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Hotspot mutations in the core promoter region of the telomerase reverse transcriptase
(TERT) gene have been well established to associate with aggressive clinical
characteristics, radioiodine refractory, tumor recurrence, and mortality in thyroid cancer.
Several E-twenty-six (ETS) transcription factors were reported to selectively bound to the
mutant TERT promoter and activated TERT expression. In this study we aimed to
investigate whether TERT promoter mutations confer sensitivity to ETS inhibitor YK-4-
279 in thyroid cancer cells and whether this inhibitor could be served as a potential
therapeutic agent for thyroid cancer. In vitro assays showed that YK-4-279 treatment
sharply suppressed cell viability, colony formation, migration, and invasion, as well as
induced cell cycle arrest and apoptosis in a panel of thyroid cancer cells. The cell viability
after YK-4-279 treatment was similar between cell lines harboring mutant and wild-type
TERT promoters. Furthermore, YK-4-279 treatment reduced both luciferase activity and
mRNA expression of TERT independent of TERT promoter mutation status. Data from
RNA-seq further revealed that YK-4-279 significantly affected biological processes
including DNA replication and cell cycle. Reduced DNA helicase activity and decreased
expression of several helicase genes were observed after YK-4-279 treatment. Moreover,
YK-4-279 significantly inhibited tumor growth and induced apoptosis in a xenograft mice
model. Thus, ETS inhibitor YK-4-279 suppressed TERT expression and conferred anti-
tumor activity in a TERT promoter mutation-independent manner, and it could be a
potential agent for the treatment of advanced thyroid cancers.

Keywords: YK-4-279, telomerase reverse transcriptase, thyroid cancer, apoptosis, E-twenty-six transcription factor
INTRODUCTION

Thyroid cancer is the most prevalent endocrine cancer worldwide (1). Depending on its histological
characteristics, thyroid cancer can be classified as papillary thyroid cancer (PTC), follicular thyroid
cancer (FTC), anaplastic thyroid cancer (ATC), and medullary thyroid cancer (MTC). The MTC is
derived from parafollicular C cells and accounts for approximately 4% of thyroid cancers (2), while
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the other three subtypes (PTC, FTC, and ATC) are all developed
from follicular thyroid cells and account for the majority of
thyroid cancers. Although most of the thyroid cancer cases have
a good prognosis after standard clinical treatments, tumor
recurrence and/or mortality still occurs in patients with
aggressive thyroid cancer.

Genetic alterations drive the progression and contribute to
the tumor recurrence and mortality of thyroid cancer (3).
Molecular-based management of thyroid cancer is quickly
developed in recent years and holds a great advantage to
improve the survival of cancer patients with certain genetic
alterations (4). RET mutations account for approximately 70%
of MTC and associated with aggressiveness of thyroid cancer.
Several RET-targeting inhibitors were developed and showed
durable anti-tumor efficacy in RET-altered medullary thyroid
cancer (5). BRAF V600E mutation, which constitutively activates
MEK phosphorylation andMAPK/ERK signaling pathway, is the
most prevalent genetic alteration in follicular-derived thyroid
cancer, particularly in PTC (6, 7). Several inhibitors targeting
BRAF mutation, such as vemurafenib and dabrafenib, have been
discovered and show a dramatic response in advanced thyroid
cancer patients harboring BRAF V600E mutation (8–10).

Hotspot mutations in the core promoter region of the
telomerase reverse telomerase (TERT) gene are considered as the
most frequent non-coding mutations in follicular-derived thyroid
cancer (11). Numerous studies have demonstrated that TERT
promoter mutations, especially when accompanied with BRAF
V600E or RASmutations, showed strong correlation to aggressive
clinical characteristics, radioiodine refractory and poor clinical
outcomes in patients with thyroid cancer (12–19). Several ETS
factors, including GABPA, ETV1, ETV4, and ETV5 were reported
to selectively bind to mutant TERT promoter and activate TERT
expression (20–22). These findings raised the possibility that ETS
inhibitors might be more sensitive to TERT promoter mutation-
driven thyroid cancers. YK-4-279 is a well-described ETS factor
inhibitor that has showed anti-tumor activity in Ewing’s sarcoma
(23), prostate cancer (24), and neuroblastoma (25). Importantly,
recent study showed that BRAF/TERT promoter double-mutated
brain tumor cells were sensitive to YK-4-279 treatment, providing
a therapeutic opportunity to manage brain tumor patients
harboring both BRAF and TERT mutations (26). In this study
we tested whether BRAF and/or TERT promoter mutations
conferred sensitivity to YK-4-279 in thyroid cancer cells and
whether this inhibitor could be served as a therapeutic agent for
advanced thyroid cancers.
METHODS

