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Abstract

DNA sequence variation causes changes in gene expression, which in turn has profound effects on cellular states. These
variations affect tissue development and may ultimately lead to pathological phenotypes. A genetic locus containing a
sequence variation that affects gene expression is called an ‘‘expression quantitative trait locus’’ (eQTL). Whereas the impact
of cellular context on expression levels in general is well established, a lot less is known about the cell-state specificity of
eQTL. Previous studies differed with respect to how ‘‘dynamic eQTL’’ were defined. Here, we propose a unified framework
distinguishing static, conditional and dynamic eQTL and suggest strategies for mapping these eQTL classes. Further, we
introduce a new approach to simultaneously infer eQTL from different cell types. By using murine mRNA expression data
from four stages of hematopoiesis and 14 related cellular traits, we demonstrate that static, conditional and dynamic eQTL,
although derived from the same expression data, represent functionally distinct types of eQTL. While static eQTL affect
generic cellular processes, non-static eQTL are more often involved in hematopoiesis and immune response. Our analysis
revealed substantial effects of individual genetic variation on cell type-specific expression regulation. Among a total number
of 3,941 eQTL we detected 2,729 static eQTL, 1,187 eQTL were conditionally active in one or several cell types, and 70 eQTL
affected expression changes during cell type transitions. We also found evidence for feedback control mechanisms reverting
the effect of an eQTL specifically in certain cell types. Loci correlated with hematological traits were enriched for conditional
eQTL, thus, demonstrating the importance of conditional eQTL for understanding molecular mechanisms underlying
physiological trait variation. The classification proposed here has the potential to streamline and unify future analysis of
conditional and dynamic eQTL as well as many other kinds of QTL data.
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Introduction

Natural genetic variation affects gene expression levels and

thereby impacts on molecular and physiological phenotypes such

as protein levels, cell morphology or disease phenotypes. In this

respect, gene expression has proven instrumental as an interme-

diate phenotype from which conclusions about the emergence of

high level traits can be drawn. A genetic locus containing a

sequence variant that affects transcript levels of a gene is called an

expression quantitative trait locus (eQTL). Studying eQTL has

demonstrated its value for revealing the molecular mechanisms

underlying disease associated SNPs, that were previously identified

e.g. through genome wide association studies (GWAS) [1,2].

Moreover, it has been shown that eQTL SNPs are more likely to

be disease causing than random genetic loci [3] and can thus be

used to prioritize genetic markers in GWAS.

Differences in mRNA expression levels caused by natural

genetic variation can manifest themselves between individuals,

populations, environments and, very importantly, between cell

types and tissues (see [4,5] and references therein). Since cells

forming different tissues must have very different morphology,

organization and function, distinct patterns of gene expression are

required for each cell type. This variation of gene expression

between cell types is under the influence of natural genetic

variation. A number of studies (summarized in Table 1) compared

eQTL across different cell types and tissues in mouse and human

samples and report that 5% to 94% of the eQTL are cell type-

specific. Potential reasons for the seemingly divergent outcomes of

these studies are the different levels of relatedness of tissues under

study and the different sample sizes of the studies. The last point is

especially important in that cell type specificity is probably over-

estimated due to low power of eQTL studies [4,6]. Nevertheless,

there is clear evidence for cross-tissue differences in genetic

variation influencing transcript levels. This raises the question

whether conclusions drawn from an eQTL study in one cell type

or even a cell line translate to other cell types. The answer to this

question is obviously relevant for explaining disease mechanisms

with eQTL studies that are conducted in tissues other than the

disease tissue or when several cell types are involved in the disease

etiology [7]. Most diseases are caused by a limited set of highly

specialized cells, but cell- and tissue interactions are crucial for

their etiology. Understanding the tissue and cell type-specificity of

molecular traits is therefore essential for revealing the molecular

mechanisms underlying disease phenotypes.
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Another layer of complexity is added when considering dynamic

processes such as cellular differentiation or responses to internal or

external stimuli. These changes go along with drastic alterations of

the cell’s morphology or molecular state being induced through

the adaptation of gene expression patterns. Therefore, it is

important to not only compare eQTL observed in individual cell

types (at steady state), but to additionally map the expression

changes measured during cell state transitions. Intriguingly, the

concepts of cell type-specific and differential eQTL have rarely

been investigated together [8].

Hence, the main goals of the present study are to bring together

and consolidate the different varieties of eQTL that have been

proposed in the context of comparative eQTL mapping; to

provide a thorough and functional classification of these eQTL

classes reflecting the spectrum of genetic contributions to gene

expression variation over a range of dynamically changing cell

states; to show that these classes represent different sets of eQTL

corresponding to different modes of expression variation and to

demonstrate that their distinction facilitates the biological inter-

pretation. A well-studied model for a dynamic process, being

accompanied by substantial gene expression changes, is the

differentiation of hematopoietic stem cells (HSC) into the different

lineages of mature blood cells [9]. We decided to use this system to

investigate eQTL based on three different categories of expression-

based traits: (i) eQTL that are observed across all cellular states

(static eQTL), (ii) eQTL being specific to one or a subset of cell states

(conditional eQTL) and (iii) eQTL affecting changes of transcript

levels during differentiation (dynamic eQTL). We propose strategies

to map eQTL in the different classes and we demonstrate that

eQTL from the above three classes, although based on the analysis

of the same set of expression and genotype data, comprise different

sets of regulatory loci having to be inferred from separate

mappings. The choice of the eQTL mapping procedure has

considerable influence on the outcome of the study. In particular,

we show that basic cellular processes and state and differentiation

specific functions are regulated by different eQTL categories.

Although our scheme can serve to classify eQTL across any set of

cell states, we will use the term cell type in the remainder of this

paper, referring to the application to hematopoietic cell types.

Results

eQTL classification
We distinguish static, conditional and dynamic eQTL (Figure 1,

Table 2). A static eQTL affects a gene’s expression in all

conditions under consideration (Figure 1A). It is independent of

the cell type and will thus be detected in all cell types. In contrast,

a conditional eQTL can be found in one or a subset of the

conditions under consideration (Figure 1B). In rare cases, a

conditional eQTL might even be present in all four cell types. The

difference between a static eQTL and a conditional eQTL active

in all (i.e. four) cell types is the following: the static eQTL has the

same effect throughout all cell types, whereas the conditional

eQTL, although being active in all cell types, has effects dependent

on the cell type. For example, the magnitude of the effect may

differ between cell types or even the direction of the effect may

change, i.e., the major allele may yield higher expression levels of

the target gene in one cell type and lower expression levels in

another cell type. A third reason for the cell type dependence of

conditional eQTL is that the effect may be dependent on different

co-factors, i.e. there might be different epistatic interactions with

other markers dependent on the cell type.

Both static and conditional eQTL impact the absolute

expression levels of their target genes in the given cell types. As

opposed to that, dynamic eQTL drive changes in mRNA levels

during the transition from one cell type to another and thus act on

expression differences between cell types (Figure 1C). Thus, the

trait value used for mapping dynamic eQTL is the differential

expression between two states or conditions (in other words, we

use the fold-change between two conditions as a trait value).

In this respect our definition of dynamic eQTL differs from

definitions used in the literature. For example, Gerrits et al. [10]

define a dynamic eQTL as an eQTL that is present in one

condition but not in another. We refer to those eQTL as

conditional. A concept very similar to dynamic eQTL has been

introduced in the context of studying transcriptional regulation in

different growth conditions in yeast [8]. The authors define eQTL

affecting expression changes between conditions as gene-environ-

ment interaction eQTL (gxeQTL). A similar study has been

conducted on differential expression in two different temperatures

in worms [11]. Despite their application by several groups, the

three different eQTL classes have never been mapped and

compared in one single study.

