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Abstract: Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly.
No universally effective treatments exist for atrophic or “dry” AMD, which results from loss of the
retinal pigment epithelium (RPE) and photoreceptors and accounts for ≈80% of all AMD patients.
Prior studies provide evidence for the involvement of mitochondrial dysfunction in AMD pathology.
This study used induced pluripotent stem cell (iPSC) RPE derived from five AMD patients to test
the efficacy of three drugs (AICAR (5-Aminoimidazole-4-carboxamide ribonucleotide), Metformin,
trehalose) that target key processes in maintaining optimal mitochondrial function. The patient iPSC-
RPE lines were used in a proof-of-concept drug screen, utilizing an analysis of RPE mitochondrial
function following acute and extended drug exposure. Results show considerable variability in drug
response across patient cell lines, supporting the need for a personalized medicine approach for
treating AMD. Furthermore, our results demonstrate the feasibility of using iPSC-RPE from AMD
patients to develop a personalized drug treatment regime and provide a roadmap for the future
clinical management of AMD.

Keywords: human-induced pluripotent stem cells; retinal pigment epithelium; age-related macular
degeneration; personalized drug testing

1. Introduction

Age-related macular degeneration (AMD) is the leading cause of blindness in the
elderly, affecting approximately more than 196 million people worldwide [1]. AMD is
a degenerative process that affects the macula, a small area at the center of the retina,
leading to progressive, irreversible loss of central vision. As a result, AMD patients find it
difficult to perform daily tasks, such as recognizing faces, reading, or driving. There are two
clinically distinct forms of the disease: the neovascular form or “wet AMD”, resulting from
abnormal growth of blood vessels into the retina, and the atrophic form or “dry AMD”,
resulting from loss of the retinal pigment epithelium (RPE) and photoreceptors. For wet
AMD, several therapeutic interventions have been successful in attenuating or reversing
disease symptoms. However, for dry AMD, which accounts for ≈80% of all AMD patients,
there are currently no effective treatments.

The RPE is a pigmented cell monolayer between the retina and the outer retina blood
supply known as the choroid. The RPE cell layer fulfills many key functions in the eye,
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including phagocytosis of shed photoreceptor outer segments, transport of nutrients from
the choroid to the outer retina, and the secretion of factors that are crucial for the health
and structural integrity of the retina and choroid [2]. While the mechanism responsible
for AMD is not completely defined, studies of RPE from human donors with AMD have
reported significant mitochondrial (mt) defects, including decreased mt mass, decreased
content of electron transport chain proteins, and increased mt DNA damage [3–7]. In
RPE cultured from donors with AMD, reduced oxidative phosphorylation was observed
compared to RPE from non-diseased donors [8,9]. Since the RPE obtains most of its energy
from mitochondria [10], disruptions in mt function and lower energy production could
cause RPE cell death. Notably, the reported mt defects in AMD RPE occur early in the
disease, before vision loss occurs. Therefore, identifying compounds that preserve or
restore RPE mt function is likely an effective strategy for protecting the RPE from damage
and preventing disease progression.

Although there is currently no universally effective treatment for dry AMD, several
therapeutic approaches against this form of AMD have been tested in clinical trials. The
most well-known clinical trial is the Age-Related Eye Disease Study (AREDS), which tested
the efficacy of a nutritional supplement composed of high doses of vitamins plus the
minerals copper and zinc to reduce disease progression [11]. The treatment effect was
modest, as only≈25% of patients showed reduced AMD progression [12]. Similar to reports
for patients in the clinical trials, in vitro studies using primary and induced pluripotent
stem cell (iPSC)-RPE cultured from AMD donors have shown significant variability and
heterogeneity in the responses of individual cell lines after exposure to drugs [13–17]. This
variation may arise from multiple etiologies proposed for AMD initiation and progression
in the patient population [18] and highlights that a more personalized approach is required
to match the optimal intervention to the patient-specific defect that is causing their disease.

There are several advantages of using iPSC-RPE for drug testing compared with other
model systems. Animal models provide an opportunity to study how drugs that disrupt
specific pathways affect retinal function. However, no animal model faithfully replicates
the cardinal features of AMD, such as degeneration of the macula, which is a structure
found only in primates. Primary RPE cultures have revealed important information about
disease mechanisms [8,9] and have been used in drug testing [13,14]. Importantly, they
cannot be isolated from living individuals. RPE made from iPSCs derived from multiple
somatic cell sources enables the generation of patient-specific iPSC-RPE. The potential for
utilizing iPSC-derived cells for drug screening was immediately recognized when this
technology was developed [19]. iPSCs can provide an almost inexhaustible supply of cells
to conduct extensive screening protocols where primary cells are unavailable or cannot
be cultured in sufficient quantities. iPSCs can also be generated from a clinically defined
population, thereby expanding the potential for drug discovery and drug screening projects
that were not previously possible.

The focus of this study is to demonstrate the use of iPSC-RPE as a platform for
identifying drugs that help maintain optimal mt function. We selected three drugs (AICAR,
Metformin, and trehalose) that target pathways related to energy metabolism, mt biogenesis,
and elimination of damaged mitochondria. AICAR (5-Aminoimidazole-4-carboxamide
ribonucleotide) is an analog of adenosine monophosphate (AMP) that stimulates AMP-
activated protein kinase (AMPK) [20] and subsequently induces mt biogenesis. Metformin,
a drug that has been used to treat type 2 diabetes, is also reported to activate AMPK
activity [21]. The naturally occurring sugar, trehalose, activates autophagy, which is a
degradative process that eliminates defective organelles, including mitochondria [22].

