ignored.
The plane profile and the geometric parameters of the artifi-
cial wing are shown in Figure 3.

The x,-axis and y,-axis represent the span and chord
direction of the wing, respectively, and the direction of the
z,,-axis corresponds to the right-hand rule. R is the length
of the wing (measured as 13 mm). x, is the distance from
the wing root of the wing O’ to the center of rotation O,
which is small compared to R and is taken to be 0 in this
paper. The green part shown in Figure 3 is the spanwise strip
of the wing, r is the distance from the spanwise strip to the
root of the wing, 7=r/R is defined as the normalized dis-
tance, d, is the width of the spanwise strip, and d,, is the width
of a chord element on the spanwise strip. P_, .,
mass of the wing, P, is the geometric center of the wing, P,
is any point on the spanwise strip, P,, is the midpoint of the
spanwise strip, and P, is the intersection of the spanwise strip
and the x,,-axis. The leading edge y; and the trailing edge y,
of the wing are parameterized into functions of y,(r) and y,
(r), respectively, as shown in Table 1, in which the coeffi-
cients are obtained by polynomial fitting of the morphology
of the Eristalis tenax wing in [25] based on MATLAB (Math-
Works Inc.).

The chord length ¢ can then be expressed as ¢(r) = y,(r)
- y,(r), and the area of the single wing can be integrated as
S= L)Rc(r)dr (calculated as 49.27 mm?). The mean chord is
¢=S/R (calculated as 3.79mm), the normalized chord is
defined as € = ¢/c, and the aspect ratio is AR = R/c (calculated
as 3.43). A nondimensional radius of the kth moment of the
wing area can then be expressed as 75 (S) = jéfr/\’ﬂ?, as out-
lined in [25]. Table 2 compares the morphological parame-
ters of the artificial wing and the Eristalis tenax wing.

is the center of

2.2. Kinematics. The coordinate systems and the angles in 3-
DOF of a wing are defined in Figure 4. The x;y,z;-coordinate
system is defined as the experimental reference coordinate
system, in which the x;z;-plane is the flapping stroke plane
and the y,-axis is parallel to the average lift of the robot while
hovering. The x,y,z,-coordinate system is defined to
describe the fixed-wing plane. The flapping angle ¢ is defined
as the opposite number of the rotation angle of the x,y,z,-
coordinate system relative to the x;y,z;-coordinate system
along the —y,-axis. The deviation angle 0 is defined as the
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FIGURE 2: Shape of (a) the artificial wing and (b) the Eristalis tenax wing from [25].
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F1GURE 3: The plane profile and the geometric parameters of the
artificial wing.

rotation angle of the x,y,z,-coordinate system relative to the
X,),2,-coordinate system along the z,-axis. The rotation
angle v is defined as the rotation angle of the x,y, z,,-coor-
dinate system relative to the x,y,z,-coordinate system along
the x, -axis. The directions of ¢, 8, and ¥ coincide with the
directions of the y,-, z,-, and x, -axes, respectively. It is worth
noting that the coordinate systems in Figure 4 are slightly off-
set for greater intuitiveness. In fact, all the coordinate systems
share the same zero-point O.

It has been observed that there is hardly any deviation of
the wing while flapping. Therefore, we assume in this study
that 6=0. This means that the x,y,z,-coordinate system
and the x,y,z,-coordinate system are completely coincident,
so that only the flapping and rotating (2-DOF) kinematics of
the wing need to be considered. In the following discussion,
i[] represents the physical quantities in the x,yz; coordinate
system. R represents the coordinate transformation matrix
of the x;y,z; -coordinate system with respect to the x;y.z;

-coordinate system, as follows:

1 0 0
YR=10 cosy sinvy |,
|0 —siny cosy
- , (1)
cosgp 0 -—sing
SR=| 0 1 0
L sing 0 cos¢

