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Accumulating clinical evidence shows that psychedelic therapy, by synergistically

combining psychopharmacology and psychological support, offers a promising

transdiagnostic treatment strategy for a range of disorders with restricted and/or

maladaptive habitual patterns of emotion, cognition and behavior, notably, depression

(MDD), treatment resistant depression (TRD) and addiction disorders, but perhaps also

anxiety disorders, obsessive-compulsive disorder (OCD), Post-Traumatic Stress Disorder

(PTSD) and eating disorders. Despite the emergent transdiagnostic evidence, the specific

clinical dimensions that psychedelics are efficacious for, and associated underlying

neurobiological pathways, remain to be well-characterized. To this end, this review

focuses on pre-clinical and clinical evidence of the acute and sustained therapeutic

potential of psychedelic therapy in the context of a transdiagnostic dimensional systems

framework. Focusing on the Research Domain Criteria (RDoC) as a template, we will

describe the multimodal mechanisms underlying the transdiagnostic therapeutic effects

of psychedelic therapy, traversing molecular, cellular and network levels. These levels will

be mapped to the RDoC constructs of negative and positive valence systems, arousal

regulation, social processing, cognitive and sensorimotor systems. In summarizing

this literature and framing it transdiagnostically, we hope we can assist the field in

moving toward a mechanistic understanding of how psychedelics work for patients and

eventually toward a precise-personalized psychedelic therapy paradigm.

Keywords: psychedelics, hallucinogens, psilocybin, research domain criteria (RDoC), lysergic acid diethylamide

(LSD), dimethyltryptamine (DMT), psychiatry

INTRODUCTION

Translational Psychedelic science is evolving rapidly (1–3). Initial data suggests that the dose
dependent, transient, altered state of information processing induced by psychedelics can be
harnessed by the psychotherapeutic process to lead to clinical benefits across a range of disorders.
Accumulating preliminary clinical studies have shown that this synergistic combination of
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psychopharmacology and psychotherapy may improve outcomes
in depression (4, 5), treatment resistant depression (TRD) (6–8)
and addiction disorders (9, 10).

While results from ongoing well-powered double-blind
randomized controlled trials (RCTs) will determine whether
psychedelic therapy translates into clinical benefits for non-
psychotic disorders in clinical psychiatry (11, 12), it has been
proposed that psychedelic therapy may have broad therapeutic
benefits via the attenuation of overly-restricted and maladaptive
patterns of cognition and behavior (13, 14). Exploratory
studies suggest potential benefits of psilocybin therapy in OCD
(15), eating disorders (16) and migraine suppression (17),
with ongoing RCTs of psilocybin therapy in MDD, bipolar
disorder type II depression, alcohol use disorder, smoking
cessation, cocaine addiction, opioid addiction, anorexia nervosa,
depression in Mild Cognitive Impairment, OCD and various
types of headaches (18).

A precise mechanistic understanding of psychedelics is
challenging because of the synergistic action of pharmacotherapy
and psychotherapy, together with the induction of a wide range of
complex subjective experiences with marked individual variation
(19). The primary initial pharmacological target of the classical
psychedelics appears to be activation of 5-HT2A receptors
(Box 1) particularly in cortical layer 5 pyramidal cells (20–
27). A contemporary explanatory model—the Relaxed Beliefs
under Psychedelics and the Anarchic Brain (REBUS)—proposes
that psychedelics via action at 5-HT2A receptors in higher-
order cortical regions (27) relax the typical constraints that
higher order brain systems impose on emotions, cognitions,
and sensory perceptions. This amounts to a decrease in the
weight on (or precision of) prior beliefs, which in some
disorders may be pathological (e.g., negative self-evaluations).
This model proposes that psychedelics may facilitate an increase
of information flow from bottom up signaling systems, opening
the individual to information that they are otherwise biased to
ignore or discount (13).

The belief-recalibration process proposed by the REBUS
model illustrates one mechanism through which psychedelic
therapy may operate as a transdiagnostic therapeutic option
for a broad range of disorders, particularly those with overly
constrained beliefs or behaviors, such as major depression,
anxiety and addiction disorders (13, 28). This model provides a
framework for understanding their lack of efficacy in conditions
such as psychosis spectrum disorders, where some have
hypothesized there is insufficient constraint imposed on lower-
level perceptions and cognitions. It follows that these disorders
are exacerbated by psychedelics (29–31). Other overlapping
models, focus on 5-HT2A receptor induced altered thalamic
gating in cortico-striato-thalamo-cortical (CSTC) feedback
loops (32–34).

As we accumulate more knowledge about the precise
mechanisms of action, and how this might vary across
individuals, we can begin to refine personalized treatment
strategies. Currently available strategies to refine therapeutic
outcomes include dose (and interval) optimization, modification
of psychological interventions (perhaps dependent on the level
of complexity or severity) and optimization of environmental

BOX 1 | Classical psychedelics.

Class Primary

receptor

activation

Onset and

duration of

action

Indoleamines (aka tryptamines)

Psilocybin

(phosphoryloxy-

N,N-

dimethyltryptamine)

Psilocin (active

metabolite of

psilocybin,

4-hydroxy-DMT)

5-HT1,

5-HT2,

5-HT6 and

5-HT7

partial

agonists

Onset 10–40min

po, peak

90–100min,

duration 4–6 h

(most effects

abate 6–8 h)

Half-life: 2–3 h

N,N-

dimethyltryptamine

(DMT)

5-methoxy-DMT

(5-MeO-DMT)

Ayahuasca (aya)

(DMT from

Psychotria viridis

plants and

Banisteriopsis

caapi, containing

the potent MAO

inhibitors

beta-carboline

alkaloids)

5-HT1, 5-

HT2,

5-HT6,

and 5-HT7

partial

agonists

DMT IM onset

within 2–5min

and can last

30–60 min

DMT smoked or

inhaled

free-base <30

min

DMT IV peak

5min, abate by

30 min

Aya: effects

within 60min,

peak 90min,

can last 6 h

Phenylalkylamines (synthetic “amphetamines”)

2,5-dimethoxy-4-

iodoamphetamine

(DOI)

2,5-dimethoxy-4-

bromoamphetamine

(DOB)

5-HT2A,

5-HT2B,

5-HT2C

agonists

onset 1-2 h,

duration 16–24 h

Mescaline Peak within 2 h

po, duration up

to 8 h

Semi-synthetic Ergolines

Lysergic acid

diethylamide (LSD)

5-HT1,

5-HT2,

5-HT6 and

5-HT7

partial agonists

D1 and D2

dopamine

receptors

and

adrenergic receptors

po onset

30–45min, peak

1–2.5 h, duration

9–12 h

IV onset 3–5min,

peak 1 h,

duration 9–10 h

ambiances/cues (setting) (35–38). Precise-personalized-
predictive psychobiological markers are at an early stage of
development, with exploratory clinical studies suggesting
baseline Autonomic Nervous System activity (39), functional
connectivity patterns (40–42) and cingulate cortical thickness
(43), together with psychological factors such as absorption and
openness (44–46) and language analysis (47) as potentially useful
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predictors of therapeutic outcomes. This research is reflective
of a much broader advance toward individualized treatment
approaches across all aspects of psychiatry, where the mantra is
to move beyond one-size-fits-all toward more personalized care
plans. In order to develop and build on these precision medicine
approaches, there is growing consensus that research needs to
traverse multiple levels of analysis.

In this review, we aim to anchor the accumulation of basic
and applied research in psychedelics to the National Institute
of Mental Health’s Research Domain Criteria (RDoC), thereby
adding structure to a fast-growing field. The transdiagnostic
dimensional RDoC constructs are negative and positive valence
systems, arousal regulation, social processing, cognitive and
sensorimotor systems (Figure 1). In each section we will discuss,
where available, research that spans multiple levels of analysis
from genes, molecules, proteins, cells, circuits, physiology,
behavior, self-report, and paradigms (Figure 2) (48–50). This
review complements existing meta-analyses on the effects of
psychedelic therapy (51–55) and recent reviews on the topic (18,
33). But in contrast, by framing and organizing the empirical data
on psychedelics around the RDoC criteria, we aim to advance
the field specifically toward a systems based precise-personalized
psychedelic therapy paradigm.

INTEGRATING PSYCHEDELIC THERAPY
AND THE RESEARCH DOMAIN CRITERIA

Personalized-precision psychiatry is impeded by two major
issues that are partially related— (i) the reliance on categorical
diagnostic systems and high levels of comorbidity and
heterogeneity (56–60) and (ii) an over-reliance on small
scale studies that cannot capture the complexity of mental
health and illness, and as a result have failed to generate robust
prediction/decision models needed for personalization. To
the former point, there is broad consensus that categorical
diagnostic labels, while necessary for pragmatic treatments in
clinical settings, do not signify unitary, biologically credible,
or informative markers of mental health and for example the
overlap of previously presumed distinct psychiatric diagnoses,
in terms of genes and brain networks, have been demonstrated
by large neuroimaging (60–63) and genetic data sets (64–66).
To the latter, there is increasing awareness that effect sizes in
mental health science are generally small, regardless of whether
variables are biological (67) or psychosocial (68). Thus, for
personalization to occur, studies must move toward integrating
multiple variables that have individually low predictive power—
such approaches require large samples for accurate model
development (69). Absent large datasets, a transdiagnostic and
dimensional approach (compared to a categorical one) may do
something to resolve both issues; if we can more accurately,
validly and reliably capture mental health phenomena and the
underlying biosignatures, then the effect sizes we observe will
increase (59).

There are emerging signals that deconstructing categorical
diagnoses into dimensional constructs may facilitate enhanced
treatment precision. A recent clinical trial adopting an RDoC

approach to the investigation of a selective κ-opioid receptor
blocker for anhedonia across mood and anxiety disorders
showed that this compound increased fMRI ventral striatum
activation during reward anticipation compared to placebo
(70). A study dividing MDD disorder symptoms into positive
valence symptoms (impaired motivation, impaired energy,
and anhedonia) and negative valence symptoms (anxiety and
interpersonal sensitivity) showed that antidepressants were more
effective for positive valence symptoms (71).

The evolving neuroscientific framework of the RDoC aims
to integrate developmental processes and environmental inputs
over the trajectory of the life course to determine the mechanisms
underlying normal-range functioning and then how disruptions
correspond to psychopathology. It is anticipated that the
identification of targetable biosignatures that either cut across
traditional disorder categories or that are unique to specific
clinical phenomenon will improve outcomes for people with
mental health disorders.