Cell Culture
The human thyroid cancer cell lines, including KTC-1, KHM-5M,
Hth7, ACT1, CAL62, WRO, and TTA1 were obtained from the
Type Culture Collection of the Chinese Academy of Sciences
(Shanghai, China). Human thyroid cancer MDA-T41 was
purchased from the American Type Culture Collection (ATCC,
Manassas, VA, USA). The origins of human thyroid epithelial cell
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line Nthy-ori 3-1 and human PTC cell lines, TPC-1 and BCPAP,
were as documented (27). BCPAP, KTC-1, KHM-5M, MDA-T41,
and WRO were grown at 37°C in RPMI-1640 medium (Invitrogen,
CA, USA) supplemented with 10% fetal bovine serum (FBS,
#10270-106, Gibco, MD, USA). Nthy-ori3-1, TPC-1, ACT-1,
CAL62, Hth7, and TTA1 were grown at 37°C in DMEM medium
(Invitrogen, CA, USA) supplemented with 10% FBS.

Inhibitor Preparation
The ETS inhibitor YK-4-279 (#S7679) was purchased from Selleck
Chemicals (Houston, TX), dissolved in Dimethyl sulfoxide
(DMSO) with a stock concentration of 10mM and stored at
−80°C. For in vitro study, YK-4-279 was used to treat cells for
different concentrations as indicated for different experiments. For
in vivo study, YK-4-279 was dissolved in DMSO to generated
15 mg/ml stocking solution and stored in −20°C. Working
solution was dissolved as following proportion: 5% 15 mg/ml
YK-4-279 solution + 40% PEG300 + 5% Tween 80 + 50% ddH2O.
Vehicle was defined as working solution by replacing YK-4-279
with DMSO.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA was extracted from cultured cells using the TRIzol
reagent (#15596-018; Ambion, Life Technologies, Carlsbad, CA)
and reverse-transcribed to cDNA using RevertAid First Strand
cDNA Synthesis Kit (#K1622; ThermoFisher). Gene expression
was analyzed in triplicate using PowerUp™ SYBR™ Green
Master Mix (#A25742; Applied Biosystem) on the Applied
Biosystems QuantStudio™ 7 Pro Real-Time PCR System.
Relative expression of each gene was calculated according to
the 2−DDCt method. GAPDH was used as an internal control for
normalization. The primers for TERT and GAPDH were used as
described previously (20).

Luciferase Reporter Assay
The luciferase reporter gene constructs containing the wild-type
and mutant TERT promoters (pGL4-TERTp-WT, pGL4-TERTp-
C250T and pGL4-TERTp-C228T) were obtained from Addgene
(#84924, #84925, and #84926, respectively). For promoter activity
assay, cells were seeded in triplicate into a 24-well plate and then
transfected with 300 ng pGL4 plasmids containing the TERT
promoter using Lipofectamine 3000 (Invitrogen) for 24 h
followed by 1 mM of YK-4-279 treatment for 16 h. Rinella
luciferase (pRL-TK) plasmid was transfected simultaneously
with plasmid mentioned above as the normalizing control. After
treatments, cells were lysed, and the luciferase activities were
measured using the Dual-Luciferase Reporter Assay System
(Promega). Relative luciferase activities were calculated by
dividing firefly luciferase values with Rinella luciferase values for
each set of reading.