Different computational means can be used to detect the three

eQTL types defined above. Dynamic eQTL require mapping of

the expression changes (fold changes, slopes) observed at the

transition from one type to another ([8,11], Table 2, Methods

Section ‘‘Dynamic eQTL mapping’’). Conditional eQTL may be

detected through independently mapping eQTL in the various cell

types and then identifying such eQTL that were found in some,

but not all conditions. Such an approach requires defining two

thresholds: first a significance threshold (e.g. maximum p-value)

for calling eQTL that are active in one cell type and second, an

insignificance threshold (e.g. minimum p-value) for deciding that

the same eQTL is not active in other cell types. Note that both

thresholds are required and that they have to be sufficiently

different. Using just one threshold would lead to a situation where

all eQTL that are just above the threshold in one cell type and just

below the threshold in other cell types would be called

‘‘conditional’’ although the eQTL scores are very similar across

all conditions.

Author Summary

Complex physiological traits are affected through subtle
changes of molecular traits like gene expression in the
relevant tissues, which in turn are caused by genetic
variation. A genetic locus containing a sequence variation
affecting gene expression is called an expression quanti-
tative trait locus (eQTL). Understanding the tissue and cell
type specificity of eQTL effects is essential for revealing the
molecular mechanisms underlying disease phenotypes.
However, so far the cell-state dependence of eQTL is
poorly understood. In order to systematically assess the
importance of cell state-specific eQTL, we propose to
distinguish static, conditional and dynamic eQTL and
suggest strategies for mapping these eQTL classes. We
applied our framework to mouse gene expression data
from four hematopoietic stages and related cellular traits.
The different eQTL classes, although derived from the
same expression data, represent functionally distinct types
of eQTL. Importantly, conditional eQTL are well correlated
with relevant hematological traits. These findings empha-
size the condition specificity of many regulatory relation-
ships, even if the conditions under study are related. This
calls for due caution when transferring conclusions about
regulatory mechanisms across cell types or tissues. The
proposed classification will also help to unravel dynamic
behaviors in many other kinds of QTL data.

Dynamic eQTL
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Table 1. eQTL tissue specificity.

tissues proportion of specific eQTL ref cis/trans eQTL mapping strategy

liver, muscle, SAT, VAT, peripheral blood 93:6% [74] cis separate mappings, meta-analysis on non-blood
tissues

blood and LCL 44% [75] cis separate heritability analyses

T helper and regulatory T cells 37:5% (cis), 3% (trans) [76] cis and trans separate mappings

blood and adipose tissue 50% [77] cis single- and cross-tissue heritability estimates

LCL, skin and fat 29% [5] cis separate mappings

normal, uninvolved and lesional psoriatic skin 1{5% [78] cis separate mappings

liver, omental adipose and subcutaneous
adipose tissue

19%{28% [3] cis and trans separate mappings; specificity defined as the
fraction of eQTL occurring in at most 2 out of 3
tissues

LCL, heart, kidney, liver, lung, testes 48% [79] cis separate mappings; eQTL were selected to have a
strong effect

fibroblasts, LCL and T cells 79:5% [4] cis separate mappings

HSC, myeloid progenitor cells, erythroid
cells and myeloid cells

78% [10] cis and trans separate mappings, ANOVA including cell type
and interaction effects

PBMC and cortical brain tissue 74% [80] cis separate mappings

blood and adipose tissue 50% [81] cis separate mappings

Proportion of tissue-specific eQTL reported in different studies in mouse and human. We report the tissues/cell types that were analyzed, whether only local (i.e. cis)
eQTL or both local and distant eQTL were inferred. The last column describes whether eQTL mapping was conducted separately in each cell type or by including a tissue
factor into the analysis.
doi:10.1371/journal.pgen.1003514.t001

Figure 1. eQTL classification. Schematic representation of static, conditional and dynamic eQTL. For the sake of simplicity only two conditions are
considered, but the concept is extensible to any number of cell types. The top part of each panel shows in which condition the eQTL influences a
gene’s expression (A, B) or if it affects expression changes between cell types (C). The lower parts of the panels show exemplary mRNA expression
profiles of the gene in six samples. The genotype of the eQTL in each sample is indicated by the color, assuming homozygous diallelic markers. A A
static eQTL impacts expression in all cell types. The ranking of gene expressions per genotype is the same in all conditions, as is the slope of
expression change between cell types. B A conditional eQTL influences gene expression in only one of the two conditions. Thus, gene expression is a
function of genotype in one cell type but not in the other. The slopes of expression changes may or may not be dependent on the genotype at the
eQTL. C A dynamic eQTL drives expression changes between cell types. This implies that the slopes of expression changes between conditions are
dependent on the genotype at the eQTL.
doi:10.1371/journal.pgen.1003514.g001

Dynamic eQTL
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Here we propose a different approach that we termed

‘‘simultaneous mapping’’, because it simultaneously identifies

static and conditional eQTL and because it simultaneously uses

the expression data from all conditions (Table 2).

Simultaneous eQTL mapping
The goal of simultaneous eQTL mapping is to infer eQTL that

are specific for each of the cell types under study (conditional

eQTL) as well as static eQTL in one single analysis. Static eQTL

should lead to expression patterns that are similar across

conditions. Combining expression data from all conditions in a

single mapping therefore drastically increases the statistical power

for detecting static eQTL.

To this end, we combined gene expressions over all cell types

into one trait vector y (Figure 2). This resulted in a single matrix

containing the expression values of all genes and individuals across

all conditions. In order to get a matching genotype matrix, we

replicated the genotype matrix as many times as there are cell

types. Because not all individuals (mouse lines) were measured

under all conditions, we had to subset the genotype matrices to the

samples for which gene expression data was available. The

resulting matrices X1 to Xn were concatenated in order to obtain a

predictor matrix matching y. Finally, we added one new predictor

for each cell type indicating whether a given sample belongs to the

respective cell type. These additional variables allow to relate

eQTL to the cell types in which they are active.

Next, the eQTL mapping was conducted using Random Forests

(RF) [12], a multivariate machine learning technique that has been

successfully tested on and applied to a number of QTL studies

before [13–23] and that has been shown to outperform traditional

univariate mapping approaches on simulated and real data [24–

28]. RF learns decision trees based on bootstrap samples of the

data. Genetic markers are used as predictor variables and RF will

select markers if they are predictive for the expression of a given

gene. Thus, the selection frequency can be used as a measure for

the strength of an eQTL [25]. In case of static eQTL, a marker

will be predictive of expression irrespective of the cell type. Thus, it

will be predictive across the whole vector y. In the case of

conditional eQTL, the marker will be predictive on only a subset

of the samples, namely those corresponding to the cell type(s) in

which the eQTL is present. Because the cell type indicator

variables are part of the predictor matrix, RF can ‘‘split’’ the

samples on such indicator variable and subsequently identify

markers that are predictive for expression in the respective cell

type. In both cases (static and conditional) such markers will have

high selection frequencies, allowing them to be detected through

appropriate permutation tests (Methods).

In order to determine if a significant eQTL is static or

conditional we exploited interactions between markers and cell

type indicators. Using ANOVA we tested if the predictive value of

a marker depends on the cell type variable:

y~mzbxmzaczc(xmc)ze:

In this model, xm denotes the genotype vector of marker m, c
denotes the cell type factor variable with as many levels as there

are types, (xmc) denotes their interaction and e is a vector of

normally distributed errors. The interaction term reflects the

dependence of the eQTL on the respective cell type.