The angular velocity of the wing and the linear velocity of
i W T . .
any point "P, =[ry0]" in the x, ¥ ,,Zw-coordinate system

can be expressed as

Yo [V 0 ¥
Yo= Y0, | =|0|+3R|p|=| gcosy [, (2)
Yw, 0 0 —¢siny
ypsiny
o= |y | =V@xPy= | —rgsiny |, (3)
“Vus Y =1 cos y

where ¢ and y are the first derivative with respect to time of ¢
and y, respectively. Note that the linear velocity of each span-
wise strip along the x, -axis is ignored based on BET; that is,
we assume “v, = 0. In the x,y,z,-coordinate system, the
wing inertia matrix after ignoring the thickness of the wing
can be expressed as

“IL, I, 0
“I=|-¥I, ‘L, 0 |, (4)
0 0 “I

where “I_, =“I, +“I, and “I =]

The mass of the single artificial wing (m,,) is measured as
0.5 mg, and the mass distribution of the wing in the x,y, 2,
-coordinate system is calculated by Inventor (Autodesk
Inc.) as shown in Table 3, in which “P_,, is the center of
mass of the wing.

3. Modeling Based on BET

In this section, the circulation, dissipation, added mass, and
inertial effect are considered in the development of a quasis-
teady aerodynamics model based on BET.

3.1. Circulation. As shown in Figure 5, WP, is the midpoint
of the spanwise strip, and “v, is the linear velocity at point
P, vielded by Equation (3). Utilizing the computational fluid
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TaBLE 1: The leading edge function and trailing edge function of the artificial wing.

Coefficients a, a, a, as ag
Y 3.510E-1 -1.428E -1 4.537E -2 -6.942E -3 5.042E - 4 -1.430E -5
Vi -4.442 1.941 —4.299E -1 5.093E -2 3.023E-3 7.091E -5
6
=2 (ar)
i=1
TaBLE 2: Morphological parameters of the artificial wing and the »

Eristalis tenax wing [25].

Parameters Artificial Eristalis tenax
R (mm) 13.0 11.4
Aspect ratio 3.43 3.58
() 0.474 0.471
r2(S) 0.534 0.534
r5() 0.579 0.579

FIGURE 4: Definitions of the coordinate systems and the kinematics
of the left artificial wing.

TaBLE 3: Mass distribution of the artificial wing.

P,

wI_ (mg-mm?)

(mm) (4.9481, -0.4927)
1.196404184
22.657024402

-0.468631666

com

w 2
I, (mg-mm?®)

w 2
I, (mg-mm?®)

dynamics (CFD) and experimental results of Pesavento and
Wang [22], the aerodynamic force and aerodynamic moment
generated by the circulation mechanism on a single spanwise
strip can be expressed as

w
VM X

vacir = pairr _wVM,y dr,

w
M,z

d"M,, = “Py x d"F,

ir®

FIGURE 5: A single spanwise is taken as an example to define the
circulation and angle of attack. The angle of attack is the angle
between the velocity of the midpoint and the y, -axis of the
spanwise strip; it varies between —/2 and /2. The angle of attack
in this case is negative.

If p,,. is the air density (taken as 1.29 x 107° g/mm”),
“Vyrx =0, and I is the circulation, composed of the trans-
lational I, and rotational I',  circulation,

1 1 .
Fz_ECTC|WVM| sin 2a0 +5CRC21//, (6)
——
T I

trans rot

where C and Cy are dimensionless coefficients, respectively,
taken as 1.8 and 7 [15, 22], and @ =arccos (“vy;,/["vy | ) is
the angle of attack, defined as the angle between “vy and
the y, -axis of each spanwise strip. Note that since the angle
of attack of each spanwise strip is different, the angle of attack
is defined for each strip rather than for the entire wing.