Cell Proliferation and Colony
Formation Assays
For cell proliferation assay, cells (1,000–2,500 cells per well) were
seeded on a 96-well plate, and Cell Counting Kit-8 (CCK-8)
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assay was carried out at day 5 to evaluate cell proliferation
following the manufacturer’s instruction. Briefly, at the end of
each culture period, 10 µl of the CCK-8 solution (#K1018,
ApexBio) was added to each well. After incubation for 2 h, the
absorbance was read at 450 nm. For colony-formation assay, 400
of KHM-5M and Hth7 cells or 1,000 of BCPAP cells were plated
in duplicate in six-well plates. YK-4-279 treatment starts at 12 h
after cell seeding. Culture media with YK-4-279 were replaced
every 3 days. The colonies were photographed, and the total
number of colonies ≥100 mm in diameter was counted after 2
weeks of culture.
Cell Migration and Invasion Assays
To examine the effect of YK-4-279 on thyroid cancer migration
and invasion, cell migration and invasion assays were performed
in triplicates using Transwell® chambers in 24-well plates
following Ogasawara’s instruction (28). Transwell chambers with
8-mm pore polycarbonate membrane used for cell migration assay
were obtained from Corning (Corning, NY). Chambers coated
with Matrigel on the upper surface used for invasion assay were
obtained from BD Biosciences (Franklin Lakes, NJ). Briefly, cells
(5 × 104 KHM-5M and Hth7 cells or 1.5 × 105 BCPAP cells for
migration assay; 1 × 105 KHM-5M and Hth7 cells for invasion
assay) were suspended in 250 ml of serum-free medium and placed
in the upper chamber, while the lower chamber was loaded with
750 ml of cell culture medium with 10% FBS. Cells were incubated
in 37°C with 5% CO2 for 6 h (migration) and 16 h (invasion),
respectively. After incubation, the non-invaded cells were removed
from the upper surface by a cotton swab. The invaded cells on
the lower surface of the membrane were fixed in 4%
paraformaldehyde for 15min, washed three times with PBS, and
stained with 0.5% crystal violet. Cells from three microscopic fields
were photographed and counted.
Cell Cycle and Apoptosis Analysis
For cell cycle analysis, experiments were performed using a
commercial cell cycle and apoptosis detection kit (#40301ES60,
Yeasen, China) following its instruction. Briefly, cells were
collected and washed with PBS, fixed in 70% ethanol for 2 h at
4°C and then incubated in the staining solution with propidium
iodide and RNase for 1 h. The apoptosis analysis was determined
by the Pacific Blue™ Annexin V (#640918, San Diego, CA).
Stained cells were detected by flow cytometry. Cell cycle
distributions and the percentage of apoptotic cells were
determined with FlowJo software.
Caspase-3/7 Activity Detection
The activities of caspases-3 and caspase-7 were detected using
the CellEvent™ Caspase 3/7 Green ReadyProbe™ Reagent
(#R37111, Invitrogen) as previously reported (29). Briefly, cells
were seeded on gelatin-coated slides in 24-well plate and treated
with YK-4-279 at different doses (0, 0.3, and 1 µM) for 24 h. Cells
were then incubated with 500 ul CellEvent™ Caspase 3/7
ReadyProbe™ Reagent dilution (1 drop/ml) for 30 min at 37°C
followed by Hochest 33342 counterstaining for nuclei. Cells were
Frontiers in Oncology | www.frontiersin.org 3
then washed and fixed with 3.7% paraformaldehyde for 15 min
and mounted with Anti-Fade Mounting media. Caspase-3/7
activated cells were observed under 200× magnificence with
OLYMPUS IX83 Inverted Microscope (Olympus, Japan).
RNA-Sequencing and Data Analysis
The cDNA libraries were constructed for each RNA sample using
the TruSeq Stranded mRNA Library Prep Kit (Illumina, US)
according to the manufacturer’s instructions. The mRNA library
was prepared from total RNA using the NEBNext Small RNA
Library Prep. Before read mapping, clean reads were obtained
from the raw reads by removing the adaptor sequences and low-
quality reads. The clean reads were then aligned to the human
genome (GRCh38, NCBI) using Hisat2. HTseq was used to
calculate gene counts, and the RPKM method was used to
determine relative gene expression. Differential expression
analysis of two conditions/groups (two biological replicates per
condition) was performed using the DESeq2 R package (1.16.1).
The resulting P-values were adjusted using the Benjamini and
Hochberg’s approach for controlling the false discovery rate.
Protein-coding genes larger than 1.5-fold alteration (0.587 for
log2FC) with P-value <0.05 found by DESeq2 were defined
Differential Expression Genes (DEGs) for further investigation
in this study.
Gene Ontology Analysis
Gene ontology (GO) analysis was performed to elucidate the
biological implications of the differentially expressed genes
identified in the experiment. We downloaded the GO
annotations from NCBI (http://www.ncbi.nlm.nih.gov/),
UniProt (http://www.uniprot.org/), and the Gene Ontology
(http://www.geneontology.org/). Fisher’s exact test was applied
to identify significantly enriched GO categories.
Xenograft Tumorigenesis Assay
All animal experiments were approved and performed according
to the guidelines of the Institutional Animal Care and Use
Committee (IACUC) of Sun Yat-sen University. BALB/c nude
mice (Female, 4–6 weeks old) were purchased from Vital River
(Beijing, China) and housed in the SPF barrier facilities of Sun
Yat-senUniversity. Toensure the similarity of xenograft tumor size,
we followed theprotocolofYu labdescribedpreviously (30).Briefly,
KHM-5M (1 × 107) cells were injected subcutaneously into the
axillary cavity of four-week-old nude mice and harvested when
reaching 1 cm3. Necrotic area was dissected meanwhile the
remaining compartment was fragmented as 1 mm3 pieces and
transplanted into flanks of 6-week-old female nude mice (four
mice for each group).When tumor sizes reached around 150mm3,
mice were treated daily with vehicle or 150mg/kg of YK-4-279 by
intraperitoneal injection. Tumor size was measured every day on
the skin surface of the animal using a caliper, and tumor volume
was calculated by the formula (L + W)3p/6. Mice were sacrificed
whenxenograft tumors in control group reached1 cm3, and tumors
were surgically removed, photographed, and weighted.
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Histological Analysis
The immunohistochemical staining was performed with primary
antibodies on 4 mm-thick formalin-fixed paraffin-embedded
tissue specimens as previously described (31). The primary
antibodies used were as follows: Anti-Human Ki67 antibody
(#ab92742, Abcam), anti-cleaved Caspase-3 antibody (#9664,
Cell Signaling Technology). Semi-quantification analysis was
performed by calculating percentage of positive staining cell
under 200× magnification with the following formula: % of
positive cell = counts of positive staining tumor nuclei/counts
of all nuclei.