Using these drugs, we tested the framework for a personalized medicine approach
to match potential treatments to individuals with AMD. We generated iPSC-RPE from
biopsies of conjunctival cells taken from five patients diagnosed with AMD, each charac-
terized for the severity of the disease and genotyped for two high-risk single nucleotide
polymorphisms (SNPs) associated with AMD. Then, the patient iPSC-RPE lines were used
in a proof-of-concept in vitro drug screen, analyzing RPE mt function following acute
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and extended drug exposure. Our data suggest that the patient-specific iPSC-RPE model
provides a robust tool to assess mt-targeted drug therapies for AMD.

2. Results
2.1. Proposed Drug Screening Approach to Determine Patient-Specific Treatment for AMD

Figure 1 outlines the workflow required to determine the individualized response to
drugs aimed at improving mt function. This process begins by obtaining somatic tissue
from AMD patients, deriving patient-specific iPSC lines, differentiating iPSC-RPE, and then
subsequent metabolic analysis after exposure to selected compounds. We have previously
described methods for obtaining and culturing conjunctival cells for iPSC reprogramming
and the generation of iPSC-RPE in studies using eyes from deceased humans (donor iPSC-
RPE) obtained from the Lions Gift of Sight [23,24]. In this study, we have adapted this
procedure to generate iPSC-RPE from patients with AMD (patient iPSC-RPE) for use in
drug screening. Clinical translation of information from in vitro studies will assist in the
development of personalized treatment regimens for each patient.
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Figure 1. Pathway to precision medicine for patients with age-related macular degeneration. Con-
junctival biopsies from patients in the AMD clinic provide somatic cells for patient-specific iPSC-
line derivation and differentiation of iPSC-RPE for testing drugs to restore or protect mitochondrial
function and provide clinical benefit. Dark gray arrows indicate steps included in the current study.
Light gray arrows represent future steps in personalized treatment.

2.2. Characterization of iPSC-RPE Cultures Derived from AMD Patients

For this study, individual iPSC lines were generated from five patients ranging in
age from 63 to 84 years. One of the patients in this study exhibited the early stages of
AMD (AREDS category 2) at the time of tissue collection. Three patients scored AREDS3,
indicating intermediate disease, and one was at the advanced stage of disease (AREDS4) at
the time of biopsy. Four out of five patients had at least one high risk allele for Complement
Factor H (CFH) (Y402H SNP), and five out of five had at least one high risk allele for
age-related maculopathy susceptibility 2 (ARMS2) (A69S SNP). The demographics of the
patients and the iPSC lines generated for this study are shown in Table 1.
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Table 1. Patient iPSC-RPE lines and donor demographics.

iPSC-RPE
Line ID Age a/Gender b Disease Stage c CFH d/ARMS2 e

Genotype
Figures Using Data from

Specific Lines

Pt.A-1A3 + 84/F AREDS3 CT/GT 2C-E, 3B-C, 5, 6
Pt.A-1A4 + 84/F AREDS3 CT/GT 2C-D, 3B-C, 5, 6

Pt.B-1B4 76/F AREDS4 CC/TT 2B-D, 3B-C, 5, 6
Pt.C-2 # 65/M AREDS3 CC/TT 2C-D, 3B-C, 5, 6
Pt.C-3 # 65/M AREDS3 CC/TT 2A,C-D, 3B-C, 5, 6
Pt.D-1 76/F AREDS3 CC/GT 2C-D, 3B-C, 5, 6
Pt.E-3 63/F AREDS2 TT/GT 2C-D, 3B-C, 5, 6

+ Lines derived from the same patient. # Lines derived from the same patient. a Age of patient, in years, from
whose conjunctival cells were used to generate iPSC-RPE. b Gender of patient. F = female, M = male. c AREDS
System used to evaluate the stage of AMD in biopsy donor. AREDS category 2 = early AMD, AREDS category
3 = intermediate AMD, AREDS category 4 = advanced-stage AMD [23]. d Complement Factor H (CFH) genotype
for rs1061170; low risk = TT, high risk = CT and CC. e Age-related maculopathy susceptibility 2 (ARMS2) genotype
for rs10490924; low risk = GG, high risk = GT and TT.

Our group and others have demonstrated that iPSC-RPE lines recapitulate cardinal
characteristics of native RPE [15,16,23–25]. Confluent patient-specific iPSC-RPE exhibited a
pigmented cobblestone appearance (Figure 2A). Confocal immunofluorescent imaging of
cells grown on transwells showed they attain correct polarization and form tight junctions
(Figure 2B). Furthermore, these cells secrete pigment epithelium-derived factor (PEDF)
preferentially to the apical side of the monolayer (1.5-fold higher) and vascular endothelial
growth factor-A (VEGF-A) preferentially to the basolateral side (1.5-fold higher) (Figure 2C).
Results from Western immunoblotting show the iPSC-RPE lines express proteins associated
with RPE (RPE65, cellular retinaldehyde binding protein CRALBP), polarity (Na, K ATPase,
Ezrin), and epithelial cells (Keratin 18) (Figure 2D). Cultures of patient-specific iPSC-
RPE are also functionally similar to native RPE in vivo, as they effectively phagocytose
photoreceptor outer segments (Figure 2E). Flow cytometry analysis of cells after 16 h
incubation with outer segments showed that 93 ± 3% (mean ± SEM) of the cells had
internalized outer segments in three different lines from two donors (data not shown).