In the sections that follow, we will consider if and how
psychedelic therapy operates across the RDoC domains in the
hope that harnessing an integrative neuroscience systems model,
encompassing environmental information exchange processes,
may add the precision we need to transition to personalized
psychedelic therapy practices that are transdiagnostic and
evidence based. Although well-powered longitudinal clinical
studies will be required to determine whether transdiagnostic
dimensional biotypes or psycho-biotypes will optimize
therapeutic response rates to psychedelic therapy (40, 41, 72), it
is hoped that this review will lay a foundation for future research.

MODULATION OF NEGATIVE VALENCE
SYSTEMS

NVS are primarily responsible for responses to aversive (threat)
situations or context, such as fear, anxiety, and loss (73, 74).
Specifically, RDoC breaks NVS into acute threat (fear), potential
threat (anxiety), sustained threat, loss and frustrative non-
reward constructs. As we will outline in the next sections,
psychedelic therapy may recalibrate NVS hyper-responsivity
and positive valence systems (PVS) deficits across a range of
psychiatric disorders.

Loss
At the behavioral unit of analysis, the loss construct
includes attentional biases to negative information, loss of
motivation/drive, sadness, shame and rumination and is a
component of several disorders but shares most features with
depressive disorders (75). Some of the most important evidence
for the operation of psychedelics on the NVS unsurprisingly
comes from studies in depression. Pre-modern studies conducted
during the 1950-60’s first indicated a role of psychedelic therapy
for depression and anxiety symptoms (76), which aligns
with modern-era studies (77–79). The initial double-blind,
randomized, placebo-controlled clinical studies in the modern-
era of psychedelic therapy (psilocybin) showed an immediate
and sustained antidepressant and anxiolytic effect in people
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FIGURE 1 | Transdiagnostic psychedelic therapy and domains of the research domain criteria (RDoC).

FIGURE 2 | Transdiagnostic psychedelic therapy and units of analysis of the research domain criteria (RDoC).
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with depressive symptoms associated with life-threatening
cancer (80–82) (Table 1). In subgroups, these antidepressant
and anxiolytic effects were sustained for several years (97), as
were reductions in suicidal ideation and loss of meaning (98).
Similarly, recent data suggest efficacy for another group with high
levels of loss, those who survived Acquired immunodeficiency
syndrome (AIDS) (101).

An open-label feasibility study of psilocybin therapy (10mg)
then 7 days later 25mg, of 12 people diagnosed with treatment-
resistant depression (TRD) showed that 67% of participants
had significantly reduced depression symptoms (measured by
MADRS) at 1 week, with 40% of participants showing a sustained
response at 3 months post-dose (6). Measures of anhedonia,
which overlap with reward dysfunction (see below) and anxiety,
which overlap with threat processing (as discussed above) also
improved (Table 1). Furthermore, in some participants these
antidepressant and anxiolytic effects were sustained at 6 month
follow up (7).

A randomized, waiting list-controlled clinical trial, though
still without a placebo control, confirmed the immediate and
sustained antidepressant effects of psilocybin therapy in (non-
treatment resistant) MDD (4). This study also comprised two
psilocybin sessions but at higher doses (20 mg/70 kg and 30
mg/70 kg) than the previous study. This study showed that
16 participants (67%) at week 1 and 17 (71%) at week 4
had a clinically significant response (GRID-HAMD), whereas
14 participants (58%) at week 1 and 13 participants (54%)
at week 4 were in remission (4). A phase 2, double-blind,
randomized, controlled trial (n = 59) showed that psilocybin
therapy was at least as effective as escitalopram in reducing
depressive symptoms in MDD (5). Preliminary data from a
phase 2b TRD trial (n = 233) demonstrated that psilocybin
25mg resulted in a statistically significant treatment difference
of −6.6 points on change from baseline in MADRS total
scores compared to 1mg dose at week 3 (8) (Table 1). Whereas
exploratory studies are underway to determine the safety and
efficacy of psilocybin therapy in conjunction with SSRI’s (102).
Interestingly, a recent double-blind, placebo-controlled, cross-
over study in 23 in healthy controls (HCs) who received 14
days of escitalopram or placebo prior to psilocybin (25mg),
suggested that escitalopram had minimal effects on subjective,
pharmacokinetic, or physiological readouts (103).

It is established that the limbic system and specifically the
amygdala (104, 105) are important transdiagnostic nodes in
the therapeutic modulation of negative-positive valence systems.
Hyper-reactivity of the amygdala is associated with negative
processing/affectivity and an attentional bias to negative valenced
information, which can occur across a range of stress related
disorders, such as depression and various anxiety disorders (106–
109). Increased access to information flow from the limbic
system during psychedelic therapy is one of the mechanisms
thought to underlie therapeutic change (13). In keeping with a
recalibration of NVS and PVS responsivity, several studies inHCs
have demonstrated attenuation of amygdala reactivity, associated
with predilection toward positive compared to negative stimuli
in the acute phase post-psilocybin (110–112). This effect may
be sustained for up to 1 month (113). Overlapping effects have

also been demonstrated for LSD in HCs, which impaired the
recognition of sad and fearful faces (114) and reduced reactivity
of the left amygdala and the right medial prefrontal cortex
(mPFC) relative to placebo during the presentation of fearful
faces (115). Very low dose LSD (13 mcg) decreased amygdala
connectivity with the left and right postcentral gyrus and the
superior temporal gyrus, and increased amygdala seed-based
connectivity with the right angular gyrus, right middle frontal
gyrus, and the cerebellum in 20 young HCs, though there
were “weak and variable effects on mood” (116). While not
investigating the amygdala, a recent pilot randomized trial in
HCs, perhaps limited by a small sample size of 22, did not show
acute or protracted alterations in the recognition of emotional
facial expressions after a single dose of ayahuasca (117).

In contrast to the above studies in HCs, which generally
show decreases in amygdala reactivity, an open label study of
19 antidepressant free TRD subjects, found increased amygdala
responses to emotional faces 1 day after psilocybin (84). In the
same cohort of TRD participants, decreased cerebral blood flow
in the amygdala correlated with reduced depressive symptoms
1-day post-psilocybin (40). While the loss construct encompasses
several transdiagnostic components, rumination and increased
self-focus may be particularly important transdiagnostic
psychedelic therapy targets. Rumination refers to recursive
self-focused negative thinking and is a component of a variety of
disorders across mood, anxiety, addiction, and some personality
disorders (118–120). The aforementioned TRD study showed
that decreased ventromedial prefrontal cortex-right amygdala
functional connectivity during face processing was associated
with reduced ruminative thinking at 1 week (85).

The corticolimbic system and the immuno-endocrine
system are intrinsically linked. However, at this point limited
conclusions can be drawn about the loss construct and immuno-
endocrine mechanisms. An 8-week social isolation model in
juvenile marmosets, resulted in decreased fecal cortisol levels in
both ayahuasca and saline treated groups, though in the male
animals, ayahuasca reduced scratching behavior and increased
feeding (121). In humans, a single dose of ayahuasca acutely
increased salivary cortisol levels in both TRD patients and in HCs
in a parallel arm, randomized double-blinded placebo-controlled
trial (92). Before ayahuasca the TRD group had a blunted salivary
cortisol awakening response and hypocortisolemia compared
to HCs, though 48 h after ayahuasca there were no differences
in the cortisol awakening response or plasma cortisol levels
between the groups (92). In the same cohort ayahuasca reduced
C-reactive protein (CRP) levels in both TRD (which were higher
at baseline) and HCs compared to placebo, though this may
be related to the increases in cortisol (89, 93). The TRD group
treated with ayahuasca showed a significant correlation between
larger reductions of CRP and lower depressive symptoms 48 h
after ayahuasca (93). However, there were no significant changes
in IL-6 levels (93).

A non-controlled study of 11 HCs, that analyzed salivary
cortisol and immune markers 30min before after 90min after
inhaled 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT)
found a significant increase in cortisol levels and decrease in
IL-6 concentrations, whereas there were no changes in CRP and
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TABLE 1 | Negative valence systems.

Condition/Measures Design N, age Psychedelic/dose Clinical/neurobiological outcomes References

Treatment-resistant depression

(TRD)

MADRS, 5D-ASC, ASRS, EBI;

EQ-5D-3L, GAD-7, HAM-D-17,

MGH-ATRQ, MINI, MSI-BPD,

PANAS, QIDS, QIDS-SR-16, SDS,

STAR-C, STAR-P, WSAS

Randomized,

double-blind

n = 233

94% no

prior psilocybin

experience

Psilocybin 1mg (n =

79), or 10mg (n =

75) or 25mg (n =

79)

−6.6 points on change from baseline in MADRS total scores in 25mg vs. the 1mg dose at

week 3 (p < 0.001)

25mg group: 36.7% showed response at week 3, 29.1% were in remission at week 3,

24.1% were sustained responders at week 12

Serious treatment emergent adverse events: 6.3% in 25mg, 8.0% in 10mg, 1.3% in 1mg.

12 patients reported suicidal behavior, intentional self-injury, and suicidal ideation (≥1

month post-psilocybin)

(8),

unpublished

Major depressive disorder (MDD)

QIDS-SR-16, BDI-1A, HAM-D-17,

MADRS, FS, STAI, BEAQ, WSAS,

SHAPS, WEMWBS, SIDAS,

PRSexDQ, EBI, LEIS, PTCS

Double-blind,

randomized,

controlled

59 MDD (20F)

41 yrs

(30 psilocybin,

29

escitalopram group)

Two psilocybin

25mg po 3 weeks

apart plus 6 weeks

of daily placebo

(psilocybin group)

Or two psilocybin

1mg 3 weeks apart

plus 6 weeks of daily

escitalopram po

No significant difference between groups in QIDS, mean (±SE) changes in the scores from

baseline to week 6 were −8.0 ± 1.0 points in the psilocybin group and −6.0 ± 1.0 in

escitalopram group

Psilocybin decreased network modularity, or increased flexibility, of executive networks

compared to the escitalopram group

(5, 42)

MDD

GRID-HAMD, QIDS-SR, BDI, PHQ,

C-SSRS, HAM-A, STAI

Randomized

waitlist control

trial

(randomized

immediately or

after an 8-week

delay)

Antidepressant free

24 MDD (16F)

39.8 yrs (12.2)

Psilocybin (20

mg/70 kg and 30

mg/70 kg)

Separated by 1.6

(mean) weeks

Significant decrease in GRID-HAMD and QIDS-SR scores at weeks 1 and 4 in the

immediate treatment group compared to delayed treatment group

Psilocybin increased cognitive flexibility for at least 4 weeks post-treatment (not correlated

with antidepressant effects)

Glutamate and N-acetylaspartate were decreased in the ACC at 1 week

Greater increases in dFC between the ACC and PCC were associated with less

improvement in cognitive flexibility

Baseline dFC from the ACC predicted improvements in cognitive flexibility

Greater baseline dFC was associated with better baseline cognitive flexibility but less

improvement in cognitive flexibility

(4, 83)