Statistical Analysis
Three independent experiments were performed for all the in
vitro assays, and each was done in triplicate. Results are reported
as mean ± standard deviation (SD). The significance of
differences between two groups was assessed by the Student’s t
test. The multiple t-test was used to evaluate the difference of
tendency of xenograft tumor growth. Statistical analyses were
performed with GraphPad Prism v8.0. All the P values were two-
sided and P <0.05 was considered as statistically significant.
RESULTS

YK-4-279 Significantly Inhibited Thyroid
Cancer Viability
To investigate the effect of YK-4-279 on thyroid cancer, cell
viability assay was first performed in nine thyroid cancer cell
lines with different genetic backgrounds. As shown in Figure 1,
treatment with 0.3 µM of YK-4-279 significantly inhibited the
cell viability in most of the cell lines, and 3 or 10 µM of YK-4-279
almost abolished cell viabilities in all of the nine cell lines. The
IC50 values for BRAF-mutant cell lines and BRAF-wild-type
(WT) cell lines were 0.800 and 0.737 mM, respectively
(P = 0.867); the IC50 values for TERT promoter mutation
harboring cells and TERT-WT cells were 0.717 and 0.861 mM,
respectively (P = 0.713). Moreover, there is no significant
difference of the IC50 among the cell groups when we divided
the cell lines into four groups based on the BRAF and TERT
mutation status (Supplementary Figure 1). These data suggested
that YK-4-279 suppressed thyroid cancer viability independent
of BRAF V600E or TERT promoter mutations.