2.3. Mt Testing of iPSC-RPE from Individual AMD Patients

Mt function of patient-specific iPSC-RPE was measured using an XFe96 Extracellular
Flux Analyzer to perform the Cell Mito Stress Test assays. Figure 3A shows a description of
the assay. This test measures oxygen consumption rate (OCR), an indicator of mt respiration.
Sequential injections of mt stressors (oligomycin, FCCP, and antimycin A/rotenone) allows
for the calculation of basal respiration (BR), maximal respiration (MR), spare respiratory
capacity (SRC), and ATP-linked mt respiration (ATP). Figure 3B shows the OCR traces
for the iPSC-RPE lines derived from the AMD patients, which were used to calculate the
parameters of mt function for each cell line (Figure 3C). Multiple cell lines were generated
from patients A and C. We compared their mt function and found that there was ≈8%
variance in mt parameters when comparing the lines from patients A and C (Figure 3C).
This variation between lines derived from the same donor was similar to results in a
previous study with iPSC-RPE lines derived from multiple eye bank donors with AMD [24],
where we measured ≈10 ± 2% (mean ± SEM) variance in BR and ATP, and ≈13 ± 2%
variance in MR (Figure S1). In this study, data from the duplicate lines from the same
patient were averaged in subsequent experiments.
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Figure 2. iPSC-RPE derived after reprogramming conjunctival cells obtained from patients with
AMD. (A) Phase microscopy image showing that confluent iPSC-RPE lines form a monolayer with
cobblestone appearance and have pigmentation. Scale bar = 100 µm. (B) Confocal microscopy image
of iPSC-RPE cultured on a transwell insert. En face views of the RPE monolayer shown as maximum
intensity projection through the z-axis. Bestrophin (red) is expressed on the basal surface. ZO-1
(green) marks cell borders. Nuclei are stained with DAPI (blue). Scale bar = 40 µm. (C) Results from
ELISA analysis of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor
A (VEGF-A) content measured in apical (top) and basal (bottom) media from iPSC-RPE (n = 5) grown
on transwells. Mean ± SEM. (D) iPSC-RPE cultures express prototypic RPE proteins as demonstrated
on Western immunoblots. Molecular mass for each protein is shown on the left. HR is a homogenate
of RPE tissue from a human donor. Stain-free image is loading control. (E) Representative data from
FACS analysis measuring the phagocytosis of FITC-labeled OS by RPE. Dot plots and histograms for
cells without and with the addition of OS are shown.

2.4. Testing Compounds That Target Mt Activity and Homeostasis in AMD Donor iPSC-RPE

For this study, we selected three compounds (AICAR, Metformin, trehalose) that target
mt function and homeostasis. AICAR and Metformin are pharmacological activators of
5′ adenosine monophosphate protein kinase (AMPK), which is a key regulator of energy
metabolism. AMPK directly binds to AMP, ADP, or ATP, allowing the detection of energy
levels in the cell. The activation of AMPK promotes downstream energy producing path-
ways and inhibits energy-consuming pathways [26,27] (Figure 4A). Trehalose increases
autophagy, which is a process used to eliminate damaged mitochondria, by inducing
lysosomal expansion.

Preliminary experiments to confirm the effect of these drug treatments were performed
using iPSC-RPE lines previously derived in our laboratory from 10 individual eye bank
donors with AMD (1 line/donor) [23,24]; see Table S1 for individual donor demographics
and their use in Figure 4. Optimal doses were chosen from published studies using RPE
cells [28–31]. Optimal timing of short-term treatment was determined by performing the
CMST (Cell Mito Stress Test) assay in donor iPSC-RPE cells following 24 or 48 h of drug
treatment (Figure 4B). Compared to no treatment, Metformin treatment (48 h) significantly
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increased MR (p = 0.03) and SRC (p = 0.03). Trehalose treatment (48 h) significantly increased
BR (p = 0.03). Small increases in MR and SRC were observed with AICAR; however, it
did not reach statistical significance. From these data, we selected 48 h treatment for
subsequent experiments.