Treatment-resistant depression

(TRD)

QIDS, BDI, STAI-T, SHAPS, MADRS,

GAF, 11D-ASC, RRS

BOLD fMRI Emotional Faces Images

Task

Cerebral blood flow (CBF)

Open label

Antidepressant free

12 TRD (6F)

42.6 yrs

(8 additional

males at

6-month follow-

up)

Psilocybin (10 and

25mg 7 days later)

Significant reduction in depressive and anxiety symptoms and improvement in anhedonia

scores from baseline to 1 week and 3 months

3-months: seven (58%) met criteria for response (BDI)

6-months: significant reductions in depression and anxiety symptoms (QIDS, BDI, STAI-T)

Increased amygdala responses to emotional stimuli 1 day post-psilocybin, increased

responses to fearful and happy faces in the right amygdala post-treatment. Right amygdala

increases to fearful vs. neutral faces were predictive of clinical improvements at 1-week

Decreases in CBF in the temporal cortex, including the amygdala (decreased amygdala CBF

correlated with reduced depressive symptoms)

Increase in FC between the amygdala and vPFC to occipital-parietal cortices during face

processing

Decreased vPFC-right amygdala FC in response to fearful and neutral (but not happy) faces

associated with levels of rumination at 1 week (RRS)

Emotional face recognition faster at follow-up in TRD but not controls and significantly

correlated with a reduction in anhedonia

Reduction of depressive symptoms at 5 weeks associated with high scores of acutely

experienced pleasurable self-dissolution and by low scores for dread of ego dissolution

Qualitative; change from disconnection to connection, and from emotional avoidance

to acceptance

(6, 7, 40,

84–88)

(Continued)
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TABLE 1 | Continued

Condition/Measures Design N, age Psychedelic/dose Clinical/neurobiological outcomes References

TRD

MADRS, HAM-D, MEQ30, BPRS+,

CADSS, HRS at baseline, Day 1

(D1), D2 and D7 after dosing

Serum BDNF and cortisol at D0

and D2

Randomized

placebo-

controlled trial

Antidepressant free

29 TRD

Aya = 14 (11F)

39.71 yrs

(±1.26)

Placebo = 15

(10F)

44.2 yrs

(±11.98)

45 HCs (25F)

31.56

yrs (±9.90)

Ayahuasca

0.36 ± 0.01 mg/ml

of N, N-DMT (mean

± S.D)

Significant reduction in depressive symptoms (MADRS) at D1, D2, and D7 vs. placebo

Response rates significantly higher in the aya group at D7 (64 vs. 27%)

Aya increased BDNF at D2 vs. placebo in both HCs and TRD but no significant differences

between HC and MDD

No significant differences in suicidality between aya vs. placebo

Aya acutely increased salivary cortisol levels in both TRD and in HCs.

48 h after aya no difference in the cortisol awakening response between TRD and HCs

Aya reduced CRP levels in both TRD (higher at baseline) and HCs compared to placebo

TRD group treated with aya showed a significant correlation between larger reductions of

CRP and lower depressive symptoms 48 h after aya.

No significant changes in IL-6 levels

(89–93)

MDD

SPECT (8 h post-dose)

MADRS, HAM-D, BPRS

(Anxious-Depression subscale)

YMRS, CADSS

Scales at 10min before (baseline),

40, 80, 140, 180min post-dosing

and 1, 7, 14, 21 days

Open label

Antidepressant free

17 MDD (14F)

(3: mild,

13:moderate,

1:severe)

42.71

yrs (12.11)

Ayahuasca

(2.2 mL/kg)

Significant decrease in MADRS and HAM-D (and subscales of the BPRS) across all time

points

No significant changes in YMRS scores

Significant increases in the CADSS from 40 to 80min

Increased blood perfusion in the left nucleus accumbens, right insula and left subgenual area

Significant acute (40, 80, 140, 180min) and post-acute (1, 7, 14, 21 days) decreases in

suicidality in secondary analysis using MADRS subscale among participants with baseline

suicidality (n = 15)

(94, 95)

MDD

HAM-D, MADRS, BPRS

(Anxious-Depression subscale),

YMRS

Scales at 10min before (baseline),

40, 80, 140, 180min post-dosing

and 1, 7, 14, 21 days

Open label

Antidepressant free

6 MDD (4F)

(2:mild,

3:moderate,

1:severe)

44.16

yrs (±13.55)

Ayahuasca

(0.8 mg/mL DMT)

HAMD: significant decrease at D1, D7, D21 vs. baseline

MADRS: significant decrease at 180min, D1, D7, D21 vs. baseline

BPRS-AD subscales: decrease at 140, 180min, D1, D7, D14, D21 vs. baseline

No significant changes in YMRS scores

(96)

Depression and anxiety

symptoms in cancer

GRID-HAM-D, HAM-A, BDI, STAI,

POMS, HRS, 5D-ASC, PEQ MEQ30,

M scale, BSI, MQOL, LAP-R, LOT-R,

PIL, DTS, PEQ, FACIT-Sp,

SROS, FMS

Randomized,

double-blind,

cross-over trial,

counterbalanced

51 (25F)

56.3 yrs (1.4)

Psilocybin (1 or 3

mg/70 kg) and

high dose (22 or 30

mg/70 kg)

5 weeks apart

Significant antidepressant and anxiolytic effects (HAMA, GRID-HAM-D)

At 6 months; 83% (HAM-A) and 79% (GRID-HAM-D) met the criteria for response

Significant improvements in BDI, STAI-state scale (STAI-S), STAI-T and POMS

Mystical-type psilocybin experience on session day mediated therapeutic effect of psilocybin

(81)

Adjustment disorder and/or

generalized anxiety in cancer

HADS, BDI, STAI-S and STAI-T, BDI

Outcomes assessed prior to

crossover at 7 weeks, and up to 26

weeks after dosing session 2

Double-blind,

placebo-

controlled,

crossover

29 (18F)

56.28

yrs (12.93)

Psilocybin (0.3

mg/kg)

Or niacin (250mg)

Immediate and sustained reductions in anxiety and depression symptoms (HADS, BDI,

STAI-S and STAI-T) that remained significant until final follow-up.

At 6.5-months: anti-depressant (BDI) or anxiolytic response rates (HAD-A) 60–80%

At 4.5 yrs follow-up (16 alive, 15 participated);

∼60–80% met criteria for clinically significant antidepressant or anxiolytic responses

71–100% attributed positive life changes to the psilocybin-assisted therapy and rated it

among the most personally meaningful and spiritually significant experiences of their lives

Reductions in suicidal ideation and loss of meaning

(82, 97, 98)

(Continued)
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TABLE 1 | Continued

Condition/Measures Design N, age Psychedelic/dose Clinical/neurobiological outcomes References

Anxiety symptoms in cancer

patients

EORTC-QLQ-30, STAI, HADS,

Visual Analog Pain Scale, SCL-90-R

Outcomes at baseline, 1-week,

2-months, 12-months

Double-blind,

randomized,

active placebo-

controlled pilot,

then into

open-label

crossover

12 (4F)

51.7 yrs

LSD (200 mcg) (n =

8)

Or 20 mcg with

an open-label

crossover to 200

mcg after initial

blinded treatment (n

= 4)

2–3 weeks apart

2-months: significant reductions in STAI, sustained at 12 months

Qualitative follow up at 12-months: insightful, cathartic, and interpersonal experiences,

accompanied by a reduction in anxiety (77.8%), increase in quality of life (66.7%)

(99, 100)

Anxiety/adjustment disorder in

advanced stage cancer

5D-ASC, STAI, BDI, POMS regularly

up to 6 months

Double-blind

placebo-

controlled

cross-over trial

12 (11F)

36–58

yrs (range)

Psilocybin (0.2

mg/kg) or niacin

(250mg)

2 separate

dosing sessions

Significant decreases were observed in STAI scores at 3-months follow-up, and BDI scores

at 6-months

All 12 participants completed the 3-month follow-up

8 completed the 6-month follow-up (two subjects died and two became too ill to continue)

(80)

Obsessive compulsive disorder

(OCD)

YBOCS, VAL at 0, 4, 8, and 24 h,

HRS at 8 h

Open label

proof-of-

concept pilot

Antidepressant

free (failed to

respond to at

least 1 SSRI for

12 weeks)

9 (2F)

40.9 yrs (±13.2)

Psilocybin po (25,

100, 200, and 300

mcg/kg at 1-week

intervals)

23–100% decrease in YBOCS score (no dose response) (15)

PHQ, Patient Health Questionnaire; QIDS, Quick Inventory of Depressive Symptoms; SHAPS, Snaith-Hamilton Pleasure Scale; STAI, The State-Trait Anxiety Inventory (STAI) trait scale (STAI-T); POMS, Profile of Mood States; HAM-A,

Hamilton Anxiety Rating Scale; GRID-HAM-D; HADS, Hospital Anxiety and Depression Scale; POMS, Profile of Mood States; HAM-D, Hamilton Rating Scale for Depression; MADRS, Montgomery-Asberg Depression Rating Scale; BPRS,

Brief Psychiatric Rating Scale; YMRS, Young Mania Rating Scale; BHS, Beck hopelessness scale; SPECT, single photon emission tomography; CADSS, Clinician Administered Dissociative States Scale; DASS, Depression, Anxiety, and

Stress Scale; DPES, Dispositional Positive Emotion Scale; PANAS-X, Positive and Negative Affect Schedule - X; 5D-ASC, 5-Dimensions Altered States of Consciousness questionnaire; CADSS, Clinician Administered Dissociative States

Scale; SPECT, single photon emission tomography; HRS, Hallucinogenic Rating Scale; MEQ, Mystical Experience Questionnaire; F, female; HC, healthy controls; FC, functional connectivity; C-SSRS, Columbia-suicide severity rating

scale; PFC, prefrontal cortex; vPFC, ventromedial prefrontal cortex; GAF, Global Assessment of Functioning; aya, ayahuasca; BDNF, Brain-derived neurotrophic factor; TRD, treatment-resistant depression; DMT, Dimethyltryptamine;

YBOCS, Yale-Brown Obsessive Compulsive Scale; HRS, Hallucinogen Rating Scale; BPD, borderline personality disorder; BEAQ, Brief Experiential Avoidance Questionnaire; vs., versus; CRP, C-reactive protein; 11D ASC, 11 dimension

altered states of consciousness questionnaire; M scale, Mysticism Scale; BSI, Brief Symptom Inventory; MQOL, The McGill Quality of Life Questionnaire; LAP-R, The Life Attitude Profile-Revised; LOT-R, Life Orientation Test-Revised;