YK-4-279 Suppressed TERT Expression
in Thyroid Cancer Cells
Since TERT is a master regulator in human cancer and plays vital
roles in thyroid cancer, we hypothesized that the effect of YK-4-
279 on thyroid cancer viability may be mediated, at least partially,
by regulating TERT expression. To address this, we treated cells
with YK-4-279 and tested the promoter activity and mRNA
expression of TERT in thyroid cells. Luciferase assay showed
that YK-4-279 reduced luciferase activities in thyroid cells
transfected with wild-type, C228T, and C250T-mutant TERT
promoter (Figure 2A). Consistently, treatment of thyroid cancer
cells with YK-4-279 for 24 h significantly decreased TERT
Frontiers in Oncology | www.frontiersin.org 4
expression in either TERT promoter-WT or TERT promoter-
mutant cell lines in a dose-dependent manner (Figure 2B). These
results indicated that YK-4-279 regulated TERT transcription in a
TERT promoter mutation-independent manner.

YK-4-279 Treatment Attenuated the
Aggressive Characteristics of
Thyroid Cancer
To comprehensively investigate the effects of YK-4-279 on
aggressive behaviors of thyroid cancer cells, we next used in
vitro models to examine the roles of YK-4-279 in oncogenic
behaviors of aggressive thyroid cancer cell lines harboring
both BRAF V600E and TERT promoter mutations (BCPAP
and KHM-5M) or harboring TERT promoter mutation only
(Hth7). As shown in Figure 3A, YK-4-279 inhibited anchorage-
dependent survival of BCPAP, KHM-5M and Hth7 in plain six-
well plates in a dose-dependent manner. Cell cycle is another
important parameter for cell proliferation and survival. Previous
papers indicated that YK-4-279 impeded cell proliferation via
G2/M arrest in Ewing’s sarcoma (32) and neuroblastoma (25).
We further investigated the role of YK-4-279 on cell cycle via
flow cytometry. After administration of YK-4-279 for 16 h,
significantly increased G2/M proportion was observed when
treated with 1 mM of YK-4-279 in all cell lines that we tested,
showing that YK-4-279 induced G2/M arrest in thyroid cell
lines (Figure 3B).

In addition to cell proliferation and survival, migration and
invasion are crucial properties of cancer aggressiveness. Since no
significant increase of G2/M proportion of cell cycle in thyroid
cancer cell lines was observed after 16 h of YK-4-279 treatment at
0.3 mM (Figure 3B), we used this concentration to investigate the
effect of cell migration and invasion of thyroid cancer via Boyden
chamber with or without Matrigel, respectively. Our data showed
that 0.3 mM of YK-4-279 significantly reduced cell migration and
invasion in all tested cell lines (Figures 3C, D). Thus, we
confirmed that YK-4-279 displayed regressive role on the
oncogenic behaviors of thyroid cancer in a dose-dependent
manner. Taken together, these data demonstrated that YK-4-
279 significantly suppressed aggressive characteristics of thyroid
cancer cells in vitro.

YK-4-279 Induced Apoptosis in Thyroid
Cancer Cells
After treating thyroid cancer cells with YK-4-279 at different
concentrations (0, 0.3, and 1 mM) for 24 h, increased floating
apoptotic cells with round-shaped morphology were observed
(Figure 4A), indicating that YK-4-279 may induce apoptosis in
these cells. To confirm this, we performed PI/Annexin-V double
staining assay in YK-4-279 treated cell lines and detected the
apoptotic cells by flow cytometry. As a result, we found that the
proportions of apoptotic (Annexin V-positive) cells were
increased by four to nine times after treatment by 1 mM of
YK-4-279 compared to the DMSO groups (Figure 4B,
Supplementary Figure 2). Furthermore, we examined activity
of caspase-3/7, two major apoptosis-related effector, in treated
thyroid cell lines and observed a dose-dependent enhancement
June 2021 | Volume 11 | Article 649323
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of caspase-3/7 activity in all tested cell lines (Figure 4C). These
results showed that YK-4-279 induced cell apoptosis in thyroid
cancer cells.