Additional characterization included monitoring changes in the content of specific
proteins following treatment with this panel of drugs. Representative Western blot images
are found in Figure S2. AICAR and metformin activate AMPK via the phosphorylation
of Threonine 172 [20]. We found that while metformin treatment for 48 h significantly
increased the pAMPK/AMPK ratio (p = 0.05), AICAR did not (Figure 4C,D). Since AICAR
is an AMP analog, we tested for an earlier response and found the ratio of pAMPK/AMPK
was elevated 3.7-fold at 3 h (p = 0.03) with a gradual decrease to baseline by 48 h (Figure 4C).
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Figure 3. Testing mitochondrial function in iPSC-RPE from patients with AMD. (A) Example trace
associated with Cell Mito Stress Test (CMST). Analysis of oxygen consumption rate (OCR) following
injections of oligomycin (oligo), FCCP, and antimycin A + rotenone (AA + Rot) to perturb mitochon-
drial function. Calculation of the basal respiration (BR), maximal respiration (MR), spare respiratory
capacity (SRC), and ATP-linked respiration (ATP) is shown. (B) Traces from CMST of OCR for
patient-specific iPSC-RPE (five patients, seven lines). (C) Parameters of mitochondrial function were
calculated from data shown in (B). Mean± SEM. Numbers in brackets indicate coefficient of variation
(CV) of OCR for two cell lines from the same patient.
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Figure 4. Characterization of drug treatment effect using AMD donor iPSC-RPE cells. (A) Schematic
of AMPK activation and regulation of metabolism. (B) iPSC-RPE cells (n = 4 donors) were treated with
compounds (AICAR, Metformin, or trehalose) for 24 or 48 h. Mitochondrial function was evaluated
using an XFe96 Extracellular Flux Analyzer. Calculated fold change values of mt function (compared
to untreated controls) for the four lines are shown. BR = basal respiration; MR = maximal respiration;
SRC = spare respiratory capacity; ATP = ATP-linked respiration. (C,D) Protein content in lysates from
iPSC-RPE cells (n = 4 donors) following incubation with 500 µM AICAR (C) or 2 mM Metformin (D).
Calculated fold change values are shown (no treatment = 1, dashed line). (E) ECAR was measured
during CMST assays (n = 4 donors). (F) ATP Rate Assay was performed on iPSC-RPE (n = 4) after
Metformin treatment for 48 h. (G) iPSC-RPE (n = 4 donors) were treated with 100 mM trehalose for
48 h. Content of autophagy-related proteins was determined in treated cells relative to untreated cells
(dashed line). LC3-II/I, Lysosomal-Associated Membrane protein 1 (LAMP1), Cathepsin D (Cath
D). (H) Maximal projection of z-stack images of LysoTracker™ staining (red) labeling lysosomes in
untreated (NT) and trehalose treated (Treh) iPSC-RPE cells. Nuclei are stained with DAPI (blue).
Scale bar = 100 µm. Data in (A–G) are mean ± SEM. One-sample t-tests were used to compare
treatment to no treatment in (C,D,G). Unpaired t-tests were used to compare treatment to NT in
(A,E,F). ** p < 0.01, * p < 0.01, # p < 0.1.
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The activation of AMPK upregulates mt biogenesis. To assess the effect of AICAR
or metformin treatment, we measured the content of voltage-dependent anion channel
(VDAC) and cytochrome c oxidase subunit IV (COX IV). These proteins are located on the
outer and inner mt membranes, respectively, and they are used to estimate mt content. We
found that AICAR increased VDAC content (p = 0.05; Figure 4C), and Metformin increased
both VDAC (p = 0.03) and COX IV (p = 0.07) content (Figure 4D). We also observed that
metformin causes a shift in metabolism. Using the extracellular acidification rate (ECAR)
values from the CMST assays, Metformin treatment caused 1.3–1.5 fold increases in the basal
level of ECAR (p = 0.08) and ECAR after oligomycin injection (p = 0.07) (Figure 4E). These
results suggest that cells exposed to metformin had elevated glycolysis. This change was not
observed after AICAR treatment (Figure S3), suggesting different mechanisms of action for
these drugs. Using the ATP Rate Assay to confirm ECAR results, we found that Metformin
treatment causes RPE cells to produce more ATP from glycolysis (p < 0.01) and less ATP
from mitochondria (p = 0.08), although the total ATP rate did not change (Figure 4F).

Since AMPK also regulates catabolic pathways including autophagy, we measured
the ratio of microtubule-associated protein 1 light chain 3 bands (LC3-II/I) to monitor
autophagosome content. We found there was no change in LC3-II/I after AICAR or met-
formin treatment (Figure 4B,C). We also tested the effect of trehalose, which is a compound
known to increase autophagy. We observed increases in the content of the autophagy
marker, LC3 (p < 0.01), and lysosomal markers, LAMP1 (p = 0.06) and Cathepsin D (p = 0.03)
after trehalose treatment compared to no treatment (Figure 4G). Lysosomal labeling, using
the fluorescent marker LysoTracker™, was also increased in trehalose-treated cells com-
pared to untreated cells (Figure 4H). These results are consistent with trehalose inducing
the expansion of the lysosomal compartment, resulting in an increase in overall autophagy.

2.5. Drug Testing in Patient-Specific iPSC-RPE Using AMPK Activators

After confirming exposure to AICAR and Metformin activated AMPK and altered
metabolism in a cohort of iPSC-RPE lines, we next examined the response of our patient-
derived iPSC-RPE lines to treatments in two separate experiments (Figure 5). In the first
experiment, the patient-specific iPSC-RPE was subjected to an acute drug exposure (48 h),
and in the second experiment, a chronic drug exposure (3-week) was used to more closely
mimic a sustained therapeutic regimen for patients.