A static eQTL should not interact with the cell type variable

since its activity is ubiquitous and does not depend on the cell type

of the sample. On the other hand, conditional eQTL are active in

one or a subset of the measured conditions and thus will show a

significant interaction with the cell type in which they affect their

targets. In this case, the model including the interaction term

should explain the gene expression significantly better than a

reduced model containing only main effects. If this is the case, i.e.

if the False Discovery Rate (FDR) of the ANOVA is v0:1, we call

the eQTL ‘‘conditional’’. Subsequent testing of contrasts can then

identify the relevant cell types (Methods).

Overall, simultaneous eQTL mapping allows to discover static

and conditional eQTL in one single analysis, thus reducing the

multiple hypothesis testing problem as well as the computation

time and rendering the choice for an ‘‘insignificance’’ threshold

unnecessary. The approach of combining data over cell types also

increases the power to detect static eQTL. Dynamic eQTL cannot

be inferred with this approach since they are associated with a

different trait, namely relative expression changes between cell

Table 2. Overview of eQTL mapping methods.

Mapping method Trait Predictors

simultaneous mapping concatenated gene expression over all cell types genotypes, cell type indicators

single cell type mapping gene expression in one specific cell type genotypes

dynamic eQTL mapping gene expression differences between a pair of cell types genotypes

Overview of the traits and predictors of the eQTL mapping methods applied in this paper.
doi:10.1371/journal.pgen.1003514.t002

Figure 2. Simultaneous eQTL mapping. Schematic of simultaneous
eQTL mapping for two cell types. This approach combines the available
information from the two cell types (red and green) in one eQTL
analysis. To this end, the gene expressions measured in the different
conditions are combined into one vector y. Similarly, for each condition
the genotype matrix is subset to all samples for which there are
expression measurements in this cell type. The resulting two
submatrices X1 and X2 are concatenated into one genotype matrix.
In order to discriminate static and conditional eQTL, two additional
predictors indicating the cell type from which a sample was derived, are
added to the predictor matrix. The combined genotype and cell type
indicator matrix is used to find the model which best predicts gene
expression simultaneously in all conditions.
doi:10.1371/journal.pgen.1003514.g002

Dynamic eQTL
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types. Therefore, we analyzed dynamic eQTL in a separate

mapping of gene expression differences using the same RF

framework.

Mouse hematopoiesis data
Hematopoietic stem cell (HSC) differentiation is a prominent

example of a dynamic process that is heavily genetically regulated

[9,29–32]. This has been shown, among others, by analyzing

natural genetic variation between mouse recombinant inbred lines

exhibiting very different hematopoietic phenotypes [33,34]. One

of the best studied examples is the panel of BXD recombinant

inbred lines that were derived from crossing the C57BL/6 and

DBA/2 lines. We are using genome-wide mRNA expression levels

measured in 25 BXD strains in four cell types of HSC

differentiation with varying degrees of lineage commitment:

multipotent HSC with the potential for self-renewal, lineage

restricted erythroid-myeloid progenitor cells, and lineage commit-

ted erythroid as well as myeloid cells (cf. scheme in upper right

corner of Figure 3 and [10]).

We applied the above eQTL classification scheme to system-

atically search for genetic regions affecting gene expression

dynamics during hematopoiesis as well as the static and

conditional variation of expression in the different cell types.

Using the data from [10], we focused on three cell type transitions

during HSC differentiation: from stem to progenitor cells (S-P),

from progenitor to erythroid cells (P-E) as well as from progenitor

to myeloid cells (P-M). Prior to the analysis, we summarized the

mRNA expression measurements to the gene level by calculating

the median expression profiles across probes. After preprocessing

(Methods) we selected 849 markers and expression data of 14,724

genes in 22 to 24 BXD strains per cell type.

Frequencies of eQTL types
Our simultaneous eQTL mapping detected 3,916 significant

eQTL target gene pairs at an FDR of 0.1. Among those, 2,729

eQTL did not show a significant interaction with the cell type

indicator and thus constitute the class of static eQTL. We also

found 1,187 conditional eQTL. These eQTL have to fulfill two

conditions: (i) simultaneous mapping FDRv0:1 and (ii) FDR for

interaction between marker and cell type indicator v0:1. The

majority of conditional eQTL was active (significant) in only one

cell type (Figure 3). However, we also observed conditional eQTL

being active in two, three, or even four cell types. eQTL with four

significant cell type interactions arise if an eQTL is active in all cell

types, but with changing effect sizes. Hence, a conditional eQTL

active in four cell types is distinct from a static eQTL.

Figure 3. Number of cell types in which eQTL are active. The bars show the number of eQTL conditional in one, two, three or four cell types.
Results are obtained from post-hoc Wald tests in the linear model comprising the eQTL marker, the cell type and their interaction. Only models with a
significant marker - cell type interaction are considered. eQTL that are conditionally active in exactly one cell type are further classified by cell type (S -
stem, P - progenitor, E - erythroid and M - myeloid cells).
doi:10.1371/journal.pgen.1003514.g003

Dynamic eQTL
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Most of the eQTL that are conditional in exactly one cell type

(‘‘cell type-specific’’) occur in the more committed lineages (218 in

erythroid cells, 206 in myeloid cells, Figure 3). We find less eQTL

in the multipotent stem cells (176) and the smallest number of

eQTL (43) in progenitor cells, an observation that is consistent

with the original presentation of the data [10]. Likely, this reduced

number of eQTL is due to increased levels of noise in the data,

which in turn might be caused by different effects. First of all,

purification of the cell types using FACS is imperfect. Thus, the

observed expression levels actually reflect expression in a

heterogeneous mix of cells. Increased impurity would then

increase the level of noise and thus likely decrease the number

of eQTL being detected. Another explanation comes from the fact

that the progenitor cells are in a transient state. I.e., the dynamic

nature of these cells might induce additional heterogeneity, which

then also increases the noise and decreases the power to detect

eQTL.

In contrast to the large number of static and conditional eQTL,

we detected very few dynamic eQTL. At an FDR of 0.1 there were

six eQTL driving gene expression changes during the transition

from progenitor to erythroid cells and 66 eQTL for the transition

from progenitor to myeloid cells. Two of the eQTL in these two

groups are identical, i.e the same loci (both in cis) affect the same

target genes during both, the P-E and the P-M transition. These

targets are Gadd45gip1 and Lrrc51. We were not able to find any

dynamic eQTL in the transition from stem to progenitor cells.

Obviously, dynamic eQTL might overlap with conditional

eQTL (‘‘overlapping’’ means that the eQTL link the same locus-

target gene pair, Figure 4). To facilitate comparison of conditional

eQTL obtained with different mapping approaches (see Discus-

sion), eQTL that are detected in exactly one cell type (i.e. cell type-

specific eQTL) are shown as a subgroup of conditional eQTL. By

definition, there is no overlap between conditional and static

eQTL. As expected, none of the 70 dynamic eQTL overlap with

static eQTL, while 45 coincide with conditional eQTL. Intrigu-

ingly, 25 loci that influence the dynamics of gene expression

during the transition from one cell type to another (36% of all

dynamic eQTL) could not have been detected by the simultaneous

mapping, i.e. these eQTL did not overlap with eQTL from any

other class [8].

cis- versus trans-eQTL
An eQTL can either act locally (in cis) or on a distant gene (in

trans). That is, the target gene of a cis-eQTL is encoded in the

eQTL-region. A trans-eQTL refers to eQTL affecting a gene

encoded elsewhere in the genome. Such influence can only be

explained by trans-acting factors.

Around 9% (244) of the static eQTL are cis-eQTL (left-hand

side of Figure 5). It is noteworthy that the number of static and

conditional cis-eQTL is relatively similar, whereas we find

substantially more static than conditional trans-eQTL (Figure 5).