Putative Targets for YK-4-279 Treatment
To systematically explore gene expression profile and pathway
affected by YK-4-279, RNA-seq was performed in KHM-5M cells
treated with DMSO or YK-4-279 at different dosages (0.3 and 1
mM). Compared with the control group, 390 and 4,377
differentially expressed genes (DEGs) were identified in KHM-
5M cells treated with 0.3 and 1 mM of YK-4-279, respectively.
Furthermore, 214 DEGs were overlapped in both two treated
Frontiers in Oncology | www.frontiersin.org 5
groups (Figure 5A). The top 20 upregulated and downregulated
DEGs were presented in Figure 5B. To interpret the crucial
pathways affected by YK-4-279, gene ontology (GO) enrichment
analysis based on the DEGs was performed. Results showed that
the YK-4-279 treatment was significantly associated with
biological processes including DNA replication, nuclear
division, chromosome segregation, and meiotic cell cycle
(Figure 5C). In addition, molecular function enrichment
analysis revealed that catalytic activity, DNA helicase activity,
DNA-dependent ATPase activity, and ATP-dependent DNA
helicase activity were remarkably correlated with YK-4-279
(Figure 5D). Consistently, a number of DNA helicase genes
FIGURE 1 | Effects of YK-4-279 on cell viability of thyroid cancer cells. Cells with different genetic backgrounds were treated by YK-4-279 with indicated concentrations
for 5 days, followed by the CCK-8 assay. Drug with fresh medium was replenished every other day. Data represent relative cell growth at each indicated concentration of
YK-4-279 in comparison with the control (0.1% DMSO). The results were shown as mean ± standard deviation (SD) of three independent experiments.
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were significantly downregulated after YK-4-279 treatment
(Figure 5E), indicating a potentially pivotal role of DNA
helicase activity in mediating the effect of YK-4-279 in thyroid
cancer. Moreover, we checked the expression of several genes
that were previously reported to be affected by YK-4-279 in
Ewing’s sarcoma (32, 33) and found that the expressions of
TERT and UBE2C (Ubiquitin Conjugating Enzyme E2-C) were
reduced after YK-4-279 treatment in our cell lines (Figure 5F).
The expressions of each ETS transcriptional factor were not
changed in KHM-5M cells after treatment with YK-4-279
(Supplementary Figure 3).

YK-4-279 Reduced Tumorigenesis in
Xenograft Mouse Model
To determine whether the anti-cancer effects of YK-4-279 observed
for thyroid cancer cells was re-capitulated in vivo, a xenograft mouse
model was established and treated with YK-4-279 by intraperitoneal
injection (Figure 6A). As shown in Figures 6B, C, daily treatment
with YK-4-279 at dosage of 150 mg/kg significantly suppressed the
growth of xenograft tumors. Consistently, tumor weights in YK-4-
Frontiers in Oncology | www.frontiersin.org 6
279 treatment group were remarkably lower than those in the
control group (Figure 6D). Along with the growth suppression, as
shown in Figure 6E, immunohistochemistry of xenograft tumors
showed that the expression of proliferation marker, Ki-67, was
decreased; while the apoptosis marker, cleaved caspase-3, was
increased in YK-4-279 treatment group compared to that in
controls. Morphological feature of apoptosis was also observed by
H&E staining in the drug treated tissue section (Figure 6E). These
data showed that YK-4-279 was capable of reducing thyroid
tumorigenesis in vivo.
DISCUSSION

The anti-tumor activity of YK-4-279 was first reported in
Ewing’s sarcoma and then confirmed by studies performed in
several cancer types, including prostate cancer, neuroblastoma,
lymphoma, and glioma (23–26, 34). This is the first study, to the
best of our knowledge, to investigate the effect of YK-4-279 on
A

B

FIGURE 2 | YK-4-249 regulates TERT expression in a TERT promoter mutation-independent manner. (A) YK-4-279 attenuated TERT promoter activities. Luciferase
reporter plasmids carrying the wild-type (WT), C228T, or C250T mutant TERT promoters were transient transfected into Nthy-ori-3 and CAL62 cells, and then the
cells were treated with 1 mM of YK-4-279 for 16 h, followed by luciferase reporter assay. (B) YK-4-279 treatment inhibited the mRNA expression of TERT. Four
cancer cell lines harboring either BRAF V600E and/or TERT promoter mutation were treated with 1 mm of YK-4-279 for 24 h, followed by qRT-PCR for TERT mRNA
expression detection. *P < 0.05, **P < 0.01, ***P < 0.001, by two-tailed Student’s t test. n.s., not significant. All the values represent the average ± standard deviation
(SD) of triplicate samples from a typical experiment. Similar results were obtained in two additional independent experiments.
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thyroid cancer cells, and our data showed a significant inhibitory
effect on the aggressive characteristics of thyroid cancer.
Specifically, YK-4-279 treatment sharply suppressed cell
growth, survival, migration, and invasion of thyroid cancer
cells, and it induced G2/M cell cycle arrest and apoptosis in all
the thyroid cancer cell lines we tested. Importantly, our data
showed that YK-4-279 robustly suppressed tumor growth in a
xenograft thyroid tumor model. These results demonstrated that
Frontiers in Oncology | www.frontiersin.org 7
YK-4-279 efficiently inhibited tumor growth and progression of
thyroid cancer and exerted therapeutic potential for aggressive
thyroid cancer management.