PIL, Purpose in Life test; DTS, Death Transcendence Scale; PEQ, Persisting Effects Questionnaire; FACIT-Sp, Functional Assessment of Chronic Illness Therapy; SROS, Spiritual-Religious Outcome Scale; FMS, Faith Maturity Scale;

EORTC-QLQ-30, European Cancer Quality of Life Questionnaire; FS, Flourishing Scale; WSAS, Work and Social Adjustment Scale; WEMWBS, Warwick-Edinburgh Mental Well-being Scale; SIDAS, Suicidal Ideation Attributes Scale;

PRSexDQ, Psychotropic-Related Sexual Dysfunction Questionnaire; LEIS, Laukes Emotional Intensity Scale; EBI, Emotional Breakthrough Inventory; PTCS, Post-Treatment Changes Scale; RRS, Ruminative Response Scale; VAL, visual

analog scale; dFC, dynamics of functional connectivity; STAR-C, Scale to Assess Therapeutic Relationship – Clinician version; STAR-P, Scale to Assess Therapeutic Relationship – Patient version; MGH-ATRQ, Massachusetts General

Hospital Antidepressant Treatment History Questionnaire; MINI, Mini International Neuropsychiatric Interview; MSI-BPD, McLean Screening Instrument for Borderline Personality Disorder; ASRS, Adult Self-Report Scale; EQ-5D-3L, Euro

QoL-5 dimension-3 level.
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IL-1β (122). Although this was an exploratory study, neither
the cortisol nor the immune markers correlated with subjective
experiences (122). The precise impact of psychedelic induced
acute cortisol activation and whether this is a therapeutic
component is not fully clear, nor is the predictive implications
of baseline cortisol or hormonal levels on the response to
psychedelic therapy or on sustained effects. Similarly, the clinical
relevance of the immune-modulatory effects is not yet clear.

Fear and Threat Systems
When threat systems become excessively or repeated activated,
which then exceeds an organism’s ability to meet the demands
(allostatic overload), psychopathology may ensue (123, 124).
Psychedelics modulate acute and sustained fear/threat responses.
A study in mice injected with low doses of psilocybin resulted
in extinguished cued fear conditioning significantly more rapidly
than high-dose psilocybin or saline-treated mice (125). A
previous study in rats showed that N,N-DMT initially resulted
in anxiogenic responses, but the long-lasting effects tended
to reduce anxiety by facilitating the extinction of cued fear
memory (126). Similarly, chronic, intermittent, low doses of
DMT produced enhanced fear extinction learning without
impacting working memory or social interaction and exhibited
an antidepressant-like effect in the forced swim test (FST) in
rats (127).

A recent study in male mice using the relatively selective
5-HT2A/2C receptor agonist DOI (1-(2,5-Dimethoxy-4-
iodophenyl)-2-aminopropane) showed that it accelerated fear
extinction, reduced immobility time in the FST, increased the
density of transitional dendritic spines in the frontal cortex, and
for the first time showed epigenetic changes in enhancer regions
of genes involved in synaptic assembly which lasted for 7 days, in
conjunction with more transient transcriptomic changes (128).
The clinical relevance of putative epigenetic changes in humans
are not yet clear (129).

From the neuroendocrine mechanistic perspective, a study
of psilocybin treatment in male mice, showed that psilocybin
acutely increased plasma corticosterone and anxiety like
behaviors in the open field test (OFT) (130). The acute anxiogenic
effects correlated with the post-acute anxiolytic effects and
chronic corticosterone administration suppressed the psilocybin
induced acute corticosterone and behavioral changes (130). The
authors postulated that psilocybin may act as an initial stressor
that provides resilience to subsequent stress (130). Indeed, this
transient acute anxiety and subsequent attenuation of anxiety can
occur in some individuals who undergo psychedelic therapy. It is
important to note that not all pre-clinical studies are consistent,
in part due to strain andmodel effects. The aforementioned study
did not find significant changes in the sucrose preference test
or the FST following psilocybin in C57BL/6J male mice (130),
echoing a previous study which did not show effects of psilocin
or psilocybin on the FST or in the OFT in Flinders Sensitive Line
rats (131).

Another rodent study comparing psilocybin to the N-methyl-
D-aspartate receptor antagonist—ketamine—showed that rats
that received psilocybin and 5-min weekly arena exposure for
the first 3 weeks exhibited significantly less anxiety-like behavior

in the elevated plus-maze (EPM) compared to controls, whereas
rats that received the ketamine and weekly arena exposure
did not display a significant decrease in anxiety in the EPM
(132). Rats that received psilocybin or ketamine and no arena
exposure did not display a significant decrease in anxiety in the
EPM (132). The authors postulated that psilocybin facilitates
a period of “behavioral flexibility” in which exploration of a
non-home-cage environment reduces their anxiety during future
exploration of a novel environment (132). In the same study,
psilocybin decreased immobility in the FST for up to 5 weeks
after administration compared to control rats, whereas ketamine
injected rats displayed decreased immobility up to 2 weeks,
suggesting a longer lasting therapeutic effect of psilocybin over
ketamine (132). It will be intriguing to see if clinical trials
comparing psilocybin to ketamine reproduce the putative longer
lasting therapeutic effect of psilocybin (NCT03380442).

In humans, dysregulated fear and threat responses underlie a
range of psychiatric disorders and psychedelic therapymay revise
dysregulated or maladaptive fear/threat responses. A review of 20
human studies of psychedelics in ICD-10 anxiety disorders from
1940 to 2000, albeit of sub-optimal methodological rigor (e.g.,
lack of control groups, blinding and standardization), indicated
improvements in anxiety levels (133). The subsequent clinical
trials in people diagnosed with cancer (80–82, 134) and the
studies in depression (4, 6) also suggest anxiolytic effects of
psychedelic therapy.

One of the notable conditions associated with dysregulated
fear conditioning (and avoidance of conditioned contextual
cues), together with emotional regulation, and dysfunctional
neural activity in cortico-amygdala circuits, involving
exaggerated amygdala and attenuated mPFC activity, is
Post-Traumatic Stress Disorder (PTSD) (109, 135–139). Other
anxiety disorders share overlapping neurobiological pathways
linked to fear/threat circuitry and attentional bias of negative
valenced information, though there is variability in the fear
evoking stimuli (106, 140, 141).

While PTSD overlaps with other conditions in the domains
of hypervigilance, avoidance and altered emotional valance,
the vivid re-experiencing of the trauma is perhaps a
point of divergence from many other conditions. Memory
reconsolidation dysregulation is a cardinal clinical feature of
PTSD andmemories can be strengthened or weakened according
to new experiences. Classical psychedelics have the capacity to
acutely enhance the vividness and recall of autobiographical
memories (142) which in the context of psychedelic therapy
requires great care and attention. These autobiographical
memories are highly influenced by environmental inputs such
as music (143), which is linked to increased parahippocampal
cortex-visual cortex enhanced visual imagery, including imagery
of an autobiographical nature (144). In terms of therapeutic
utility, it is noteworthy that psilocybin leads to more vivid
and visual recollections, associated with enhanced activation
of visual and sensory cortical regions after viewing positive
autobiographical memory cues (145). In terms of advancing
the mechanistic understanding, undoubtedly future preclinical
studies will delve into the impact of psychedelics on memory
engram storage and retrieval (146, 147).
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It is not known whether psychedelic therapy has the
potential to augment therapies, such as cognitive processing
therapy or prolonged exposure therapy in PTSD or indeed
in any other anxiety disorder. However, there are preliminary
indicators that psychedelic therapy may be useful in PTSD
(148, 149). A retrospective, self-report survey of Veterans 30
days before and 30 days after participation in a psychedelic
clinical program utilizing ibogaine and 5-MeO-DMT reported
significant reductions in symptoms of PTSD, depression, anxiety,
suicidal ideation and cognitive impairment (148). Increases in
psychological flexibility (discussed below) were associated with
the improvements in self-reported PTSD symptoms, depression,
and anxiety (148). It will be interesting to ascertain whether
the same psychedelic therapy induced modulation of cortico-
limbic circuits (as discussed in section Loss construct above)
will underpin therapeutic changes in PTSD and other anxiety
disorders. As with all these studies, future challenges include
precisely disentangling the contribution of psychedelics from
psychotherapy, with some suggesting that the only way to
definitively achieve this would be via the rather challenging
process of administering psychedelic compounds under general
anesthesia or sleep (150).

Excessive fear/anxiety may lead to maladaptive patterns
of avoidance. Some of the potential therapeutic subjective
experiences induced by psychedelics involve the transition
from experiential (151, 152) and emotional (88) avoidance
to acceptance. Interestingly, attachment avoidance at
baseline may be linked with psilocybin-related challenging
experiences (153). Similarly, high neuroticism has been
associated with unpleasant/anxious reactions in 3,4-
ethylenedioxymethamphetamine (MDMA) therapy (154).
This again highlights the vital importance of preparation
sessions, particularly pertinent in those with marked
threat sensitivity/anxiety.

Frustrative Non-reward
The neural circuitry underling aggressive reactions (in the
context of negative emotions) involve amygdala hyper-
responsivity coupled with hypoactivity of prefrontal regions,
which overlaps with threat processing circuitry (155, 156). The
frustrative non-reward construct refers to “reactions elicited
in response to withdrawal/prevention of reward, i.e., by the
inability to obtain positive rewards following repeated or
sustained efforts.” This could potentially be associated with
some aspects of depression or aggression (157). Sensitivity to
frustration, particularly in relation to interpersonal rejection and
negative emotions focused on others (158) are components of
emotionally unstable personality (disorder) (EUPD) (borderline
personality disorder). It has been proposed that psychedelic
therapy could assist with emotion regulation, mindfulness,
and self-compassion in people with EUPD (159). There are
tentative indicators of potential utility. For example, a non-
controlled observational study of 45 HCs who participated
in an ayahuasca session reported significant improvements
in mindfulness capabilities and emotional regulation in the
subgroup with borderline-personality traits (Table 1) (160).
However, it is premature to draw any conclusions about the

utility of psychedelic therapy in EUPD or other maladaptive
personality traits/disorders (161).

In terms of other personality traits, data suggests that
psychedelics may increase openness (44, 162–164). Moreover,
higher baseline scores in the personality trait of absorption
(focused attention) (45, 46) and openness may be useful
predictors of a therapeutic psychedelic experience, reportedly
linked to increases in brain entropy as measured by fMRI
(and experiences of “ego-dissolution”) (165), though 5-HT2AR
binding did not appear to correlate with variations in openness
(166, 167), highlighting the individual variability in 5-HT2AR
levels after psilocybin and the complex relationship with
subjective changes.