The statistical power for detecting static eQTL is much higher

than the power for detecting conditional eQTL in the framework

of simultaneous eQTL mapping. This is because additional

statistical power is needed for detecting significant differences

between the cell types. References [10] and [35], among others,

have shown that cis-eQTL are linked very strongly with their

target genes while the effects of trans-eQTL are often weaker and

several trans-eQTL are needed to explain the expression variation

of a distant target gene. Hence, the increased power in case of

static eQTL leads to an increased number of detectable trans-

eQTL, whereas cis-eQTL seem to be ‘‘saturated’’ already at lower

power. We confirmed this interpretation by varying the number of

samples considered in the analysis, which showed that increasing

the number of samples increased the number of detectable trans-

eQTL more than the number of detectable cis-eQTL (Figure S1).

This observation has two implications: first, the total number of cis-

eQTL seems to be limited in this mouse population and second, it

is possible to detect most cis-eQTL with a relatively small number

of strains.

Figure 4. Venn diagram for the overlap between static, conditional and dynamic eQTL. Static and conditional eQTL were obtained from
the simultaneous eQTL mapping (red circles). Cell type-specific eQTL (eQTL that are detected in exactly one cell type) are shown as a subgroup of
conditional eQTL (dark red circle). Dynamic eQTL were derived from mapping expression differences between pairs of cell types (black circle). Results
are summarized over the three cell type transitions that were analyzed (S-P, P-E, P-M).
doi:10.1371/journal.pgen.1003514.g004

Dynamic eQTL
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Dynamic eQTL comprise a much larger fraction of cis-eQTL

compared to simultaneous eQTL (44% versus 15:5%, Figure 5).

This is not surprising considering the fact that dynamic eQTL

depend on gene expression measurements in two cell types at a

time. They are thus more vulnerable to noise, but at the same time

they have to be inferred from only one fourth of the samples

available for the simultaneous mapping. Hence, we might only

catch the strongest effects here, which are often found in cis [35].

Comparison with the original analysis
A comparison of the results of our analysis with the original

results from [10] reveals considerable differences between both

studies (Figure 6), which are caused by the different mapping

approaches. First of all, the simultaneous mapping in combination

with RF is able to capture many more (probably small effect)

eQTL than a linear model [27,32,33]. However, since [10] based

their results on the number of probes having at least one significant

eQTL and we are reporting significant eQTL-target gene pairs,

and since the number of significant eQTL depends on the chosen

p-value or FDR thresholds, we decided to compare fractions of

eQTL classes instead of absolute numbers. We restricted the

comparison to the static and conditional eQTL classes, since there

is no equivalent to dynamic eQTL according to our definition in

the original paper.

Figure 5. Number of cis- and trans-eQTL in different eQTL classes. Numbers of significant eQTL with FDRv0:1 shown separately for cis-eQTL
(left) and trans-eQTL (right). Static, conditional and dynamic eQTL are distinguished (see labels at the bottom). Further, the figure discriminates
simultaneous and separate eQTL mappings, which represent alternative ways for distinguishing static and conditional eQTL. Simultaneous mapping
increases the statistical power leading to substantially more eQTL significant at the same level (FDRv0:1). Even though both, cis- and trans-eQTL are
increased when performing simultaneous mapping, trans-eQTL benefit more from the increase in power. See main text for exact definitions of the
various eQTL types.
doi:10.1371/journal.pgen.1003514.g005

Dynamic eQTL
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Our study detected a much larger fraction of static eQTL than

the original paper (70% versus 22%) owing to the larger power of

simultaneous mapping to capture this class of eQTL. Note that

such ratios will always depend on the power to map eQTL in the

corresponding classes with a given approach. Therefore, all ratios

that have been reported so far (including our own) suffer from

statistical biases. We cannot claim that any of them reflects

‘‘biological truth’’.

Furthermore, the fraction of trans-eQTL is larger in our study

compared to [10] (84% versus 45%, Figure 6, center). This can

again be explained by the ability of the simultaneous mapping with

RF to detect more small effect eQTL than a linear model.

In contrast, the fraction of cell type-specific eQTL from the four

hematopoietic cell types is rather consistent between the two

studies (Figure 6, rightmost bars). Interestingly, both studies detect

only very few regulatory loci in progenitor cells, pointing to a

general problem to detect specific regulatory relationships within

this cell type. As mentioned before, this might be due to issues with

the cell purification and the transient nature of this cell population.

Cell type-specific eQTL-rich regions
In order to show the conditionality of certain regulatory regions,

we selected loci containing a larger number of eQTL-target pairs

and tested their enrichment for conditional eQTL of a specific

(subset of) cell types. This analysis is independent of the fact

whether the given region has significantly more target genes than

expected by chance as long as there are enough targets to be tested

for conditionality. Therefore, we refer to these regions as ‘‘eQTL-

rich regions’’. The visualization of all cell type-specific and static

eQTL in an eQTL map (Figure 7) reveals putative cell type-

specific eQTL hotspots.

A Friedman test for differences in the distributions of contrast

test p-values of the targets of such eQTL-rich regions uncovered

some eQTL that have an effect on many genes in specific cell

types. An example of such a hotspot is a locus on chromosome 19

(52.3–55.2 Mb) affecting 31 stem cell-specific and 59 static target

genes. Even though only one third of the eQTL in this locus meet

the significance threshold of a stem cell-specific eQTL, there is a

clear tendency towards stem cell specificity for most of them

(Figure S3A, Friedman test p{valuev0:00001). The eQTL

contains the gene Shoc2 for which we also find a cis-eQTL. We

have previously shown that trans effects are often caused by genes

being themselves affected through a cis-eQTL [36], which makes

Shoc2 a putative causal gene in the region. The protein encoded by

this gene is a scaffold for a Ras/Raf interaction [37]. The Ras

pathway is important for hematopoietic differentiation processes

Figure 6. Comparison of eQTL analyses. The bars compare fractions of different eQTL classes obtained in the original study by [10] with our
study. The leftmost bars show fractions of static and conditional eQTL, fractions of cis- and trans-eQTL are shown in the center. The rightmost bars
compare fractions of cell type-specific eQTL in the four hematopoietic lineages (color scheme as in Figure 3).
doi:10.1371/journal.pgen.1003514.g006
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and frequently activated in hematopoietic malignancies [38].

However, we did not find any direct links between Shoc2 and its

putative target genes.

We found a second cell type-specific eQTL-rich region on

chromosome 2 (168.3–169.7 Mb, Friedman test p{valuev
0:00001), whose eQTL - target gene pairs are enriched for

myeloid as well as stem cell-specific eQTL (Figure S3B). One

possible regulator gene in this locus is Nfatc2 (nuclear factor of

activated T cells), which is gradually down-regulated at certain

stages during the differentiation from myeloid progenitors to

megakaryocytes and neutrophils [39]. Several of the eQTL target

genes are predicted to be functionally related to Nfatc2 [40] and

many of them (e.g. Ccdc99, Cdk2, Cdca8, Birc5) are involved in cell

cycle control. Indeed, it is known that Nfatc2 negatively regulates

the expression of Cdk4, which controls the entry and progression of

a cell in the cell cycle [41]. In line with that, Cdk4 links Nfatc2 and

its target genes in the STRING network. Although it has been

shown that Nfatc2 is not required to block cell cycle entry, it is

likely that it prevents HSCs from differentiation into neutrophils

and megakaryocytes via an effect on their proliferation [39,42].