Figure 5 compares the results of short- (48 h) and long-term (3-week) treatment of
the iPSC-RPE lines generated from five patients to the AMPK activators, AICAR (A), and
metformin (B). The graphical summary emphasizes both the magnitude and pattern of
changes in mt metabolism. Adverse responses are designated by the red symbols. Beneficial
effects are shown in blue. Overall, there was high variability in how each cell line responded
to individual drugs and which mt parameters were affected. In general, the 3-week regimen
elicited a more robust response. Two patient lines (B and D) exhibited positive effects to
both AMPK activators. The other three patient lines (A,C,E) exhibited opposite effects to
the two drugs. Of note, Patient E had a negative response to Metformin.
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Figure 5. Testing AMPK activators using patient-specific iPSC-RPE. In two separate experiments,
iPSC-RPE cells from patients with AMD (n = 5) were treated with (A) AICAR or (B) Metformin
for 48 h or 3 times per week for 3 weeks. Following treatment, parameters of mt function
were calculated from OCR measured using an XFe96 Extracellular Flux Analyzer. OCR data
were normalized to cell count per well. Graphs show fold change relative to each donor’s no-
treatment control (dashed line). Blue data points indicate response from cells that exhibited
improved mt function. Red data points indicate response from cells that exhibited decreased
mt function. BR = basal respiration; MR = maximal respiration; SRC = spare respiratory capacity;
ATP = ATP-linked respiration. * p < 0.05, ** p < 0.01, # p < 0.1 determined by unpaired t-tests of raw
OCR values (average no treat OCR vs. average treatment OCR).

2.6. Drug Testing in Patient-Specific iPSC-RPE Using an Autophagy Inducer

Having confirmed the effect of trehalose in iPSC-RPE cells (Figure 4), we tested its
short-term effect on mt function in five patient iPSC-RPE lines compared with untreated
cells (Figure 6). As seen with AICAR and Metformin, the response to trehalose was variable
and patient-specific. Patients B and E were unresponsive. Trehalose had a negative effect
on mitochondria in cells from Patients A and C. Only Patient D responded positively; BR
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and ATP production were slightly increased. Long-term exposure (3-week) at the dose
used (100 mM) resulted in cell death, so we were not able to compare short- and long-term
exposure with this drug.
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Figure 6. Testing an autophagy inducer using AMD patient-specific iPSC-RPE. iPSC-RPE cells from
patients with AMD (n = 4) were treated with trehalose for 48 h. Following treatment, parameters of
mt function were calculated from OCR measured using an XFe96 Extracellular Flux Analyzer. OCR
data were normalized to cell count per well. Graphs show the fold change relative to each donor’s
no-treatment control (dashed line). Blue data points indicate response from cells that exhibited
improved mt function. Red data points indicate response from cells that exhibited decreased mt
function. BR = basal respiration; MR = maximal respiration; SRC = spare respiratory capacity;
ATP = ATP-linked respiration. * p < 0.05, ** p < 0.01 determined by unpaired t-tests of raw OCR
values (average no treat OCR vs. average treatment OCR).

3. Discussion

In this proof-of-concept study, we generated iPSC-RPE derived from five AMD pa-
tients graded for disease severity and genotyped for two SNPs (CFH Y402H and ARMS2
A69S) associated with the highest risk of developing AMD. These SNPs were abundantly
represented in our patient sample with 100% harboring the high-risk allele for ARMS2
and 80% harboring the high-risk allele for CFH. The iPSC-RPE lines from these patients
were used in a small-scale drug-screening platform designed to evaluate the efficacy of
compounds that target key processes in mt homeostasis. Our results demonstrate the
feasibility of using iPSC-RPE from AMD patients to help develop a personalized drug
treatment regime and provide a roadmap for future clinic management of this disease.

iPSC-RPE lines provide a number of advantages, including the ability to generate iPSC-
RPE from a variety of somatic cells. Importantly, the cell source used for reprogramming
does not alter the RPE phenotype or functional characteristics, as shown by similarities
reported between iPSC-RPE derived from primary RPE, skin fibroblasts, or cornea [32,33].
iPSC-RPE can also provide the opportunity for modeling disease on a patient-by-patient
basis. This was shown in previous studies where patient-specific iPSC-RPE lines were used
to investigate both monogenetic retinal diseases [34–38] as well as disease arising from
both genetic and environmental factors, including AMD [15,24,25,39,40].

Another advantage is the ability to expand iPSC-RPE extensively in culture, making
preclinical drug testing possible. Only a few groups have begun to explore using iPSC-
RPE to test potential therapeutic drug candidates for AMD [15,16,41]. Results show that
nicotinamide, known for its antioxidant and anti-inflammatory properties, ameliorated
the AMD disease phenotype [15]. Curcumin and ciclopirox olamine, which are bioactive
FDA-approved drugs, both protected iPSC-RPE from oxidative stress [16,41]. The efficacy
of these compounds suggests they could target retinal oxidative stress and inflammation,
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which are conditions that are associated with AMD onset and progression [42,43]. Taken
together, the results in these published papers and the current study support the use
of iPSC-RPE to investigate therapeutics to treat the underlying mechanism causing the
AMD phenotype.