Modulation of Neuroplasticity as a
Transdiagnostic Mechanism
In terms of RDoC, structural and functional neuroplasticity
broadly falls under molecular and cellular units of analysis
and probably applies, at least some degree, to all domains.
The ability of psychedelics to rapidly rewire neural circuitry by
engaging plasticity mechanisms has given rise to the term—
“psychoplastogens” (168–173). While, it is generally accepted
that the quality of the subjective experience, dependent on the
optimization of set and setting (context) is a critical component
of the therapeutic mechanism of action of psychedelic therapy
(87, 174), some propose that the subjective effects may not
be necessary to produce long-lasting changes in mood and
behavior (171).

The classical psychedelics may share glutamatergic activity-
dependent neuroplastic effects with ketamine (175) and
on a longer timescale, with some types of conventional
antidepressants (176). A study in rats utilized fluorescence
microscopy and electrophysiology techniques to show that
changes in neuronal structure are accompanied by increased
synapse number and function, and the structural changes in
the PFC and increase in glutamate induced by serotonergic
psychedelics appear to lead to BDNF secretion, neurotrophin
receptor tyrosine kinase (TrkB) stimulation, and ultimately
mammalian target of rapamycin (mTOR) activation (177).
Furthermore, both LSD and ketamine activated cortical
neuron growth mechanisms after <1 h, an effect which
lasted for several days (178) and could be divided into an
initial stimulation phase requiring TrkB activation and a
growth period involving sustained mTOR and AMPA receptor
activation (178).

In mice, a single dose of psilocybin resulted in a 10% increase
in spine size and density in the medial frontal cortex, which
occurred within 24 h and persisted for 1 month (179). In pigs,
a single dose of psilocybin compared to saline resulted in 4%
higher levels of hippocampal synaptic vesicle protein 2A (SV2A)
and lowered hippocampal and PFC 5-HT2AR density (180).
Seven days post-psilocybin, there was still significantly higher
SV2A density in the hippocampus and the PFC, whereas there
were no longer any differences in 5-HT2AR density (180).
Previous studies showed psychedelics increase early response
genes in the PFC (181, 182) and this was further confirmed by
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a rapid dose dependent preferential modulation of plasticity-
related genes in the PFC compared to the hippocampus
in rats (183).

A recent pre-clinical study compared ketamine to
Tabernanthalog (TBG)—a water-soluble, non-hallucinogenic,
non-toxic analog of ibogaine (184). Both TBG (50 mg/kg) and
ketamine reduced immobility in mice in the FST, though the
effects of ketamine weremore durable and ketanserin blocked the
effect of TBG (184). TBG promoted structural neural plasticity,
produced antidepressant-like effects and in keeping with the
transdiagnostic effects, also reduced alcohol and heroin-seeking
behavior in rodents (184). A single lower dose of TBG (10
mg/kg) administered to mice after unpredictable mild stress,
rescued deficits in anxiety like behavior and cognitive flexibility,
associated with restoration of excitatory neuron dendritic spines
(185), thus echoing the effects of ketamine (186), albeit via
different primary pathways.

Notwithstanding the gap between animal and human studies
in demonstrating molecular changes in plasticity, there are
indicators of alignment with the pre-clinical data. For example,
a magnetic resonance spectroscopy (MRS) imaging study in HCs
showed psilocybin modulated glutamate levels in the medial PFC
(187). In blood, one small preliminary clinical trial showed that 2
days after ayahuasca BDNF levels increased in both the TRD and
the HC groups (90), whereas other studies in HCs showed that
LSD increased blood BDNF levels (188, 189). However, BDNF
levels did not increase in a recent randomized pilot study in 22
HCs after a single dose of ayahuasca (117).

MODULATION OF POSITIVE VALENCE
SYSTEMS

PVS are primarily responsible for responses to positive
motivational situations or contexts, such as reward seeking,
consummatory behavior, and reward/habit learning.

Reward System
Reward-pathway dysfunction is associated with a range of
disorders (190, 191), including but not limited to mood (192,
193), anxiety (194, 195), addiction disorders (196, 197) and eating
disorders (198, 199). Psychedelic therapy induced attenuation of
maladaptive reward signaling, or a recalibration of reward/fear
systems (PVS/NVS) may be useful targets across the various
disorders. Psychedelics may alter maladaptive signaling in the
mesolimbic reward circuitry, either indirectly via 5-HT signaling
in the case of psilocybin or directly via activation of dopamine
receptors (D1 and D2) like LSD (200, 201). A microdialysis
study in awake rats found that intraperitoneal administration of
psilocin significantly increased extracellular dopamine but not
serotonin in the nucleus accumbens, increased serotonin and
decreased dopamine in the mPFC, but neither were altered in
the ventral tegmental area (202). An electrophysiological study
in male mice showed that LSD altered neuronal activity in both
the reticular andmediodorsal thalamus, partially mediated by the
D2 receptor (34). Another recent study in chronically stressed
male mice suggested that 5-HT2A independent mechanisms

may be of importance in psilocybin induced anti-hedonic
responses and associated cortico-mesolimbic reward circuit
modulation (203).

The functional interaction between 5-HT and dopamine
systems across molecular and neural networks was further
expounded by a recent study in mice showing psilocybin
increased FC between 5-HT-associated networks and resting-
state networks of the murine DMN, thalamus, and midbrain,
whereas it decreased FC within dopamine-associated striatal
networks (204). It should be noted that this contrasts with
the majority of human studies in HCs (as discussed below)
that report acute decreases in DMN FC, thus highlighting the
challenges of translation (32, 205–208).

In healthy humans, a structural MRI study showed a positive
correlation between psilocybin induced feelings of unity,
bliss, spiritual experience, and insightfulness subscales of the
5-Dimensional Altered States of Consciousness Rating Scale
(5D-ASC) and right hemisphere rostral anterior cingulate
thickness in HCs after controlling for sex and age (43).
Whereas, a double-blind placebo-controlled study of 38 healthy
experienced mediators that received psilocybin, reported
positive changes in appreciation for life, self-acceptance, quest
for meaning/sense of purpose at 4 months post-psilocybin
(209). A pooled sample of HCs (n = 110) who had received
between 1 and 4 oral doses of psilocybin (45–315 µg/kg)
from eight double-blind placebo-controlled experimental
studies (1999–2008), reported that the majority of subjects
described the experience as pleasurable, enriching, and
non-threatening (210).

A Positron emission tomography (PET) study in healthy
humans showed that psilocybin increased striatal dopamine
concentrations, and this increase correlated with euphoria
and depersonalization phenomena (211), whereas the mixed
5-HT2/D2 antagonist risperidone attenuated the effects of
psilocybin (212). This again re-enforces the divergence between
the potential therapeutic benefit of psychedelic therapy in some
reward dysregulated conditions, like depression, anxiety, and
addiction, while exacerbating conditions like psychosis spectrum
and manic disorders.

Addiction
The multi-layered complexities underlying addiction disorders
are not only limited to reward and habit dysregulation but may
include other constructs such as impulsivity and compulsivity
(213). Compared to other recreational substances, psychedelics
exhibit minimal reinforcing effects and are among the least
harmful, with minor physiological side effects (24, 214, 215).
Furthermore, preliminary clinical studies indicate a therapeutic
use in alcohol use disorder, and for smoking cessation (216, 217).
An open label pilot study of oral psilocybin in one or two
supervised sessions in addition to Motivational Enhancement
Therapy reduced alcohol consumption, which was maintained at
36 weeks, in a group of 10 participants with alcohol dependence
disorder (10, 218). Although the mechanisms have yet to be
fully elucidated, changes in alcohol consumption were associated
with what is described as the “mystical” quality of the psilocybin
experience (10).
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Consistent with this, a subsequent online survey (n = 343)
of people with prior alcohol use disorder, reported that insight,
mystical-type effects, and personal meaning of experiences,
together with higher psychedelic dose, were associated with a
greater reduction in alcohol consumption (219). However, the
potential mediating influence of negative and positive valence
system modulation should also be acknowledged. Interestingly,
neither psilocybin nor LSD administered in a high dosage
regimen or chronic microdosing regime had long-lasting effects
on relapse-like drinking in an alcohol deprivation effect rat model
(220). Only sub-chronic treatment with psilocybin produced a
short-lasting anti-relapse effect (220). A recent study showed that
psilocybin restored alcohol dependence–induced metabotropic
glutamate receptor (mGluR2) down-regulation and reduced
alcohol-seeking behavior in rats (221). Interestingly, in a rodent
food reward model, low dose psilocybin and ketamine failed
to positively affect motivation or attention, though subtle
improvements in attention and impulsive behavior were noted
in “low performing” rats (222).

A pilot study of psilocybin and cognitive-behavioral therapy in
people with tobacco addiction reported that 12 of 15 participants
(80%) showed 7-day point prevalence abstinence at 6-month
follow-up (9). Smoking cessation outcomes were significantly
correlated with measures of mystical experience, of whom
9 of the 15 participants (60%) met criteria for “complete”
mystical experience, defined as a score of ≥60% on each of
the following subscales: unity, transcendence of time and space,
ineffability, sacredness, noetic quality, and positive mood (223).
A follow up qualitative study of participants (n = 12) reported
vivid insights into self-identity, together with experiences of
interconnectedness, awe, and curiosity which persisted beyond
the duration of acute dosing (224). Clinical trials across a range of
addiction disorders are currently underway to determine whether
these promising preliminary studies progress to clinical utility
(Table 3).

Depression
Reward hyposensitivity and decreased approach motivation is
related to anhedonia, a cardinal feature of the Depression
(192, 225). There are several psychological constructs by which
psychedelic therapy may re-ignite reward deficits in states of
anhedonia, including potential experiences of awe, curiosity,
(explorative search), novelty, intrinsic motivation, psychological
insight, and enhanced meaning/purpose (226). Conversely,
reward hypersensitivity and elevated approach motivation is
related to a subgroup of hypo/manic symptoms characterized by
excessive approach motivation and psychomotor hyperactivation
in the context of bipolar disorder (192). This reward hypo-
hypersensitivity divergence maps onto the contra-indication
of psychedelic therapy in bipolar type 1 disorders (BPAD I)
(226, 227) and caution will be required in the treatment of the
depressive phase of BPAD II (228). We await with interest the
results of an open label safety and efficacy psilocybin (25mg)
therapy study in depressed participants with BPAD II and the
future integration of dimensional approaches, such as reward-
related reactivity assessments (Table 3).

MODULATION OF AROUSAL AND
REGULATORY SYSTEMS

RDoC’s Arousal/Regulatory Systems are responsible for
generating activation of neural systems as appropriate for
various contexts and providing appropriate homeostatic
regulation of such systems as energy balance and sleep (74).