3.2. Dissipation. Based on [24, 26], for a chord element dyd,
on the spanwise strip shown in Figure 3, the aerodynamic
force generated by the dissipation mechanism can be
expressed as

0
0 w, w Vi
"Fy= | 0“F,, | = _%pairCDdydr Tl @)
6de,z wvi‘s,z
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where the dimensionless coefficient Cj, is taken as 3.4. The
aerodynamic force and aerodynamic moment generated by
the dissipation mechanism on a single spanwise strip can
then be integrated as

Vi
Vi
o (8)
Yt

3.3. Added Mass. During wing flapping, the acceleration and
deceleration of the wing cause the surrounding air to acceler-
ate and decelerate. In this process, the surrounding air pushes
against the wings, creating the added-mass effect. For the
translation and rotation of thin two-dimensional rigid wings,
the aerodynamic force and aerodynamic moment generated
by the added-mass effect on a single spanwise strip can be
expressed (based on [27]) as

0 0
dwFadd = 0 = O >
dwFadd,z _()‘zwvr,z + /\zwwd’x)dr

d“F add,x
d"Mygq = | d“F addy | =

~(Aa Ve + A @y )dr
(LY0,, + Ay Yl )rdr |

0 0

©)

where “v,; and Y@, are the first derivatives with respect to
time of the linear velocity “v, of “P, and of “w, in the x,,
YyZp-coordinate system, respectively.A; and A; are the
added-mass coeflicients, defined as

1
Az = Zﬂpaircz’
1
Azw: gnpaircz(yl+yt)’ (10)

1 1
/\w = Rﬂpaircz(yl +yt)2 + mﬂpairc4'
3.4. Inertial Effect. Part of the aerodynamic force and
moment generated by the wing is used for the linear and
rotational acceleration of the wing itself. Although the mass
of the wing is small, its inertial effect is not negligible. In
the x,y,2,-coordinate system, the inertial force and the
inertial moment of a single wing can be expressed as

YF
YF

w
F inertia,z
., (11)

inertia,x

w —
Finertia - inertia,y com’

inertia,x

_ _Wy W,
inertia,y [ Iw w,

WM — U.)M

inertia

_wM

inertia,z

5
where "V, is the first derivative with respect to time of the
linear velocity “v ., of “P_  in the x,y, z, -coordinate
system.

3.5. Total Aerodynamic Force and Moment. From the above,
the total aerodynamic force and the total aerodynamic
moment acting on a single wing can be integrated in the x,,
¥ 2w-coordinate system as

rw
F Aero,x

R
wFAero = wFAero,y = J (dchir + dde + dwFadd) +"F

inertia>
0

w
L F Aero,z

(12)

R
wMAero = = J (decir + ded + deadd)

0 (13)

+ wMinertia'

It is clear from this that the aerodynamic force and
moment are completely determined in the proposed model
by the morphology and 2-DOF transient kinematics (¢ and
y) of the artificial wing. In addition, some unsteady aerody-
namic mechanisms, such as the start-up vortices [28], the
spanwise flow [29], the wake capture [10], and the tip vorti-
ces [30], are partly included in the dimensionless aerody-
namic coeflicients used in this study. In this way, the
aerodynamics generated by some unsteady-state mecha-
nisms are also accounted for in the model.

4. Experiments and Analysis

4.1. Measurement of Wing Kinematics and Lift. With the
fixed-shape artificial wing designed for our robot, the flap-
ping aerodynamics are determined only by the 2-DOF wing
kinematics of ¢ and y. However, the lift generated by the
robot is also valuable in assessing the model. Our experi-
ments measured the kinematics of the wing and the lift of
the robot simultaneously. As illustrated in Figure 6(a), a bin-
ocular high-speed photography system was used to measure
the flapping and rotational kinematics of the left wing of
the robot. At the same time, the lift generated by the robot
was measured using a customized lift measurement system
described in [31] and illustrated in Figures 6(b) and 6(c). A
trigger was used to ensure that the photography system and
the lift measurement system worked synchronously.

More specifically, the binocular high-speed photography
system consisted of two high-speed cameras (Phantom
LCI111, working synchronously at 3000 fps), with the tips
and intersections of the wing veins serving as mark points.
Based on the binocular ranging method and three-
dimensional motion reconstruction, the spatial position of
these mark points in each frame is obtained by the direct lin-
ear transformation (DLT) method [32], and the flapping and
rotating kinematics are then derived from the geometric rela-
tionship of these mark points.
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FIGURE 6: (a) Setup of the lift measurement for the designed robot. (b) Photo of the measurement with two high-speed cameras. (c) Schematic

of the customized lift measurement system.