The importance of Nfatc2 for both the HSC and the myeloid cells

is reflected by the lower cell type specificity p-values of its targets in

both types (Figure S3B) and corresponds well to Nfatc2 expression

levels that have been found to be high at the beginning of myeloid

differentiation, go down during differentiation and finally increase

again [39].

Functional relevance of eQTL classes
Static eQTL affect a gene’s expression in all cell types.

Therefore, we expect their target genes to have different, broader

biological functions than genes affected by non-static eQTL. An

example of such a static eQTL is an eQTL impacting on the

Figure 7. Simultaneous eQTL map. Each dot represents an eQTL - target gene pair, where physical marker positions are shown on the x-axis,
gene positions on the y-axis. Significant static eQTL (FDRv0:1) are shown in gray, cell type-specific eQTL (Bonferroni corrected p{valuev0:005 in
exactly one cell type) are shown in the color scheme of Figure 3. Red triangles indicate two cell type-specific eQTL-rich regions (eQRR).
doi:10.1371/journal.pgen.1003514.g007
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expression of Peroxiredoxin-2 (Prdx2) (Figure 8A), a gene involved

in the response to and protection of erythrocytes against oxidative

stress [43]. It is one of the most abundant proteins in erythrocytes

[44], which is reflected in the elevated expression levels in

erythroid cells compared to the other cell types. However, due to

the severe impact of damage from oxidative stress on hematopoi-

etic cell homeostasis in every cell type [45], Prdx2 expression levels

need to be controlled across all cell states. Since Prdx2 is encoded

at the same locus as the eQTL itself, the expression differences

between the eQTL alleles are probably due to a mutation in the

gene itself or in a cis-regulatory region.

Figure 8B shows the deacetylase Sirt2 as an example of a gene

being target of a conditional eQTL. The expression of Sirt2 is

strongly correlated with the alleles at the eQTL in erythroid cells,

but not the other cell types. We found the expression of Sirt2 to be

correlated with hematocrit levels in female mice (data not shown).

Thus, the eQTL indirectly affects hematocrit levels in mice

through the regulation of Sirt2. In line with its elevated expression

levels in myeloid cells, there is first evidence that Sirt2 might be

involved in myeloid differentiation [46].

Il12rb2 is an example of a gene being affected by a dynamic

eQTL. The gene encodes for a transmembrane protein constitut-

ing one subunit of the Interleukin 12 receptor complex. Together

with other colony-stimulating factors Interleukin 12 is involved in

myelo- as well as erythropoiesis [47,48]. We find a dynamic eQTL

for Il12rb2 in the differentiation from progenitor to myeloid cells,

which is characterized by almost constant expression levels for

strains carrying the D allele at the eQTL while mRNA levels

increase for individuals carrying the B allele. The expression

profiles of Il12rb2 in progenitor and myeloid cells indicate that the

eQTL might actually be conditional in both cell types with very

small and opposite effects. Hence, such switching allelic effects are

an example of a situation where dynamic eQTL mapping has

increased power compared to conditional mapping.

Intuitively, one expects that a significant allele-dependent

expression change from one to another cell type (i.e. a dynamic

eQTL) will coincide with significant, allele-dependent expression

in at least one of the two cell types involved in the transition (i.e. a

conditional eQTL). We often observed such coincidence (Figure 4)

and the cell cycle inhibitor Gadd45gip1 [49] is a particularly

interesting example (Figure 8D). Gadd45gip1 is one of only two

genes for which we found a dynamic eQTL affecting the transition

to both, erythroid and myeloid cells. The protein encoded by this

gene physically interacts with Gadd45b, which is involved in cell

growth arrest during myeloid cell differentiation [49,50]. Gadd45-

gip1 might support this function and arrest cell cycle in a particular

phase in myeloid precursor cells, which is a prerequisite for

differentiation [51]. Gadd45gip1 is up-regulated in stem and

Figure 8. Examples of static, conditional and dynamic eQTL. mRNA expression profiles of four exemplary genes over the four hematopoietic
cell types (S - stem cells, P - myeloid progenitor cells, E - erythroid cells, M - myeloid cells). The colors represent the genotype at the eQTL marker (blue
- B allele, red - D allele). Significant static eQTL are shown by a rectangle around the differentiation scheme, significant conditional and dynamic eQTL
by the black color of the respective cell type letter or cell type transition arrow. A, Prdx2 is affected by a static eQTL in all four cell types. B, Sirt2 is
influenced by a conditional eQTL in erythroid cells. C, the transition of Il12rb2 expression from progenitor to myeloid cells is driven by a dynamic
eQTL. The expression of Il12rb2 increases in samples carrying the B allele at the eQTL, while it remains constant in samples carrying the D allele. D, the
expression of Gadd45gip1 is conditionally affected in three of the four cell types (S, P and M) by an eQTL which at the same time also influences the
gene’s expression changes during the differentiation from progenitors to the erythroid and myeloid lineages.
doi:10.1371/journal.pgen.1003514.g008
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progenitor cells in samples carrying the D allele at the eQTL locus

(Figure 8D). The eQTL is in cis, suggesting that a mutation in the

Gadd45gip1 gene itself or in its promoter region leads to decreased

expression of the gene in individuals carrying the B allele.

Accordingly, down-regulation of Gadd45gip1 during the transition

to myeloid cells only occurs in samples carrying the D allele. This

leads to a dynamic eQTL from progenitor to myeloid cells.

Interestingly, individuals having high Gadd45gip1 levels in progen-

itor cells show a down-regulation of its expression during the

transition to erythroid cells, while the gene is up-regulated in

individuals with low Gadd45gip1 levels in progenitor cells. This

leads to an expression equilibration in erythroid cells and to a

dynamic eQTL. Thus, (i) compensatory feedback mechanisms can

‘‘revert’’ the effect of an eQTL and (ii) there seems to be a need to

tightly control Gadd45gip1 expression in erythroid cells.

In order to test more systematically whether cell type

independent (i.e. static) eQTL impact on different cellular

functions than conditional and dynamic eQTL, we assessed the

enrichment of functional categories among genes causing eQTL

and among genes being affected by eQTL using gene annotations

obtained from Gene Ontology (GO) Biological Process [52]. Such

GO enrichment analysis is non trivial for genetic regions causing

eQTL, because these regions typically contain multiple genes and

it is usually unknown which of them is the true causal gene [53].

Therefore, we decided to annotate each region with the GO terms

of all associated genes (see Methods). This rigorous solution avoids

false positive GO enrichment due to local clusters of functionally

related genes. The enrichment testing was conducted with the R

package topGO [54], which corrects for the nested structure of

GO. Since we found only six significant dynamic eQTL for the

differentiation towards erythroid cells, we did not perform GO

enrichment for this subset of eQTL. The top 10 most significantly

enriched GO terms for each eQTL mapping are reported in

Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12.

Figure 9 shows exemplary results of the enrichment distinguish-

ing cell type-specific, dynamic and static eQTL. Static eQTL are

enriched for very generic functional categories such as translation,

transcription and cell cycle regulation. As opposed to that,

conditional eQTL are enriched for hematopoiesis-related func-

tions: For example, stem cell eQTL targets are enriched for the

term ‘‘cell migration involved in sprouting angiogenesis’’, in which

HSCs play an important role [55]. Myeloid progenitor cell eQTL

are enriched for the generic immune term ‘‘myeloid leukocyte

mediated immunity’’, while conditional eQTL in myeloid cells are

enriched for very specific immune response terms like ‘‘defense

response to Gram-negative bacterium’’. We found several GO

terms related to MAP kinases enriched among eQTL in erythroid

and myeloid cells. This family of serine/threonine kinases plays a

crucial role in maintenance and differentiation of HSC, especially

during erythropoiesis [56].