Arousal
Arousal is a continuum of sensitivity of the organism to
stimuli, both external and internal. Several interacting systems
are involved in arousal regulation, including but not limited
to, the sympathomedullary and the immuno-endocrine system,
which act as mediators to alter neural circuitry and function,
particularly in the corticolimbic system. Psychedelics are highly
context sensitive, “non-specific amplifiers” (229) of internal
and/or external signals (immediate environment), in part due
to the effects of 5-HT2AR signaling (230, 231). Psychedelics
acutely modulate the Autonomic Nervous System (ANS) (39),
neuroendocrine (232), and immune systems (233).

Psychedelics activate the sympathetic nervous system,
including blood pressure, heart rate, body temperature, and
pupillary dilation, probably via 5-HT2A and/or α1-adrenergic
receptor-mediated mechanisms (114, 234–236). A recent
randomized, placebo-controlled crossover trial in 25 HCs using
electrocardiographic recordings showed that LSD increased
sympathetic activity, which was positively associated with
a range of subjective effects, measured by 5D-ASC (39).
However, it should be noted that similar correlations were found
for the placebo condition. In contrast, ketanserin increased
parasympathetic tone and negatively associated with the
subjective effects of LSD (39).

As discussed above, psychedelics also acutely stimulate the
neuroendocrine system. In a seminal randomized placebo-
controlled study of healthy experienced psychedelic users, IV
DMT acutely and dose dependently increased blood cortisol,
corticotropin, and other hormones such as prolactin and
growth hormone (and ß-endorphin) (237). By 5 h post-dose,
all endocrine markers returned to baseline values (237, 238).
A double-blind, placebo-controlled study showed high dose
psilocybin (315 µg/kg) acutely increased plasma ACTH and
cortisol (and prolactin and thyroid stimulating hormone) in HCs
(239). LSD (200 µg) increased plasma concentrations of the
cortisol, cortisone, corticosterone, and 11-dehydrocorticosterone
compared with placebo in 16 HCs using a randomized, double-
blind, placebo-controlled cross-over study design (240). Other
studies have also shown acutely increased plasma levels of
cortisol, prolactin, oxytocin, and epinephrine due to LSD
administration (234).

Psychedelics modulate the immune system via 5-HT1, 5-
HT2, and sigma-1 receptor activity (18, 233, 241–248). Altered
immune system function, mainly characterized by chronic low-
grade inflammation is associated with a range of psychiatric
disorders (57, 249–251) and it remains an open question whether
the potential anti-inflammatory activity of psychedelics will play
a role in autoimmune disorders (252) or chronic pain (253, 254).
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Sleep-Wakefulness
Sleep interference is almost ubiquitous across psychiatric
disorders (255). Psilocybin (0.26 mg/kg) increased REM sleep
latency in a randomized, double-blind placebo controlled cross
over study of 20 HCs (256). Psilocybin suppressed slow-wave
activity in the first sleep cycle but did not affect NREM sleep,
EEG power spectra in NREM or REM sleep across the whole
night (256).

MODULATION OF SOCIAL PROCESSING
SYSTEMS

RDoC broadly defines systems for social processes as mediating
responses in interpersonal settings of various types, including
perception and interpretation of others’ actions (74). The
biologically encoded time-lagged personal narrative is
constantly under the influence of bidirectional information
exchange processes with the wider socio-environmental system.
The multifaceted neural circuitry and molecular signaling
pathways underlying social cognition, under the influence
of environmental cues, are of fundamental importance to
social species (257–259). A complex intertwined relationship
exists between social isolation, disconnectedness, perceived
disconnection, and poor mental health (158, 260). Psychedelic
compounds alter social cognitive processes (Table 2) and studies
in rodents are beginning to elucidate the underlying mechanistic
pathways. A study in male mice showed that repeated doses
of LSD (30 µg/kg, daily for 7 days), but not a single dose,
resulted in more time interacting with a stranger mouse in
the direct social interaction test, associated with potentiation
of mPFC excitatory transmission via 5-HT2A and AMPA
receptors and via an increasing phosphorylation of the mTORC1
protein (269). Moreover, the inactivation of mPFC glutamate
neurotransmission impaired social behavior and negated the
prosocial effects of LSD (269). Another study suggested that
psilocybin attenuated some of the sociability deficits in a prenatal
valproic acid mouse model of autism (270).

Affiliation and Attachment
Experiences of disconnection or exclusion are common across
psychiatric disorders and can manifest as social withdrawal,
apathy, and anhedonia (260). Using a paradigm designed to
induce feelings of social exclusion, a double-blind, randomized,
counterbalanced, cross-over study of healthy participants (n
= 21) reported that psilocybin induced reduced feelings of
social exclusion (267) (Table 2). A placebo-controlled, double-
blind, random-order, crossover study conducted using LSD (100
µg) in 24 HCs and LSD (200 µg) in 16 HCs, enhanced the
participants’ desire to be with other people and increased their
prosocial behavior on the Social Value Orientation test (114,
234). In addition to significant positive changes in gratitude,
life meaning/purpose, forgiveness and death transcendence, a
double-blind study comparing low and high dose psilocybin
therapy in HCs reported sustained increases in experiences of
interpersonal closeness at 6 month follow up, associated with
mystical-type experiences (266). It is interesting to note that

psychedelics can increase oxytocin plasma levels (234), though
the therapeutic relevance is not yet clear.

In keeping with possible increases in openness (210) and
connectedness (88, 271, 272), studies have shown that psychedelic
use may be associated with increases in nature relatedness
(273–275), pro-environmental behaviors (276) and more broadly
experiences of personal meaning (81, 148, 209, 219, 277).
Taken together, psychedelic therapy induced changes in social
processing systems and specifically social reward processing
and behavior and enhanced experiences of connectedness (88)
has potential therapeutic implications not only for depressive,
anxiety, addiction, some personality disorders, but perhaps for
social deficits in subtypes of adult autism spectrum disorders.

Perception and Understanding of Others
There are preliminary indictors that classical psychedelics may
enhance certain types of empathy (Table 2). LSD (114, 234) and
psilocybin (268) acutely increased explicit and implicit emotional
empathy, using the multifaceted empathy test and moral
dilemma task in HCs, compared to placebo (268). Psilocybin did
not affect the ability to take another person’s perspective or affect
the understanding of another person’s mental state (cognitive
empathy), nor did it affectmoral decision-making (268). Using an
aesthetic judgment task involving social feedback, LSD increased
social adaptation to group opinions that were relatively similar to
the individuals own opinions, associated with 5-HT2A activation
and increased activity of the mPFC (263). Comparisons of
psychedelic therapy delivered in individual settings compared
to group settings offers an intriguing avenue to further explore
how social processing domains and constructs such as perception
and understanding of others may be shaped by the context in
which the therapy is delivered. Non-controlled group studies
have suggested that shared experiences, including acute relational
experiences of perceived togetherness, may facilitate enhanced
perception and understanding of others (272, 278). Controlled
transdiagnostic studies directly comparing group to individual
psychedelic therapy could decipher the relative therapeutic
contribution of a group setting either before, during or after
psychedelic administration.

Perception and Understanding of Self
Notwithstanding the challenges of disentangling self from
self-as social agent, current thinking implicates altered self-
processing as the primary mode of action of psychedelic therapy
with downstream implications for social processing systems
(33). However, elucidating the precise temporal dynamics of
altered self and self-as social agent, whilst also considering the
pervasive emotional background is challenging. Nonetheless, the
experience of a transient attenuation of the demarcation between
self and other/environment or “ego dissolution” appears to be a
pivotal transdiagnostic therapeutic mechanism (Table 2). This is
especially relevant for excessive self-referential processes, which
often manifest with negative valence. For example, ruminative
or obsessional thoughts, which are components across a range of
disorders, such as depression, anxiety disorders, eating disorders,
addiction disorders and some types of personality disorders.
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TABLE 2 | Systems for social processes.

Condition/measures Design N, Age Psychedelic/dose Clinical/neurobiological outcomes References

Health controls

5D-ASC, EDI

rs-FC

MRS

Double-blind,

placebo-

controlled,

parallel group

60 HCs

30 psilocybin,

F12, age 22.73

(2.90)

30 placebo,

F13, age 23.20

yrs (3.65)

Psilocybin (0.17 mg/kg) Psilocybin associated with acutely elevated medial PFC glutamate, correlated with

negatively experienced ego dissolution

Lower glutamate levels in hippocampal glutamate correlated with positively

experienced ego dissolution

Significantly less co-activation under the psilocybin vs. placebo in visual networks,

both subcomponents of the DMN (anterior and posterior) and the auditory network

Widespread increases in between-network FC observed under psilocybin vs. placebo

(187)

Health controls

MEQ30, 11D-ASC, EDI

PET: 5-HT2AR agonist

radioligand [11C]Cimbi-36

Psilocin plasma concentration

Participants

blind to dose

8 HCs

(3F)

Mean age 33.0

± 7.1 yrs

Psilocybin between 3 and 30mg Subjective intensity ratings positively correlated with neocortical 5-HT2AR occupancy

and plasma psilocin levels

Positive associations mean intensity ratings and MEQ30, global 11-D- ASC score,

and EDI score, and intensity ratings correlated also with both occupancy and with

psilocin levels

(261)

Health controls

5D-ASC, PEQ

Double-blind

placebo

controlled

5-day

silent retreat

39 HCs

(experienced

meditators)

(15F)

51.66 yrs

(± 8.32)

Psilocybin 315 mcg/kg Psilocybin associated with increased meditation depth and positively experienced

ego-dissolution

Alterations in the DMN network, particularly a decoupling of medial PFC and PCC

associated with subjective ego dissolution

At 4 months post-psilocybin; positive changes in appreciation for life,

self-acceptance, quest for meaning/sense of purpose

(208, 209)

Health controls

5D-ASC

PANAS

Social interaction task

Social Influence paradigm

fMRI and eye tracking

Double blind,

randomized,

counterbalanced,

crossover

24 HCs (6F)

25.42 yrs (3.69)

(1) Placebo + placebo (179mg

mannitol/1mg aerosil, po)

(2) Placebo + LSD; 100 mcg po)

(3) Ketanserin (40mg po) + LSD

(100mcg, po) Aesthetic

judgment task

LSD decreased the response to participation in self-initiated compared with

other-initiated social interaction in the posterior cingulate cortex (PCC) and the

temporal gyrus, more precisely the angular gyrus

LSD decreased the efficiency of establishing joint attention

ketanserin blocked effects

LSD increased social adaptation but only if the opinions of others were similar to the

individual’s own

Increases were associated with increased activity in mPFC while participants received

social feedback

Ketanserin blocked effects

(262, 263)