For the lift measurement, the robot is mounted vertically
on the support plate of the lift measurement system, as
shown in Figure 6(c). The real-time lift generated by the
robot is transformed by the deformable Invar-made double-
cantilever beam into a slight displacement in the vertical
direction of the target plate, and the real-time lift of the robot
is then extracted by measuring the real-time displacement of
the target plate using a capacitive displacement sensor
(CS005, Micro-Epsilon). Since a magnet is used as part of
the electromagnetic actuator in the robot, a long truss made
of carbon fiber was introduced to extend the distance
between the robot and the Invar-made support plate so as
to prevent electromagnetic interference. After calibration,
the lift measurement system had a dynamic resolution of
0.457 uN (0.82 mg), and a sensitivity of 2.19 ym/mN.

The sub-100 mg insect-inspired flapping-wing robot pre-
sented in [6] was used as the prototype for the measurement.
Sinusoidal voltages with a fixed frequency of 80Hz were
applied to the robot. The measured flapping kinematics
@,eas a0d rotating kinematics v, .. of the left wing under dif-
ferent voltage amplitudes are shown in Figures 7(a) and 7(b),
in which each curve is obtained from these measurement
points by sixth-order Fourier fitting. The rotating kinematics
are delayed overall with respect to the flapping kinematics by
a quarter of a stroke cycle. As the amplitude of the input volt-
age is increased, the flapping and rotating kinematics of the
wing change more dramatically. The relationship between
the peak-to-peak amplitude of the measured wing kinematics
and the input voltage amplitude is shown in Figure 7(c). It is
clear that the amplitudes of the wing kinematics can be mod-
ulated by the input voltage amplitude, which is helpful in
controlling the lift of the robot.

4.2. Calculated Aerodynamics. By substituting the morphol-
ogy shown in Table 1 and the measured flapping and rotating
kinematics of the wing into Equations (12) and (13), the
aerodynamics of the single artificial wing under different
input voltage amplitudes were calculated based on the pro-
posed quasisteady aerodynamic model, as shown in
Figure 8. Obviously, the magnitudes of the aerodynamic
force and moment are determined by the amplitude of the
input voltage. For the calculated aerodynamic force *F Acroy

along the y,-axis (i.e., the lift direction of the robot while hov-

ering), the total force and circulation force almost coincide,
indicating that the circulation mechanism makes the domi-
nant contribution to the aerodynamic force. The two peaks
of the total aerodynamic force are located in the middle of
the upstroke and the middle of the downstroke, with the
translational circulation force making the main contribution.
However, at the reversal of the stroke, the total aerodynamic
force is close to zero or even negative. Note that the curve
should be symmetric around the stroke reversal; the differ-
ence between the two peaks of force shown in Figure 8 is
mainly due to the asymmetry of the wing kinematics caused
by assembly and measurement errors. Since the flapping fre-
quency of the robot is 80 Hz, the mean aerodynamic force is
more valuable for flight control than the transient force. The
distribution of the mean aerodynamic force after cycle aver-
aging is shown in Table 4. The mean force is almost entirely
determined by the circulation and the added mass, while the
contributions of the dissipation and the inertial effect are
negligible. Unlike the aerodynamic force, the calculated aero-
dynamic moment is mainly determined by the dissipation,
the added mass, and the inertial effect rather than by the cir-
culation. Since both the added-mass moment and the inertial
moment are proportional to the linear and angular accelera-
tion of segments of the wing at specific points, the trends of
the added-mass moment and inertial moment are similar.
Both the dissipation moment and the circulation moment
are greater in the middle of the upstroke and downstroke,
while they are almost zero at the reversal of the stroke.

4.3. Experimental Verification. To verify the applicability of
our quasisteady aerodynamic model, we analyzed the lift
and the passive rotation generated by the robot based both
on the model and on experimental measurements.