Our current study used a comprehensive assay of mt function to evaluate the efficacy
of multiple drugs with the potential to improve mt health. The selection of drugs was based
on experimental findings of specific defects associated with AMD. For example, energy
metabolism pathways are dysfunctional in RPE from AMD donors [8,9,44]; therefore, regu-
lators of these pathways, such as AMPK, may be ideal targets to treat AMD. Initial testing
demonstrated that AICAR and Metformin activate AMPK and promote mt biogenesis
(Figure 4) possibly through PGC-1α activation [26]. AICAR, an analog of AMP, is a direct
and rapid activator of AMPK. Although the exact mechanism is unknown, metformin is a
purported indirect activator of AMPK that acts by changing the AMP/ATP ratio through
the inhibition of Complex I of the electron transport chain [45]. Metformin also improves mt
function by promoting mt fission [46]. In vivo effects of Metformin include protecting RPE
in mouse models of retinal degeneration [47] and decreasing the odds ratio for developing
AMD in diabetic patients [48,49].

Improvements shown in RPE mt function after in vitro AICAR and Metformin treat-
ment suggest that these drugs are able to overcome or repair the underlying cellular defect
in selected patient’s cells. The drug treatments may enhance mt remodeling to induce
the formation of new organelles, leading to an overall improvement in mt function. It is
important to note that relatively small improvements in mt function may provide sufficient
resilience against stress, aging, or inflammation in the RPE to prevent cell loss and retain
visual function.

Dysfunctional autophagy is another defect reported in RPE from AMD donors that
could have negative consequences on mt function by allowing defective mitochondria to
accumulate [9]. Incubation of iPSC-RPE with the sugar trehalose upregulated autophagy
via lysosomal expansion, as demonstrated by the increase in LC3-II and lysosomal markers
(Figure 4). However, under our experimental conditions, acute treatment with trehalose
did not improve or had a negative effect on mt function in most patient cells. While we
did not investigate the mechanism responsible for the negative response, it is possible that
the over-activation of autophagy could reduce mt function. In previous testing with the
alternative autophagy inducer rapamycin, we observed improved mt function in primary
RPE cultures from AMD donors [13]. Rapamycin upregulates autophagy by inhibiting
mTOR, while trehalose is an mTOR-independent inducer of lysosomal expansion [50].
Thus, the difference in response to trehalose and rapamycin could be due to these drugs
affecting different pathways, or that there is no lysosomal defect in this population of
iPSC-RPE.

Consistent with the previous drug studies [13,15,16,41], we observed variability in
drug response across patient cell lines (Figures 5 and 6). The unique patterns of drug
response that we observed may provide clues to specific metabolic defect(s) causing mt
dysfunction in AMD patients. A lack of response may indicate that the compounds tested
do not address the metabolic defects. For example, Patients B and D responded positively
(increased mt function) to both AICAR and Metformin. These results support the idea that
these patients may have defects in the AMPK pathway. Patients A, C, and D had opposite
responses to Metformin and AICAR, suggesting specific differences in the site of defect
of the energy-sensing pathway. The other important information from the drug screening
was the identification of drugs that are detrimental to mt function, as seen for Patient E for
metformin treatment. This observation is clinically relevant, since Metformin is widely used
for treating diabetes, cancer, and more recently, aging [51]. Thus, screening patient-derived
cells for negative or positive effects could provide a way to avoid detrimental side effects
of specific drugs for individual patients.

In this proof-of-concept study, we avoided testing unverified candidate molecules
in proprietary chemical libraries and instead selected drugs that have been approved by
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regulatory authorities for treating different diseases. Our rationale was that repurposing
drugs with known properties (e.g., toxicity profile, dose, side effects, and established
delivery modality) could significantly reduce the timescale between the identification of
potentially efficacious compounds and clinical testing [52]. The three drugs tested in the
current study are being used in clinical trials or are prescribed treatments, so their safety
has been established. AICAR is in a phase II pilot study for a genetic disorder called Lesch-
Nyhan Syndrome (NCT00004314). While Metformin is prescribed for conditions, such as
diabetes, cancer, and aging, there is one phase II clinical trial for oral Metformin treatment
for slowing the progression of dry AMD (NCT02684578). Trehalose, applied topically
in the form of eye drops, is in clinical trials for dry eye (NCT03569202, NCT01742884,
NCT04803240). The next step in finding the most efficacious treatments for AMD involves
expanding the panel of drugs and including cell lines from additional patients. It is also
important to consider the patient’s genetic background. Screening for SNPs or other genetic
markers associated with high risk for AMD may aid in choosing the right population
for testing AMD therapeutics. For example, our previous study found that iPSC-RPE
derived from CFH high-risk donors had decreased mt function compared to CFH low-risk
iPSC-RPE [53], suggesting that this patient population would benefit from mt-targeted
drug therapy. The goal is to extrapolate the information gained from in vitro testing of
patient-specific iPSC-RPE to in vivo treatment of patients with AMD.

Despite this study having a small sample size of patients and testing a limited number
of drugs, we have demonstrated the potential for individualized drug treatments. Future
directions include increasing the scale of iPSC derivation and cell differentiation for entire
patient populations and increasing the number of drugs tested. Recent improvements in
defined cell culture systems, efficient and reliable reprogramming reagents, as well as more
reproducible differentiation protocols, have increased the utility of iPSC technology in
high-throughput screening. However, expanding this technology to whole patient cohorts
will require the application of automation systems to reduce the manpower, timescale, and
cost associated with deriving lines from multiple patients. This process is underway in our
group as well as in other laboratories [54–56].