Health controls

FFMQ, EQ, SC

2 MRIs (24 h pre and 24 h

post-dosing)
1H-MRspectroscopy and

resting-state BOLD

Open-label

uncontrolled

16 HCs (6F)

38.9 yrs (±7.8)

Ayahuasca

0.3 mg/mL DMT

Equivalent to 0.64mg DMT/kg

for 70 kg person

Reductions in glutamate + glutamine, creatine, and

N-acetylaspartate+N-acetylaspartylglutamate in the PCC

Glutamate + glutamine reductions correlated with increases in the “non-judging”

subscale of FFMQ

Increased connectivity between the PCC and the ACC, and between the ACC and

limbic structures in the right medial temporal lobe

Increased ACC-medial temporal lobe connectivity correlated with increased scores

on the SC questionnaire

Post-acute neural changes predicted sustained elevations in non-judging 2

months later

(264)

Health controls

VAS

2 fMRIs

Within-subjects,

counterbalanced

Placebo-

controlled

15 HCs (2F)

32 yrs (±8.9)

(1) receiving saline injection

(“placebo,” PCB-session),

12 min task-free fMRI scan,

eyes closed

(2) 2 mg psilocybin infusion

(“psilocybin,” PSI-session),

midway through 12 min fMRI

Psilocybin-induced ego-dissolution was associated with decreased FC between the

medial temporal lobe and high-level cortical regions and with a “disintegration” of the

salience network and reduced interhemispheric communication

Individuals with lower diversity of executive network nodes were more likely to

experience ego-dissolution under psilocybin

(265)

(Continued)
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TABLE 2 | Continued

Condition/measures Design N, Age Psychedelic/dose Clinical/neurobiological outcomes References

Health controls

HRS, 5DASC, M-scale,

MEQ30, SOCQ, FMS, PEQ,

DSES, DTS, GQ-6

Spiritual practices

questionnaire

Brief RCOPE

Double-blind,

randomized

75 HCs (25

each group)

(45F)

42 yrs

(range 22–69)

(1) 1 mg/70 kg on sessions 1 and

2) with moderate-level

(“standard”) support for

spiritual-practice (LD-SS)

(2) 20 and 30 mg/70 kg on

sessions 1 and 2, respectively)

with standard support (HD-SS)

(3) 20 and 30 mg/70 kg on

sessions 1 and 2, with high

support for spiritual

practice (HD-HS)

High-dose psilocybin produced greater acute and persisting effects vs. low dose

At 6 months, compared with LD-SS, both high-dose groups showed large significant

positive changes on longitudinal measures of interpersonal closeness, gratitude, life

meaning/purpose, forgiveness, death transcendence, daily spiritual experiences,

religious faith and coping and community observer ratings

(266)

Health controls

Interactive virtual ball-tossing

game (Cyberball)

MRI, MRS

Double-blind,

randomized,

counterbalanced,

cross-over study

HCs (n = 21)

26.48 yrs (SD =

4.76), range

20–37 yrs

(9F)

Psilocybin 0.215 mg/kg po Reduced feeling of social exclusion

Reduced neural response in the dACC and the middle frontal gyrus compared to

placebo

Reduced neural response in the dACC significantly correlated with psilocybin induced

changes in self-processing and decreased aspartate (Asp) content

(267)

Health controls

Multifaceted empathy test and

the moral dilemma task

Double-blind,

randomized,

placebo,

controlled,

within-subject

design with 2

sessions

(separated by

10 days)

HCs (n = 32)

(5F)

26.72 ± 5.34

yrs, range

20–38 yrs

Psilocybin 0.215 mg/kg po Increased explicit and implicit emotional empathy, compared with placebo

No effect on cognitive empathy nor moral decision-making

(268)

Health controls

5D-ASC, AMRS, ARCI

multifaceted empathy test

Face emotion recognition task

social value orientation test

Acoustic startle

response measurement

Double-blind,

randomized,

placebo-

controlled,

crossover

40 HCs (20F)

28.6 ± 6.2 yrs;

range

25–51 yrs)

LSD (200 µg po) in 16 HCs

and 100 µg LSD in 24 HCs

Subjective closeness to others, openness, and trust increased by LSD, enhanced

explicit and implicit emotional empathy and impaired the recognition of sad and

fearful faces, enhanced the participants’ desire to be with other people and increased

their prosocial behavior

(114, 234)

F, female; QIDS, Quick Inventory of Depressive Symptoms; SHAPS, Snaith-Hamilton Pleasure Scale; STAI, The State-Trait Anxiety Inventory (STAI) trait scale (STAI-T); POMS, Profile of Mood States; HAMA, Hamilton Anxiety Rating

Scale; GRID-HAM-D; HADS, Hospital Anxiety and Depression Scale; POMS, Profile of Mood States; HAM-D, Hamilton Rating Scale for Depression; MADRS, Montgomery-Asberg Depression Rating Scale; BPRS, Brief Psychiatric Rating

Scale; YMRS, Young Mania Rating Scale; BHS, Beck hopelessness scale; SPECT, single photon emission tomography; CADSS, Clinician Administered Dissociative States Scale; PFC, prefrontal cortex; MRS, Magnetic Resonance

Spectroscopy; EDI, Ego Dissolution Inventory; PEQ, Persisting Effects Questionnaire; FFMQ, Five Facet Mindfulness Questionnaire; EQ, Experiences Questionnaire; SC, short version of the Self-Compassion questionnaire; ACC,

anterior cingulate cortex; 5D-ASC, 5-Dimensional Altered States of Consciousness Rating Scale; 11D-ASC, 11-Dimensional Altered States of Consciousness Rating Scale; EDI, Ego Dissolution Inventory; FFMQ, Five Facet Mindfulness

Questionnaire; EQ, Experiences Questionnaire; SC, Self-Compassion questionnaire; PEQ, Persisting Effects Questionnaire; LSD, lysergic acid diethylamide; VAS, visual analog scale; M-scale, Hood’s Mysticism Scale; SOCQ, States

of Consciousness Questionnaire; FMS, Faith Maturity Scale; PEQ, Persisting effects questionnaire; DSES, Daily Spiritual Experience Scale; DTS, Death Transcendence Scale; GQ-6, Gratitude Questionnaire; MEQ, Mystical Experience

Questionnaire; dACC, dorsal anterior cingulate cortex; HRS, Hallucinogen Rating Scale; AMRS, Adjective Mood Rating Scale; ARCI, Addiction Research Center Inventory.
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In contrast to disorders of constrained “self-focus,” which
may benefit from a “broader spectrum of thought patterns
and emotions” induced by psychedelic therapy (13, 33, 279),
psychosis spectrum disorders appear not to benefit. This may
be due to baseline features which include aberrant stability
between intrinsic and extrinsic self-processing networks (280),
aberrant salience attribution (281) and a loosening of higher-level
priors (13). Some of these experiences are attenuated by second
generation antipsychotics (e.g., clozapine, olanzapine, quetiapine,
and risperidone), which block 5-HT2A and dopamine receptors
(282). A previous study in HCs showed that risperidone
attenuated the effects of psilocybin (212).

The intensity of psilocybin induced subjective experiences,
including ego dissolution are dose dependent and appear
to correlate with cerebral 5-HT2ARs occupancy and plasma
psilocin levels (261). While the molecular cascade initiated
by 5-HT2AR activation and downstream cortical glutamate
modulation (24, 177) are key neurobiological substrates of self-
processing alterations, the full molecular pathways and how
they map onto the self-concept have yet to be fully determined,
and at least in this regard, only partial assistance can be
derived from preclinical models. From the perspective of refining
personalized-precision psychedelic therapy, a PET study in 16
HCs showed that lower neocortical 5-HT2AR binding before
psilocybin was associated with longer peak effects, a more rapid
decrease in subjective drug intensity effects and higher scores on
the Mystical Experience Questionnaire (283).

An MRS study in HCs showed that psilocybin acutely
elevated mPFC glutamate, which was associated with negatively
experienced ego dissolution, whereas lower levels in hippocampal
glutamate secondary to psilocybin, were associated with
positively experienced ego dissolution (187). A previous MRS
study of 16 HCs 1 day after consuming ayahuasca showed
reductions in glutamate and glutamine in the posterior cingulate
cortex (PCC), which correlated with increases in the “non-
judging” subscale of the Five Facets Mindfulness Questionnaire
(264). Similarly, one week after psilocybin therapy, glutamate and
N-acetylaspartate concentrations were decreased in the Anterior
Cingulate Cortex (ACC) in an open-label study of 24 patients
with MDD (83). A double blind, randomized, counterbalanced,
crossover study of 24 HCs utilizingMRI and eye tracking showed
that LSD decreased the response to participation in self-initiated
compared with other-initiated social interaction in the PCC
and the temporal gyrus, more precisely the angular gyrus (262)
(Table 2).

Neural Circuitry
One of the higher-order brain networks modulated by
psychedelics that has gained attention in recent years is the
DMN, associated with a range of experiences and conditions
(284), including but not limited to self-reflection and rumination
(13, 120, 265, 285, 286) and meta-cognitive processes (287).
Alterations in DMN rsFC have been demonstrated across a range
of disorders. However, a clear and consistent DMN signature
specific to any disorder has yet to emerge, underscoring the
complexities of mapping correlates of subjective experiences,

but also the limitations of biosignature exploration utilizing
categorical diagnoses.

Psychedelics reliably alter DMN circuitry and studies in
HCs reported decreases in rsFC within the DMN induced
by psilocybin (205), LSD (32, 207) and ayahuasca (206). In
fifteen HCs intravenous psilocybin resulted in a significant
decrease in the positive coupling between the mPFC and PCC
(205). LSD (75 µg) 100min after IV administration decreased
connectivity between the parahippocampus and retrosplenial
cortex and correlated strongly with ratings of ego-dissolution
and altered meaning in 20 HCs (207). Notwithstanding the
differences between experienced users who may be more
receptive to psychedelic therapy compared to people with mental
health disorders, ayahuasca resulted in a significant decrease in
activity through most parts of the DMN, including the PCC
and the medial mPFC in a group of ten experienced users
(206). A decoupling of the mPFC and PCC was associated
with positively experienced ego dissolution in a psilocybin
double-blind placebo controlled study of 38 healthy experienced
mediators (208). Furthermore, the meditators in the psilocybin
group reported increased meditation depth and positively
experienced ego-dissolution, while at 4 months post-psilocybin
they reported positive changes in appreciation for life, self-
acceptance, quest for meaning and sense of purpose (209).
Interestingly, alteration of the DMN is not limited to classical
psychedelics. Oral administration of MDMA (125mg) to 45 HCs
in a randomized, placebo-controlled, double-blind, crossover
design showed decreased connectivity within the DMN, two
visual networks, and the sensorimotor network (288). Another
recent placebo controlled study of 12 healthy males using
vaporized salvinorin A, acutely attenuated the DMN during peak
effects (first half of 20min scan) (289), highlighting the overlap
with classical psychedelics.