4.3.1. Lift Estimated by the Aerodynamic Force. The robot we
designed consists of two wings, the kinematics of which are
assumed to be perfectly slymmetric while hovering. Thus,
the calculated lift generated by the robot can be expressed as

3
Lcalc =2e FAero,y' (14)
To reduce the interference from mechanical and electri-

cal noise at high frequencies, the measured instantaneous lift
generated by the robot was filtered by a digital low-pass filter
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FiGURg 7: The measured 2-DOF wing kinematics of (a) flapping and (b) rotating. For simplicity, measured results under only three input
voltages are plotted, and each curve is obtained from the measured points by sixth-order Fourier fitting. Figure (c) shows the relationship
between the peak-to-peak amplitude of the measured wing kinematics and the input voltage amplitude.

with a cutoff frequency of 300 Hz. Figure 9 compares the
measured and the calculated lift forces generated by the robot
under different input voltages during one flapping cycle. The
measured lift L, and the calculated lift L_. are in good
accord with regard to overall amplitude and trend, but unlike
the calculated results, the measured amplitude of the
upstroke is close to that of the downstroke. This indicates
that the lift generated by the robot in the actual process is
to some extent insensitive to the imperfect symmetry of the
wing kinematics. Considering the unavoidable simplification
in the mathematical model, the transient deviations between
the measured and calculated results are acceptable. Both the
measured curve and the theoretical curve show that the lift
generated by the flapping wings fluctuates strongly, especially
near the stroke reversal point, where the transient lift may
even be negative. Figure 9(e) compares the calculated mean
lift L. to the measured mean lift L, of the robot under
different input voltage amplitudes after cycle averaging. The

comparison demonstrates the accuracy of the proposed qua-
sisteady aerodynamic model in estimating the lift generated
by the robot.

Although the values of the aerodynamic constants C;, Cy,
and Cp, in the model are assumed from experience in our cal-
culations, it is interesting to study the changes in the calcu-
lated lift of the robot when these three constants fluctuate
separately. As described in Section 3, the total aerodynamic
force acting on a single wing “F,,,, is linear with C;, Cy,
and Cp, respectively. With the fixed morphology and cap-
tured kinematics of the wing, the change in the mean lift of
the robot is therefore directly proportional to the change in
each aerodynamic constant. That is,

AL, o< AC; (15)
where C; refers to Cy, Cg, and Cp, respectively. In order to
quantify the relationship between the relative change in the

calc
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FIGURE 8: The aerodynamic force along the y,-axis *F ‘Aero,y and moment along the x,,-axis “M ., under the input voltage amplitudes of (a)

1.1V, (b) 0.8V, and (c) 0.5V.

TaBLE 4: Distribution of the mean aerodynamic force.

Input voltage L1V 0.8V 0.5V
Total (mN) 422E-1 2.07E—1 7.33E-2
Circulation (mN) 3.76E - 1 1.85E-1 6.32E-2
Dissipation (mN) -9.83E-6 —3.34E-4 1.93E-5
Added mass (mN) 4.54E -2 2.19E-2 1.00E -2
Inertial effect (mN) -841E-5 -8.12E-5 -5.58E-6

mean lift of the robot and the relative change in each aerody-
namic constant, we designate the sensitivity of the former to
the latter as k; (i.e., kp, kg, and kj, respectively). Then,

Al:’calc -k Acz

= 16
i, Ne, (16)

where C;, is the assumed value used in Section 3 (C, = 1.8,
Cro =7, and Cp, = 3.4), and L, is the calculated mean lift of
the robot corresponding to C;,. Considering that the range of
AC;/Cyy is [-30%, 30%], we now use the model to calculate the
corresponding relative changes in the mean lift of the robot
under the input voltages from 0.1V to 1.1 V. For simplicity,
Figure 10 shows just a part of the calculated results. The cal-
culated k; varies mostly between 0.55 and 0.65, which is 2-3
times the corresponding ky, while kj, is close to zero under

any input voltage. These results indicate that changes in C;,
and Cy are more likely to cause changes in the calculated
mean lift and that changes in C, have almost no effect on
the lift. This finding is similar to the results illustrated in
Figure 8 and Table 4; that is, the circulation (especially the
translational circulation) is the dominant contributor to the
calculated lift, while the contribution of the dissipation is
negligible.