Dynamic progenitor-myeloid eQTL are specifically enriched for

categories related to T cell selection. This could be an indirect

effect related to the role of macrophages and dendritic cells, which

belong to the myeloid lineage, in adaptive immunity. These cells

are involved in presenting antigens bound to the major

histocompatibility complex (MHC) to naive T cells in order to

Figure 9. GO enrichment for eQTL classes. We tested for the enrichment of GO categories among eQTL loci and target genes in the different
eQTL classes, separately for different cell types and transitions. Examples of enriched functional categories for cell type-specific and dynamic eQTL are
shown next to the corresponding cell types or cell type transitions. Important GO categories that were enriched in static eQTL and their targets are
shown outside the box. Terms that are significantly enriched (pv0:01) among eQTL loci are shown in italic, GO categories enriched among eQTL
targets in regular font. See Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 for a list of the top significant GO terms of each mapping.
doi:10.1371/journal.pgen.1003514.g009
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activate or suppress these cells [57]. Accordingly, we find MHC

coding genes among the dynamic eQTL targets. This analysis

shows that static, conditional, and dynamic eQTL affect

functionally distinct classes of genes and it therefore underlines

the need to distinguish these types of eQTL.

Improving the understanding of physiological traits
It has been suggested that eQTL might help better understand-

ing the molecular mechanisms underlying the variation of

physiological traits (i.e. causing ‘‘physiological QTL’’). This notion

is based on the observation that expression variation is underlying

the variation of many physiological traits [7]. Indeed, eQTL

studies have already demonstrated their value for the prioritization

of disease associated SNPs [3,58,59]. Moreover, some of these

studies have shown that there exists an association between the

disease and the tissue in which the eQTL was found [5]. These

findings suggest that knowledge about the eQTL class and (in the

case of conditional and dynamic eQTL) the tissues in which it is

detected might further improve our understanding of the

molecular mechanisms causing the disease symptoms.

In order to investigate the impact of eQTL conditionality on

physiological trait QTL, we analyzed the representation of

different eQTL classes among QTL affecting hematological

phenotypes (downloaded from www.genenetwork.org [60]). Out

of 91 hematological phenotypes available, we selected 13 traits for

which we found at least one significant QTL (FDRv0:1) based

on at least 15 BXD strains. In total, we found 17 QTL associated

with those 13 physiological traits and further investigated all 15 of

those with at least one significant eQTL linking to the

corresponding QTL region (Tables S13, S14, S15, S16, S17,

S18, S19, S20, S21, S22, S23, S24, S25, S26, S27). One QTL

affected two very similar traits (‘‘transferrin saturation of males and

females’’ and ‘‘transferrin saturation of females’’). Therefore, we

counted it as one QTL in all subsequent analyses.

We found that the eQTL linking to these regions were enriched

for cis-eQTL (64% of the QTL and 26% of all regions contain a

cis-eQTL), which was associated with an increased number of

conditional eQTL (41% of all eQTL - target gene pairs in these

loci were conditional, compared to 31% overall). The cell types in

which these cis-eQTL were active, were often related to the

respective cellular phenotype, suggesting that indeed these cis-

eQTL are underlying the physiological changes. For example, we

found five cis-eQTL in a region affecting hemoglobin levels in

female mice (Table S13). Based on their known function, only two

of the respective genes were plausible candidates for actually

affecting hemoglobin levels: E2f1 and Asxl1 [61,62], where the

latter apparently has only very mild effects. Consistent with this,

E2f1 was the only gene among those five having a specific,

conditional cis-eQTL in erythroid precursors, the cell type most

closely related to the hemoglobin phenotype. Thus, the consider-

ation of cell-type specific eQTL facilitates the identification of

plausible candidate genes.

Discussion

Distinguishing static and non-static eQTL
The difference between static and non-static eQTL was very

striking in our analysis. Due to the increased statistical power

resulting from the simultaneous mapping we could identify

substantially more static than non-static eQTL. Further, static

and non-static eQTL differed substantially with respect to the

functions of the involved genes, regarding both regulators (i.e. loci)

and target genes. Whereas static eQTL involve mostly genes with

generic, unspecific functions, non-static eQTL affect more cell

type-specific pathways.

We found relatively few dynamic eQTL, ranging from zero

(stem to progenitor cells) to 66 (progenitor to myeloid cells) per cell

type transition. This is not very surprising given the fact that

expression differences are prone to increased noise since they

‘‘inherit’’ the independent errors of expression experiments in two

different conditions [63]. We would also expect a large overlap

between conditional and dynamic eQTL. If there is a dependency

between gene expression levels and genotype in one but not

another cell type, then the magnitude of expression change

between these cell types (i.e. the slope) should be genotype-

dependent as well. However, we only find 45 eQTL as belonging

to both, the conditional and the dynamic class, while 1,142 and 25

eQTL are exclusively conditional and dynamic, respectively.

One reason for this observation is the reduced power of the

dynamic mapping leading to a failure to replicate conditional

eQTL. Intriguingly, we also detect dynamic eQTL that we do not

find among the conditional eQTL. Thus, there are modes of

expression variation that are detectable with higher power when

mapping expression differences instead of absolute expression

levels. For example, we find eQTL with swapping effects on

transcript levels (such as Il12rb2, Figure 8C) among 10 out of the

25 eQTL-target gene pairs that are unique in the dynamic class.

This emphasizes the need to include different expression traits (like

expression differences) into a comprehensive eQTL analysis in

order to detect a wide spectrum of eQTL.

Another notable feature of dynamic eQTL mapping is its ability

to mitigate systematic measurement errors affecting all cell types in

a similar way. In this respect, a score for relative expression change

can still be meaningful even though the absolute expression levels

were not [63].

Alternative eQTL mapping approaches
The approach we proposed for mapping different classes of

eQTL is only one of a palette of possible strategies. Since the focus

of the present work was on the introduction of a comprehensive,

coherent and functional eQTL classification, in particular the

discussion of each classes’ characteristics and its implications on

biological interpretation of eQTL results, we did not comprehen-

sively compare different approaches for eQTL mapping. Howev-

er, we still tested several variants, in particular the aggregation of

static and conditional eQTL from separate mappings in every

condition, which is the most widely used approach for comparative

eQTL studies in the literature (see references in Table 1).

Comparative eQTL studies have so far mostly mapped eQTL

separately in each cell type, subsequently classifying eQTL as

‘‘static’’ if they are significant in all mappings, otherwise as ‘‘cell

type-specific’’ (Table 1). This approach leads to a situation very

different from our simultaneous mapping: in separate mappings an

eQTL has to be significant independently in each cell type in order

to be classified as static. In other words, large power is needed to

detect static eQTL. As opposed to that, in our approach the eQTL

has to be significantly dependent on the cell type in order to be

classified as conditional. Therefore, simultaneous mapping is more

conservative with respect to calling conditional eQTL. As a

consequence, eQTL obtained with these two mapping strategies

overlap only partially (Figure S2), which is mostly owed to the fact

that simultaneous eQTL mapping detects many more significant

eQTL, the largest fraction of which are static.

The advantage of the simultaneous mapping with Random

Forests (combined with an ANOVA to disentangle conditional

eQTL) instead of doing an ANOVA only is its ability to detect

non-linear relationships. Therefore, the simultaneous mapping is
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able to detect a larger range of regulatory genetic variation than

the simple linear model.

The strategy we followed for mapping dynamic eQTL has an

obvious counterpart for static eQTL, namely the mapping of

mean expression levels over all conditions. However, when

applying this approach to the four hematopoietic cell types, we

noticed that a large fraction of the resulting static eQTL were in

fact conditional eQTL in one or several types. The erroneous

classification resulted from the fact that a strong cell type-specific

effect may dominate mean expression levels. Thus, this approach

is prone to detect false positive static eQTL and in our opinion is

not well suited to classify static eQTL.