While future large-scale drug screening in iPSC-RPE from AMD patients should
include the three drugs tested in this study, it should also include multiple drugs that target
pathways demonstrated to maintain and/or restore mt function. These pathways include
mt biogenesis; mt dynamics, including fusion and fission; and mt quality control through
mitophagy and proteostasis [57]. It may be beneficial to use several drugs that influence
the same pathway, since each drug has a different mechanism of action. For example, when
testing drugs that stimulate mt biogenesis, it would be useful to not only include AICAR
and Metformin in the drug panel but resveratrol and NAD+ precursors as well. Although
all of these compounds may increase mt biogenesis, each targets a different part of the
pathway. A patient may have a defect in one or more parts of the mt biogenesis pathway,
so including multiple drugs would allow for easier identification of treatments.

4. Materials and Methods
4.1. Conjunctiva Biopsies from AMD Patients

The identification of study participants and tissue collection was conducted with
approval from the University of Minnesota (UMN) Institutional Review Board (Study
number 00000851, date of approval 4 December 2020). Conjunctival biopsies were collected
from fully consented UMN study participants attending the Ophthalmology clinic at the
University of Minnesota. Evaluation of the patient’s stage of AMD was determined by a
Board-Certified Ophthalmologist (S.R.M.) from fundus images using the criteria established
by the Age-related Eye Disease Study (AREDS) [53]. A 2–3 mm piece of conjunctiva was
collected from one eye of study participants and immersed in KGM-2 medium (3 mL)
(Lonza Bioscience, Morrisville, NC, USA; cc-3101, cc-4152) and stored at 4 ◦C before
transport to the Stem Cell Institute. Processing of the conjunctival tissue for adherent
culture was performed within 16 h of the biopsy collection. To initiate adherent culture
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of primary conjunctival cells, the biopsy tissue was put in the center of a 6 cm plate and
cut into 8–10 small pieces. Pieces of the conjunctival tissue were dispersed and allowed to
partially air dry before being covered with KGM-2 (30 µL) keratinocyte growth medium
and connected by a media bridge to a 3 mL reservoir of media before incubation overnight
at 37 ◦C, 5% CO2. KGM-2 media (1 mL) was added to the media reservoir every 2 days for
7 days. After 7 days, the medium was replaced with fresh KGM-CD (5 mL) medium and
replaced every 2 days for another 7 days. Then, the cells were harvested using TrypLE™
Select (Thermo Fisher Scientific, Waltham, MA, USA; 12563-011).

4.2. Culturing iPSC-RPE Cells

The derivation of iPSC lines from primary human conjunctival cells, differentiation
of iPSC to RPE, and expansion of iPSC-RPE has been described in our previous publica-
tion [24]. iPSC-RPE cells from passage 3 were used for the characterization and functional
assays. The iPSC-RPE lines used in this study are listed in Table 1.

4.3. Genotyping

Genomic DNA was extracted from a pellet of conjunctival cells using QIAamp®DNA
Micro kit (Qiagen; Germantown, MD, USA; 56304). DNA was quantified using a Quant-iT
PicoGreen dsDNA assay kit (Thermo Fisher Scientific; Waltham, MA, USA; P7589). Samples
were genotyped for the Complement Factor H (CFH) variant Y402H using allele-specific
primers designed for the single nucleotide polymorphism (SNP) rs1061170. CFH-Y402H-F:
TGAGGGTTTCTTCTTGAAAATCA, CFH-Y402H-R: CCATTGGTAAAACAAGGTGACA,
and genotyped for Age-related maculopathy susceptibility 2 (ARMS2) variant A69S using
primers designed for SNP rs10490924. ARMS2-A69S-F: TCCTGGCTGAGTGAGATGG,
ARMS2-A69S-R: GGCATGTAGCAGGTGCATT. The PCR product purified with Gel PCR
DNA fragments extraction kit (IBI Scientific; Dubuque, IA, USA) was submitted for classic
Sanger sequencing (UMN Genomics Core). Base calling was manually inspected using
Sequence Scanner 2 software version 2.0 (Applied Biosystems; Waltham, MA, USA).

4.4. Immunofluorescence

Immunofluorescence was performed on iPSC-RPE cells as described [24]. The anti-
bodies used in this study are listed in Table S2.

To image lysosomes, iPSC-RPE cells (4 × 104 cells/well) were grown in Matrigel-
coated 96-well black/clear bottom plates, treated with trehalose (100 mM) for 48 h, and
incubated with LysoTracker™ Red DND-99 (50nM; Fisher Scientific; Hampton, NH, USA)
for 30 min. Hoechst 33342 was added to stain the nucleus. Cells were imaged using
Cytation1 imager (BioTek; Winooski, VT, USA).

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

RPE cells were seeded at a density of 4 × 105 cells/well in 6.5 mm diameter polyester
inserts (0.4 µm pores; Corning, Inc., Corning, NY, USA) coated with Matrigel®. ELISA for
vascular endothelial growth factor A (VEGF-A) (Thermo Fisher Scientific; Waltham, MA,
USA; BMS277/2) and pigment epithelium-derived factor (PEDF) (R & D Systems; Min-
neapolis, MN, USA; DY1177-05) were performed as described [53]. Growth factor concen-
trations were derived from standard curves and corrected for chamber volume differences.