4.3.2. Passive Rotation Estimated by the Aerodynamic
Moment. As shown in Figure 2, each side of the artificial wing
is connected to the transmission by a flexible hinge. Due to
the nonrigid connection of the hinge, the flapping of the wing
produces passive rotations, which are the main factor for the
generation of lift [33, 34]. In this study, the rotating kinemat-
ics of the wing are accurately obtained by the binocular high-
speed photography system based on three-dimensional
motion reconstruction. However, further control tests of
the robot require that the rotating kinematics of the wing
be estimated quickly and easily rather than measured accu-
rately. The binocular high-speed photography system
requires at least two high-speed cameras as well as non-
real-time image processing due to a large amount of data
and therefore is more complex and less efficient than estima-
tions generated by a mathematical model. The flapping kine-
matics of the wing can be easily measured in real time by only
one high-speed camera. Based on the aerodynamic moment
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FIGURE 9: The measured and calculated lift of the robot under the input voltage amplitudes of (a) 1.0V, (b) 0.8 V, (c) 0.6 V, and (d) 0.4 V. (e)
The relationship between the mean lift of the robot and the input voltage amplitude.

calculated using the model and on the measured flapping
kinematics, we can analyze the 2-DOF dynamics of the robot
and calculate the rotating kinematics. Since the artificial
wings are considered to be rigid plates, the passive rotation
of each wing is determined mainly by the aerodynamic
moment (M ,) acting on the entire wing, the gravity moment
(M) of the wing, and the torsional stiffness (kw) of the wing

hinge. The gravity moment M, is expressed as

0
wMG = chom x EVR -myg (17)

0

The wing hinge used in the robot is a sandwich structure
consisting of a flexible polymer middle layer between thin,

rigid outer layers, as shown in Figure 11. The torsional stiff-
ness can be expressed as

_ Efjw,
Vo2,

(18)

where E;, (3.5 GPa) is the elastic modulus of the flexible poly-
mer layer and /,, (120 ym), w;, (1800 ym), and ¢, (7.5 ym) are,
respectively, the length, width, and thickness of this layer.

From the analysis in Section 3, in the x,y, 2z, -coordinate
system, the total moment that causes the passive rotation of
the wing can be expressed as

wa,x _ku/v/
"M, = | “M,,, | ="My +"Mg + 0 (19)
wa’Z 0



10

] ov
20 L 0.75 _
Z
10 Loo &
: g
< =
° F 0.65 g
=) 0 06349 &
- Loso T
< <
~10 4 kp=0.589 3
g
kg=0285 [ 035 5]
-20 4 kp=507E=5 | (<,
30  -20 -10 0 10 20 30
AC/Cyy (%)
cT
CR
CD
(a)
20 { 06V 0.26
Z
10 F0.24 E
9 L
~ g
e 022 s
S, 0 02156 2
3 fa=]
I L
< 0 Ky = 0.659 020 3
B
kp=0.229 K]
R F0.18 ©
-20 4 kp, = ~6.40E—4
30 -20 -10 0 10 20 30
AC//Cyy (%)
CT
CR
CD

(c)

Applied Bionics and Biomechanics

20 { 08V - 0.50
%
10 4 £
= L 0.45
5 %
e g
S) 0 04139 2
E o4 g
< 0 kp=0.663 =
kp=0233 | 035 5
-20 kp=-161E-3
-30 -20 -10 0 0 20 30
AC//Cyy (%)
CT
CR
CD
(b)
20 | 04V 0.12
0.11 z
10 4 : &
g £
~ =]
- 0.10 g
S0 00981 2
s %
~10 4 k= 0.604 0.09 f;)
kg =0.263 5
-20 ky,=664E-4 [ 008
-30  -20 -10 0 0 20 30
AC//Cyy (%)
CT
CR
CD
(d)
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FIGURE 11: Schematic of the flexible wing hinge.