Consequences of cell type specificity for biomedical
studies

The fact that we find 30% of all simultaneous eQTL to be

conditional for one or several cell types emphasizes the condition

specificity of many regulatory relationships, even if the conditions

under study are very related. Note that simultaneous mapping is

conservative for calling conditional eQTL and the true fraction of

conditional eQTL is most likely even higher. In addition, we find

that the number of conditional eQTL differs between cell types,

partly due to differences in sample size and tissue impurity, but

maybe also due to functional differences. The particular impor-

tance of conditional eQTL for cell type-specific molecular traits

was further demonstrated by a GO enrichment analysis of eQTL

and their targets in different eQTL classes. Moreover, an

integration of eQTL results with QTL affecting hematological

phenotypes revealed that a large fraction of these physiological

QTL conditionally affect the expression of genes in phenotype-

related cell types and are enriched for cis-eQTL.

It has previously been shown that eQTL causing variation of

disease traits are often cis-eQTL [59]. Moreover, we and others

have demonstrated that genes causing a trans-eQTL, i.e. affecting

the expression of a distant target gene, often also exhibit a cis-

eQTL affecting their own expression [9,36]. Our analysis of the

BXD mice confirms that genes with cis-eQTL are more likely

causal. Beyond that, our results underscore the biomedical

relevance of the distinction of different eQTL classes that we

propose here, especially the impact of conditional eQTL on cell

type-specific molecular and physiological phenotypes [58]. Since

genetic variation affecting physiological phenotypes is often linked

to conditional eQTL, the detection of the molecular mechanism

underlying the QTL association critically relies on the cell type in

which the eQTL study is conducted.

These findings call for due caution when drawing conclusions

about regulatory mechanisms in one condition based on results

from another condition [58], although other groups have claimed

the innocuousness of such an approach [59]. A typical example for

such a propagation of results would be the use of molecular

mechanisms derived from eQTL studies in blood samples to

explain disease mechanisms in other tissues like the brain [64].

The use of eQTL results for the elucidation of disease etiology is

further complicated by the fact that the onset of complex diseases

often involves pathways in several tissues.

Increasing statistical power by simultaneous mapping and

distinguishing static, conditional and dynamic eQTL are impor-

tant steps towards accounting for tissue and cell-type specificity,

which is key for elucidating the molecular alterations underlying

changes of complex physiological and disease traits [7].

Generalization of the concepts
The classification of regulatory genetic variation is of course not

limited to expression phenotypes. Almost all traits under genetic

control (such as protein abundance, phosphorylation, alternative

splicing and disease phenotypes, to name but a few) are

dynamically regulated and depend on the specific context of the

cell. Therefore, our classification scheme will be readily applicable

to many other QTL studies and has the potential to unravel the

dynamics underlying many biological processes. The simultaneous

mapping will be beneficial to investigate different kinds of QTL

across conditions and might even be extended (after appropriate

data normalization) to comparative analyses across different

datasets in the same organism.

Materials and Methods

Data processing
Preprocessed gene expression data of [10] were downloaded

from GeneNetwork [60] (http://www.genenetwork.org, accession

numbers GN144–151). The preprocessing comprised the log2

transformation and subsequent joint quantile normalization of

expression data from all four cell types (HSCs, myeloid

progenitors, erythroid and myeloid cells) as well as a batch

correction. We mapped Illumina probe IDs to Ensembl gene IDs

using mapping information from GeneNetwork and the R [65]

biomaRt package [66] and summarized expression measurements

for each gene by calculating the median expression profile over all

its probes. Finally, we discarded all genes with a standard deviation

of less than 0.1 in all four cell types, resulting in expression

measurements of 14,724 genes on 22 to 24 BXD strains,

depending on the cell type.

Genotype information of the BXD strains was also downloaded

from GeneNetwork. Since we had expression information on only

25 strains, some neighboring genetic markers in the genotype

matrix contained identical information (i.e. they were perfectly

correlated). It is impossible to distinguish these markers with

respect to their association to gene expression traits in the eQTL

mapping. Therefore, we merged neighboring markers with

identical genotype profiles across strains, which resulted in

genotype information on 849 distinct markers or marker intervals

across the mouse genome with a median interval size of 1.5 Mb

(min: 4.6 kb, max: 32.1 Mb).

Simultaneous eQTL mapping
To carry out eQTL mapping in all cell types simultaneously,

each gene’s expression vectors from all conditions are concate-

nated to form a new trait vector y (Figure 2). Note that this vector

might contain several entries for the same sample, each from a

different cell type. Accordingly, genotype vectors belonging to

each of the samples in each cell type are combined into a predictor

matrix X. Since we would like to distinguish static and conditional

eQTL, we need to add additional predictors indicating whether a

sample was measured in a certain cell type or not. Therefore, X is

extended by as many dummy variables as there are cell types.

We use Random Forests (RF) [12] for mapping eQTL. RF is a

machine learning approach based on an ensemble of decision

trees, each predicting gene expression for a different bootstrap

sample of the data by testing different subsets of predictors at each

split. We use the selection frequency of each predictor across the

forest as a measure of its importance for predicting mRNA levels.

A marker that is used more often than expected by chance is an

eQTL of the corresponding gene. p-values are calculated using a

permutation approach, see Subsection ‘‘p-value calculation’’.

Discrimination of static and conditional eQTL
For each significant eQTL - target gene pair (FDRv0:1), we fit

two linear models to the gene expression: a full model containing
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the eQTL genotype, a cell type factor variable with as many levels

as there are cell types and an interaction term between the two

variables; and a reduced model containing only the two main

effects without their interaction. If the full model explains the

gene expression significantly better than the reduced one

(ANOVA FDRv0:1), we call the eQTL ‘‘conditional’’. The cell

types in which the eQTL is active are found with post-hoc Wald tests

([67], chapter 1.3.3). The resulting p-values are corrected for multiple

hypothesis testing using the stringent Bonferroni correction [68].

In principle, the second step of the simultaneous eQTL

mapping, the distinction between conditional and static eQTL,

could be directly resolved in the primary eQTL mapping step.

The RF framework allows to extract epistatic interactions between

predictors directly from the trees [16,69–71]. However, this

requires a large enough sample size in order to grow deep trees

where different combinations of variables will be used for splitting

in the same branch. When trying this line of action on the

hematopoiesis data, it became clear that the small sample size (22

to 24 samples per cell type) is prohibitive for this step, leading to

rather unstable results. Hence, we used the remedy of applying an

ANOVA to filter the conditional eQTL out of the set of

simultaneous eQTL. We believe that with the improvements

made on costs and quality of large sequencing studies and the

further increase in computing power this approach will become

feasible very soon.

Dynamic eQTL mapping
For mapping genetic loci driving expression dynamics between

two cell types, we create a new trait vector containing the sample-

wise expression differences of a given gene between the pair of cell

types. The predictor matrix is made up of the marker genotype

vectors of each sample for which expression changes could be

inferred. We then conduct the eQTL mapping using RF as

described for simultaneous eQTL in Subsection ‘‘Simultaneous

eQTL mapping’’.

p-value calculation
We use the RF selection frequency (SF) as a measure of the

impact of each genetic locus on gene expression. We have

previously shown that this importance measure outperforms classic

measures like the permutation importance in eQTL mapping [25].

However, the raw SF itself is not an absolute indicator of the

importance of each predictor since the SF is biased for certain

markers even under the null hypothesis [25].