4.6. Western Blotting

Cell pellets were collected and lysed in RIPA buffer (Sigma-Aldrich, St. Louis, MO,
USA). Protein concentrations were determined with BCA assay (Thermo Fisher Scientific;
Waltham, MA, USA) using albumin as the standard. Western blots were performed as de-
scribed [24]. Membranes were incubated overnight with primary antibodies (see Table S2).
Images of immune reactions were taken using a BioRad ChemiDoc XRS.
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4.7. Phagocytosis of Outer Segments (OS)

Bovine outer segments (InVision BioResources; Seattle, WA, USA) were labeled with
Fluorescein-5-Isothiocyanate Isomer I (FITC) (Thermo Fisher Scientific; Waltham, MA,
USA). Labeled OS were pelleted, washed, and added to confluent iPSC-RPE cultures at
a concentration of 40 OS/RPE cell. After 16 h of incubation, cells were washed with PBS,
dissociated with trypsin, and collected in PBS for analysis. Flow cytometry analysis was
performed using LSRII H1010 (BD Biosciences; Franklin Lakes, NJ, USA), and the data
were analyzed with FlowJo software version 9.

4.8. Measuring RPE Mt Function Using the Cell Mito Stress Test (CMST)

Mt function in treated and untreated iPSC-RPE was measured using the XFe96 Extracel-
lular Flux Analyzer (Agilent Technologies; Santa Clara, CA, USA) and the Cell Mito Stress
Test (CMST) assay. Briefly, cells were plated in MEM alpha medium (Gibco) containing
1% FBS (Atlanta Biologicals; Flowery Branch, GA, USA), pen/strep (50 U/mL/50 µg/mL),
sodium pyruvate (1 mM), GlutaMAX™ (1X), non-essential amino acids (1X), N1 sup-
plement (1X), taurine (0.25 mg/mL), hydrocortisone (0.02 µg/mL), tri-iodothyronine
(0.013 µg/L), and seeded (4 × 104 cells/well) on XF96 plates coated with Matrigel®. For
each patient iPSC-RPE line, five technical replicates were assayed for each condition. The
following day, RPE cells were treated with 500 µM AICAR (Sigma-Aldrich; St. Louis,
MO, USA), 100 mM trehalose (Sigma-Aldrich; St. Louis, MO, USA), or 2 mM Metformin
(Cayman Chemical; Ann Arbor, MI, USA), and after 48 h, CMST assays were run. For
long-term treatment, cells were plated in Matrigel®-coated 12-well plates and then treated
three times per week with one of the drugs. Following three weeks of treatment, cells were
dissociated from the 12-well plates, seeded into XF96 plates, and treated with the same
drug for 48 h prior to performing the CMST assay.

The CMST assay protocol was performed according to the manufacturer’s instructions
(Agilent Technologies; Santa Clara, CA, USA) and our previous analyses [8,13,24]. The
oxygen consumption rate (OCR) was detected before and after the sequential addition of
oligomycin (2 µM), FCCP (1 µM), and finally rotenone (1 µM) and antimycin A (1 µM).
The resultant changes in OCR allowed the calculation of basal respiration, ATP-linked
respiration, spare respiratory capacity, and maximal respiration. Hoechst 33342 dye was
added in the third injection to enable post assay cell count at 10X magnification using
a Cytation1 imager (BioTek; Winooski, VT, USA). Data processing used Wave software
version 2.0 (Agilent Technologies) normalizing OCR to cell count.

4.9. Measuring ATP Production Rates Using Real-Time ATP Rate Assay

Total ATP production rates in treated and untreated iPSC-RPE was measured using
the XFe96 Extracellular Flux Analyzer (Agilent Technologies) and the ATP Rate assay using
the same conditions as the CMST assay (described above). The OCR and Extracellular
Acidification Rate (ECAR) were detected after a serial injection of oligomycin and antimycin
A/rotenone to allow for the calculation of mitochondrial and glycolytic ATP production
rates. Data were normalized to cell count.

4.10. Statistical Analysis

Treatment data were normalized to the no-treatment condition for each donor (fold
change relative to no treatment). For Western blots, one-sample t-tests were performed on
log-transformed fold change values. For CMST and ATP-Rate assays, unpaired t-tests were
performed on the five technical replicates of OCR values comparing no treatment values to
each treatment values. Analyses were performed using the statistical software in GraphPad
Prism 9. Probability ≤0.05 was considered statistically significant.

5. Conclusions

In this proof-of-concept study, we provide a roadmap for drug testing using patient-
derived iPSC-RPE to identify treatments that are either beneficial or detrimental to mt RPE
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function. Since there are multiple cellular defects that can manifest the dry AMD phenotype,
no single drug will be suitable to treat all patients [18]. A more targeted patient-specific
approach is needed to find specific drugs that will restore or improve RPE mt health for
individual patients with dry AMD. While our focus is on finding a treatment for dry AMD,
this approach is applicable for many other diseases without approved treatments or as a
prescreening tool to identify the best treatment for individual patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15010062/s1, Figure S1: Determining the degree of concordance between iPSC-RPE lines
generated from the same donor, Figure S2: Representative Western blot images from data shown in
Figure 4, Figure S3: AICAR does not cause a shift in metabolism, Table S1: AMD donor iPSC-RPE
demographics, Table S2: List of antibodies used in this study.
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