According to [35], the dynamics of the wing in 2-DOF
(flapping and rotating) can be modeled as follows, based on
the principle of virtual power:

(20)

Substituting Equations (4), (13), and (19) into Equation
(20) yields

w Wy e w .2 . w
¥ xy(P cosy — "L, ¢" Sy cosy — MA,x

v, (21)
MG Yeom SN Y + kww =0,
where "M, , is (in accordance with Equation (13)) solely a
function of ¢ and y given the fixed morphology of the artifi-
cial wing. Therefore, by substituting the measured flapping
kinematics ¢, ., into Equation (21), the calculated rotating
kinematics vy, . of the wing are obtained as shown in
Figure 12. The measured rotating kinematics v, . . under
the same input conditions are also plotted to verify the accu-
racy of the calculation results. It is clear that the calculated
rotating kinematics y_,. are close to the measured results
Voneas 1D terms of overall amplitude and trend, especially
when the amplitude of the input voltage is relatively large.
However, the amplitude of rotation is slightly overestimated
by the proposed model at local positions such as the peaks
in Figure 12, and the overestimation gradually increases as
the input voltage (i.e., the amplitude of the flapping kinemat-
ics) decreases. The main reason is that when the flapping fre-
quency is fixed and the flapping amplitude is reduced, the
contribution of the translational aerodynamics to the drag
force is further reduced due to the low flapping velocity.
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Furthermore, the passive rotation of the wing is slightly
restricted by the unavoidable minor shaking and bending of
the wings, and these unfavorable factors become significant
as the flapping amplitude of the wings is further decreased.
As aresult, the accuracy of the model’s estimation of the pas-
sive rotation declines with the decrease in the flapping ampli-
tude. Like the lift results, the measured rotating kinematics
are more symmetric about the stroke reversal point than
the calculated rotating kinematics because the mathematical
model is slightly sensitive to the asymmetry of input wing
kinematics. Since the flapping amplitude of the robot is gen-
erally above +55° in actual flight tests, and the model’s esti-
mates of the passive rotation in this range are relatively
accurate, the estimations are a useful resource for the control
of the robot.

5. Conclusion

In this paper, we present a modified quasisteady aerodynamic
model for an electromagnetically driven sub-100-milligram
insect-inspired flapping-wing robot whose design was pre-
sented in [6]. Based on the blade-element theory, the aerody-
namic mechanisms of the circulation, dissipation, added
mass, and inertial effect are considered in developing the
model. Since the deviation of the artificial wing is negligible
for our robot, the aerodynamics generated on the wing are
completely determined, in this model, by the wing morphol-
ogy and the 2-DOF wing kinematics of flapping and rotating.

To verify the applicability of the model, the wing kine-
matics and the lift generated by the robot were measured syn-
chronously by a binocular high-speed photography system
and a customized lift measurement system. Based on the
measured flapping and rotating kinematics of the artificial
wing, we calculated the aerodynamic forces and moments
acting on the wing under different input voltages. Our results
show that the circulation mechanism makes the dominant
contribution to the transient aerodynamic lift, while the
contributions of the dissipation and the inertial force are
minimal. However, the aerodynamic moment is mainly

determined by the dissipation, added mass, and inertial effect
rather than by the circulation. Combined with the synchro-
nous lift measurement of the robot, the transient lift and
the mean lift estimated by the model are all in good agree-
ment with the measured results under different input volt-
ages. In addition, the robot generates lift by the passive
rotation of the wings. Although the passive rotation can be
captured by the binocular high-speed photography system
used in this study, a more convenient way to estimate it is
needed. To supply this need, we analyzed the 2-DOF
flapping-wing dynamics of the robot based on the proposed
model and obtained estimates of the rotating kinematics
from the measured flapping kinematics alone. The calculated
rotating kinematics of the wing under different input voltages
are all in good accord with the measured values.

We therefore conclude that the modified quasisteady aero-
dynamic model developed in this study is applicable with high
accuracy to the sub-100mg insect-inspired flapping-wing
robot presented previously and that the model will provide
theoretical support for the development of control strategy.
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