A simple solution to this problem is the calculation of p-values

based on a permutation approach: The expression vector is

permuted many times. For each permutation, the eQTL mapping

with the calculation of SFs is repeated. We assume that under the

null hypothesis of no correlation between a given marker and a

gene’s expression, the distribution of SFs of that marker is the

same for all genes. Hence, we pool SFs of each marker over all

genes and all permutations in order to obtain a specific null

distribution of SFs for each marker. Finally, the p-values of an

eQTL - target gene pair are calculated as the fraction of

permutation SFs exceeding the observed SF.

The bottleneck of this approach is the run-time of the RF,

strongly restricting the number of permutations, which in turn

results in a rather low resolution of the eQTL p-values, even after

pooling SFs over genes. In order to overcome this problem, we

decided to combine the permutation procedure with an analytical p-

value calculation. After pooling SFs over a small number of

permutations (10 in all our eQTL mappings), we fit an exponential

function to the top one percent of the SF distribution. Consequently,

we can calculate more precise p-values for the tail of the observed

SF distribution, which contains the interesting eQTL - target gene

pairs. The remaining 99% of the p-values are still obtained from the

empirical SF distribution as described before. FDR is calculated

with the procedure of Benjamini and Hochberg [72].

GO enrichment analysis
We tested for the enrichment of certain biological functions

among eQTL regions and target genes. We used Gene Ontology

(GO) Biological Process [52] gene annotation, which we retrieved

from the Ensembl database release 66 (www.ensembl.org) via the

biomaRt [66] interface of R. eQTL loci were annotated with the

functions of all genes encoded in the locus or being closer to this

locus than to any other (if not more than 1 cM away from it). This

approach ensures a conservative evaluation of functional enrich-

ment and prevents a bias in the results due to clusters of

functionally related genes within a locus. The GO enrichment

testing was conducted using topGO [73] with the ‘‘weight’’

algorithm (R package topGO [54]). Although topGO already

accounts to some extent for multiple hypothesis testing, we further

calculated an empirical FDR for each term based on a shuffled

gene/eQTL region to GO term assignment, preserving the

number of terms assigned to each gene/region. We call all terms

with an FDRv0:01 significant.

Supporting Information

Figure S1 Number of eQTL and proportion of cis-eQTL as a

function of sample size. We sub-sampled different numbers of

strains in the simultaneous mapping (keeping ratios between cell

types constant) and repeated the eQTL mapping. Panel A shows the

number of eQTL in different classes as a function of sample size,

while panel B shows the fraction of cis-eQTL among these. In order

to detect any cell type-specific eQTL a minimum sample size larger

than 20 is required. The proportion of cis-eQTL decreases with

increasing sample size and is smallest for static eQTL, suggesting

larger effect sizes for cis-eQTL compared to trans-eQTL.

(PDF)

Figure S2 Comparison of different strategies for finding eQTL.

We compared the outcomes of three eQTL mapping approaches that

are eligible to all or a subset of the eQTL classes. The Venn diagram

shows the overlap between all the eQTL that were called significant

in any of the mappings we used the method for. In particular,

simultaneous eQTL are all eQTL with an FDRv0:1 in the

simultaneous mapping regardless of the ANOVA result. Dynamic

eQTL had to be significant in at least one of the three cell type

transitions (S-P, P-E, P-M) while cell type-specific eQTL were

required to have an FDRv0:1 in at least one of the four cell types.

(PDF)

Figure S3 Distribution of contrast test p-values for cell type-

specific eQTL hotspots. eQTL hotspots might affect cell type-

specific processes. This is shown for two eQTL-rich regions on

chromosomes 19 (A) and 2 (B), respectively. Colors indicate

hematopoietic cell types as in Figure 3. Overall, the stem (in A)

and stem and myeloid cell (in B) contrast test p-values are much

smaller than those for the other cell types, indicating that the

marker locus is associated with the expression of genes involved in

processes specific for the given cell type (p-values are shown in

{ log10 scale on the y-axis). The significance of the differences in

contrast test p-values was assessed with Friedman’s test, p-values

are indicated in the top left corners.

(PDF)

Table S1 HSC specific eQTL targets.

(PDF)
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Table S2 Progenitor specific eQTL targets.

(PDF)

Table S3 Erythroid specific eQTL targets.

(PDF)

Table S4 Myeloid specific eQTL targets.

(PDF)

Table S5 Dynamic progenitor to myeloid differentiation eQTL

targets.

(PDF)

Table S6 Static eQTL targets.

(PDF)

Table S7 HSC specific eQTL markers.

(PDF)

Table S8 Progenitor specific eQTL markers.

(PDF)

Table S9 Erythroid specific eQTL markers.

(PDF)

Table S10 Myeloid specific eQTL markers.

(PDF)

Table S11 Dynamic progenitor to myeloid differentiation

specific eQTL markers.

(PDF)

Table S12 Static eQTL markers.

(PDF)

Table S13 eQTL - target genes associated to the QTL of

hemoglobin in females [g/dL].

(PDF)

Table S14 eQTL - target genes associated to the QTL of

progenitor cell proliferation in young mice-effect of TGF-beta2

(0.1 ng/ml) on the proliferation of lin-Sca1++kit+ cells

½% of ctrl without TGF{beta2�.
(PDF)

Table S15 eQTL - target genes associated to the QTL of

proliferative capacity in vitro of bone marrow stem and progenitor

cells (lin-Sca1++ c-kit+ cells) in response to KL, flt3L and TPO

[number of cells].

(PDF)

Table S16 eQTL - target genes associated to the QTL of

transferrin saturation of males and females ½%�.
(PDF)

Table S17 eQTL - target genes associated to the QTL of

transferrin saturation of females ½%�.
(PDF)

Table S18 eQTL - target genes associated to the QTL of

hemoglobin of 120-day-old females fed 270 ppm iron diet ½mg=dl�.
(PDF)

Table S19 eQTL - target genes associated to the QTL of

hemoglobin of 120-day-old females fed 270 ppm iron diet ½mg=dl�.
(PDF)

Table S20 eQTL - target genes associated to the QTL of T cell

receptor expression, V-gamma-1 positive, V-gamma-4 positive, %
of total gamma-delta intestinal intraepithelial lymphocytes ½%�.
(PDF)

Table S21 eQTL - target genes associated to the QTL of T cell

receptor expression, V-gamma-7 positive and V-gamma-4]

positive % of total gamma-delta intestinal intraepithelial lympho-

cytes ½%�.
(PDF)

Table S22 eQTL - target genes associated to the QTL of T cell

receptor expression, V-gamma-7 positive and V-gamma-4]

positive % of total gamma-delta intestinal intraepithelial lympho-

cytes ½%�.
(PDF)

Table S23 eQTL - target genes associated to the QTL of T cell

receptor expression, V-gamma-7 positive, Vgamma-4 negative, %
of total gamma-delta intestinal intraepithelial lymphocytes ½%�.
(PDF)

Table S24 eQTL - target genes associated to the QTL of T cell

receptor expression, V-gamma-7 positive, Vgamma-4 negative, %
of total gamma-delta intestinal intraepithelial lymphocytes ½%�.
(PDF)

Table S25 eQTL - target genes associated to the QTL of

hematocrit of 120-day-old males and females fed 3 ppm iron diet

½% packed red blood cells�.
(PDF)

Table S26 eQTL - target genes associated to the QTL of thymic

T-cell response to anti-CD3-induced proliferation.

(PDF)

Table S27 eQTL - target genes associated to the QTL of iron

level of plasma of 120-day male and female mice fed 3 ppm iron

diet ½mg=dl�.
(PDF)
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