YK-4-279 was initially reported as a small molecule targeting the
interaction of oncogenic protein EWS-FLI1 with RNA helicases
DHX9 and DDX5 in Ewing’s sarcoma (23). Recently, several papers
revealed that YK-4-279 exerted similar tumor-inhibitory effect in
cancer cell lines within overexpression of other ETS-factors. Rahim
A B

D

C

FIGURE 3 | Effects of YK-4-279 on the oncogenic behaviors of thyroid cancer cells. Thyroid cancer cells were treated with DMSO or YK-4-279, followed by
performance of monolayer colony formation (A), cell cycle analysis (B), Transwell cell migration (C) and cell invasion assays (D). “DMSO” in (A−D) represented
0.1% of DMSO in fresh culture media. The scale bars in panels (C, D) represent 100 mm. *P < 0.05, **P < 0.01, ***P < 0.001, by two-tailed Student’s t test.
All the values represent the average ± standard deviation (SD) of triplicate samples from a typical experiment. Similar results were obtained in two additional
independent experiments.
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et al. reported that YK-4-279 specifically reduced tumor growth and
metastasis of ETV1-fusion positive prostate cancers by reducing
ETV1 transcriptional activity (35). Similarly, exposure to TK-216,
the clinical derivative of YK-4-279, reduced the interaction of ETS
factors SPIB and SPI1 with these RNA helicases in B-cell
lymphomas (34). Furthermore, YK-4-279 showed powerful
inhibition of tumor proliferation and mitosis in ETS-FLI1
negative neuroblastoma, suggesting that YK-4-279 might disrupt
Frontiers in Oncology | www.frontiersin.org 8
protein interactions required for mitosis and proliferation (25).
These data indicated that novel ETS factor-related mechanism may
be involved in YK-4-279 induced solid tumor inhibition.

Several ETS factors, including ETS1, ETS2, ELK1, ELF3,
ETV5, and EHF have been shown to be overexpressed during
thyroid carcinogenesis, and inhibition of these ETS factors
constrained cell proliferation, colony formation, migration,
invasion and induced cell cycle arrest and apoptosis (36–42),
which was consistent with what we observed after YK-4-279
treatment. Importantly, some classical oncogenes, such as
PIK3CA, TWIST1, HER2, and HER3 were identified as the
direct targets of ETS factors in thyroid cancer (40–42).
Considering that the expression of each ETS factor was not
changed after YK-4-279 treatment, the anti-tumor effect of YK-
4-279 on thyroid cancer might be implemented by preventing
the binding of certain ETS factors to their targets.

To comprehensively identify putative targets and pathway
response to YK-4-279 treatment in thyroid cancer, RNA-
profiling was performed in the present study. We found that
DNA helicase activities were remarkably enriched in GO
analysis, while decreased expression of several known DNA
helicases was observed after treatment with YK-4-279 in our
RNA-seq expression data. These results suggested that DNA
helicases are likely to be the key targets and mediators of YK-4-
279 treatment in thyroid cancer. We postulated that YK-4-279
may directly impede ETS factor binding to the promoter regions
of DNA helicase genes since duplicate ETS motifs were identified
as essential transcription regulatory elements in the promoters of
multiple DNA helicase-encoding genes (43). However, the
essential mechanism of YK-4-279 on DNA helicase regulation
required to be further addressed.

Telomerase reverse transcriptase (TERT) is the catalytic
component of the telomerase complex, which plays a key role
in maintaining telomere length and cell immortality and in
controlling cellular activities. Activation of TERT expression
promoted cell proliferation without telomere shortening and
was linked to cancer hallmark behaviors in several solid
cancers (44). Inhibition of TERT expression in thyroid cancer
cells significantly reduced cell viability, migration, and invasion
in vitro and suppressed tumor growth in vivo (20, 45, 46). In the
present study, we found that YK-4-279 treatment reduced TERT
expression and the cells treated by YK-4-279 showed similar
phenotypes with TERT silencing cells. Therefore, in addition to
regulating DNA helicase expression, the anti-tumor activity of
YK-4-279 can be explained partially by suppressing the
oncogenic effect of TERT in thyroid cancer.

The two hotspot mutations in TERT promoter were frequently
observed in patient with PTC, FTC, PDTC, and ATC, but not in
MTC (11, 47). The BRAF V600E and the MAPK pathway was
reported to activate several ETS transcription factors, the latter then
selectively bonded to the mutant promoter of TERT and led to
TERT activation in thyroid cancer (20–22). In contrast to the
previous findings that BRAF/TERT promoter double-mutated brain
tumor cells (26) were hypersensitive against the ETS inhibitor YK-
4-279, we found that YK-4-279 reduced the expression of TERT
and conferred the anti-tumor activity independent of TERT
A

B

C

FIGURE 4 | YK-4-279 induces cell apoptosis in thyroid cancer cells. Thyroid
cancer cells (KHM-5M, BCPAP, and Hth7) were treated with DMSO or different
dosages of YK-4-279 for 24 h. (A) Cell morphological changes (200×) after
DMSO or YK-4-279 treatment. (B) Flow cytometry analysis of apoptosis by PI/
Annexin-V staining. (C) Examination of caspase-3/7 activity after DMSO or drug
treatment. The scale bars in panels (A, C) represent 100 mm. Similar results
were obtained in two additional independent experiments.
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promoter mutations in thyroid cancer cells. This discrepancy
between brain tumors and thyroid cancer can be explained by
alternative mechanism of ETS factors on TERT regulation among
these cancer types. Takahashi and his colleagues reported that
EWSR1–ETS fusion activated hTERT expression in Ewing’s
sarcoma by recruiting p300 to TERT promoter in an ETS factor
binding site-independent manner (48). In thyroid cancer,
phosphorylation and activation of ETS factor ELK1 by BRAF/
MAPK pathway were necessary for thyroid-specific FOXE1
recruitment to TERT promoter via direct ELK1–FOXE1
interaction and this recruitment was independent from cis-acting
mutations of TERT promoter (49). Thus, it is likely to the case that
Frontiers in Oncology | www.frontiersin.org 9
the interaction between ETS and certain transcription activators,
such as FOXE1, play an important role in TERT activation in
thyroid cancer cells while YK-4-279 inhibits TERT expression by
disrupting ETS factors’ interaction. Further investigation on the
mechanism of YK-4-279 on ETS recruitment of co-activators on
TERT promoter in thyroid cancer is required.

In conclusion, our results demonstrate that YK-4-279 is
powerful in arresting cell cycle and inducing apoptosis, leading
to decreased cell growth and progression of thyroid cancer. The
anti-tumor activity of YK-4-279 in thyroid cancer is independent
of TERT promoter mutations and likely to be explained by
inhibiting the expression of TERT and several DNA helicase
A B

D

E F

C

FIGURE 5 | RNA-seq analysis for YK-4-279 treatment. (A) Differentially expressed genes (DEGs) in YK-4-279 treated KHM-5M cells compared with cells treated
with DMSO. (B) Representative does-dependent DEGs. Blue referred to downregulated DEGs whereas Red referred to upregulated DEGs. (C, D) Gene ontology
enrichment for biological process and molecular function analysis. (E) Significant downregulated DNA helicase in KHM-5M cells treated with 1 mM of YK-4-279
compared to the DMSO group. (F) mRNA expression of selected genes after DMSO or YK-4-279 treatment. ** refers to P < 0.01 by two-tailed Student’s t test.
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genes. Although the exact mechanism needs to be further
investigated, YK-4-279 is a promising therapeutic agent for the
treatment of aggressive thyroid cancers.
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