Unsurprisingly given the complex multi-modal nature of self-
processing, a single neural correlate such as the DMN may
not fully capture the complexities of the self-processing concept
(33, 290). Psychedelics alter global brain connectivity, of which
the DMN is but one. For example, increased global FC correlated
with ego dissolution in an LSD study of 15 HCs (291) and more
recently the subjective effects of LSD have been shown to be
non-uniform in time, depending on the particular state of the
brain at a given point in time (290, 292), with multi-modal
imaging techniques (fMRI, diffusion MRI, PET) highlighting the
importance of 5-HT2A receptors (27). Previous studies in HCs
showed that psilocybin (2mg) IV destabilized a frontoparietal
subsystem (293), whereas IV LSD (75 µg) and IV psilocybin
increased the fractal dimension of bold blood oxygen level
dependent (BOLD) time-series from regions assigned to the
dorsal-attention network (294). Furthermore, a recent rsFC fMRI
study in 10 healthy volunteers showed that the executive control
network was decreased at 1-week, which was associated with
increased mindfulness at 3 months, but there were no other
significant changes in other networks (295).

From a personalized point of view, a study suggested that
baseline brain connectivity may be a useful predictive marker
(41). This double-blind, placebo controlled, randomized, cross-
over study of 23 HCs who received oral psilocybin (0.2
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mg/kg) and underwent resting-state functional connectivity
fMRI scans at three time points (41) showed that psilocybin
reduced associative, and concurrently increased sensory brain-
wide connectivity over time from administration to peak-effects
(41). Furthermore, the participants who had the lowest values
in hyper-connected areas and had the highest values in hypo-
connected regions displayed the strongest psilocybin induced
changes in global brain connectivity (41).

In contrast to the aforementioned psychedelic induced acute
decreases in DMN integrity in HCs, an open-labeled study
in TRD (n = 20) reported an increase in DMN rsFC 1-day
post-psilocybin (40). The reduction of depressive symptoms at
5 weeks was predicted by high scores of acutely experienced
pleasurable self-dissolution and by low scores for dread of
ego dissolution (87). Furthermore, the increased ventromedial
prefrontal cortex-bilateral inferior lateral parietal cortex rsFC,
1-day post-dose, predicted treatment response at 5 weeks post-
dose (40). Data from this study (n = 16) (40) combined with
the psilocybin therapy vs. escitalopram study (n = 43) indicated
that psilocybin was associated with a global decrease in network
modularity, indicative of enhanced flexibility (as high modularity
scores indicate a greater degree of separation between brain
networks) (42). This decrease in modularity was associated with
improvements in depression scores at 6-weeks as measured by
the Beck Depression inventory (42). In contrast, no changes
in modularity were observed with escitalopram, suggesting a
tentative biomarker of response to psilocybin therapy.

MODULATION OF COGNITIVE SYSTEMS

The RDoC organizes cognitive systems into attention, working
memory, perception, memory (declarative), language, and
cognitive control constructs.

Cognitive Control
Cognitive control refers to a “system that modulates the
operation of other cognitive and emotional systems, in the service
of goal-directed behavior, when prepotent modes of responding
are not adequate to meet the demands of the current context.
Additionally, control processes are engaged in the case of novel
contexts, where appropriate responses need to be selected from
among competing alternatives” (74). This collection of executive
control processes include goal-selection, maintenance, updating,
as well as response selection and inhibition denotes the ability to
switch between different mental sets, tasks, or strategies and plays
a vital role in an individual’s ability to adapt to environmental
changes (296). The underlying neural circuitry involves the
default mode, salience, and executive networks, with 5-HT2ARs
playing an important role (297–299).

Psychedelics transiently impair certain aspects of cognition
in a dose-dependent manner (142, 300–302). For example, a
study in HCs showed that LSD (100 µg) compared to placebo
acutely impaired executive functions, cognitive flexibility, and
working memory on the Intra/Extra-Dimensional shift task, and
Spatial Working Memory task, but did not influence the quality
of decision-making and risk taking on the Cambridge Gambling
Task (302). Similarly, psilocybin decreased attentional tracking

ability in HCs, which the authors speculated was due to the
inability to inhibit distracting stimuli (303). More recently, re-
treatment with ketanserin (40mg) normalized all LSD-induced
cognitive deficits (302). Psychedelic induced impairment of
aspects of cognitive flexibility was also observed in a probabilistic
reversal learning paradigm in 19 HCs who received IV LSD
(75µg) or placebo at two sessions, two weeks apart (Kanen 2021).
In this study LSD resulted in more perseverative responding,
though the reward learning rate and to a lesser degree the
punishment learning rate were enhanced (304).

The complex relationship between cognitive flexibility, neural
flexibility, and emotion has recently been highlighted by an
open-label study of 24 patients with MDD (83). This study
showed that psilocybin therapy decreased perseverative errors
in a set-shifting task but did not impact response inhibition,
selective attention, or abstract reasoning (83). The improvements
in selective aspects of cognitive flexibility did not correlate with
improvements in depression. Unexpectedly, greater increases in
neural flexibility as measured by dynamics of FC (dFC) between
the ACC and PCC, and greater baseline dFC from the ACC were
associated with less improvement in cognitive flexibility (83).
The practical inferences for the precise-personalized psychedelic
therapy paradigm are not fully clear.

A retrospective survey self-report survey of U.S. Veterans in
a psychedelic clinical program, reported significant reductions
in cognitive impairment as measured by the Medical Outcomes
Study—Cognitive Functioning subscale (148). However, changes
in the negative valence domain may have led to secondary
subjective improvements in the self-reported cognitive domains
in this study. Similarly, limited conclusions can be drawn
from a non-controlled study in self-selected HCs showing
improvements in Cognitive flexibility and the Wisconsin Picture
Card Sorting Task 24 h after ayahuasca, which the authors
acknowledge could be attributed to practice effects (305).

The acute impairment in some executive domains
induced by psychedelic compounds is especially relevant to
neurodevelopmental disorders such as schizophrenia, which
notwithstanding the inter-individual variability are associated
with deficits in cognitive flexibility (306). The further acute
impairment in cognitive control induced by psychedelics may in
part explain the detrimental negative effects of these substances
in psychosis or in those with predispositions to psychosis.
Indeed, LSD induced “cognitive bizarreness” associated with
loss of self-boundaries and cognitive control as measured by the
5D-ASC in 25 HCs (307) and “mind-wandering” (308) may be
counterproductive for those at risk of developing psychosis.

A recent study focused on the claustrum, a thin sheet of gray
matter, embedded in the whitematter of the cerebral hemispheres
and situated between the putamen and the insular cortex, with a
rich supply of 5-HT2A receptors and glutamatergic connectivity
to the cerebral cortex. The claustrum is thought to be associated
with cognitive task switching (309, 310) and salience processing
(311), known to be dysfunctional in psychosis (312). Psilocybin
acutely reduced claustrum activity and altered its connectivity
with the DMN and frontoparietal task control network (FPTC)
in a study involving 15 HCs, thus implicating this region as a
potential mediator in psilocybin therapy (310).
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Obsessive Compulsive Disorder
OCD, frequently comorbid with anxiety and depression, involves
deficits in cognitive control, goal-directed planning habit, reward
processing (313–315) and negative valence system dysregulation,
including abnormal fear extinction (316). Rodent studies have
shown that psilocybin reduced digging in the marble burying
test—a surrogate for compulsive behavior (317, 318). However,
a recent rodent study showed that blockade of 5-HT2A or 5-
HT2CRs did not attenuate the effect of psilocybin on digging,
suggesting that a differentmechanism dominates this effect (318).
A psilocybin therapy proof of concept study of antidepressant
free people diagnosed with OCD (n = 9) that had failed to
respond to at least one SSRI, reported a 23–100% decrease in
the Yale-Brown Obsessive Compulsive Scale in the 24 h following
ingestion (YBOCS) (15) (Table 1). Limited conclusions can be
drawn from this study due to lack of a control group and lack
of a clear dose-response relationship to changes in the YBOCS.
Results from ongoing clinical trials in OCD will give a clearer
picture and it will be interesting to parse potential therapeutic
effects of psychedelic therapy according to cognitive control, and
negative and positive valence processing systems (Table 3).

Eating Disorders
Eating disorders also involve elements of altered cognitive
control/reward processing (319, 320), together with aberrant
fear/threat encoding processes or threat sensitivity associated
with body/food/weight gain/body perception. Enhanced
psychological flexibility induced by psychedelic therapy has been
proposed as a potential therapeutic mechanism of psychedelic
therapy in eating disorders (321). While a preliminary study
suggested a benefit of psychedelic therapy in improving
depression and well-being scores in people with a self-reported
lifetime diagnosis of an eating disorder (16), we await results
from ongoing clinical trials (Table 3) to determine whether
psychedelic therapy will lead to clinically meaningful benefits
in those with eating disorders (322). It is worth noting the
possibility that psychedelic therapy may be of utility for disorders
related to compulsive overeating, perhaps better categorized as
food addiction.

Psychological Flexibility
The “psychological flexibility” concept lacks precise definition,
but broadly refers to the ability to recognize and adapt to
various situational demands and shift mind-sets/behavioral
repertoires (323). It is associated with divergent thinking (DT), a
spontaneous and free-flowing pattern where many solutions are
possible, with the prospect of novel idea generation. Convergent
thinking (CT), in contrast, focuses on the delivery of a single
solution. Deficits in psychological flexibility underlie a broad
spectrum of psychopathologies. Excessively constrained thought
may occur in depression, PTSD/anxiety, OCD, addiction and
eating disorders, whereas excessively variable thought may occur
in ADHD or some personality disorders (324) and unconstrained
thought may occur in psychosis (31). Psychological flexibility
has been proposed as a potential transdiagnostic mediator
of psychedelic therapy (148, 325, 326). However, the precise
impact of psychedelics on psychological flexibility or on DT

and CT are not fully clear. For example, a recent double
blind, placebo-controlled study of sixty HCs, all of whom had
previous psychedelic experiences, found that psilocybin (0.17
mg/kg) acutely decreased CT, which remained decreased for 7
days, whereas measures of DT including fluency and originality
decreased, and scores of novelty increased compared to placebo,
which were associated with alterations in the DMN (187, 327).

Attention/Working Memory and Memory
(Declarative)
Psychedelics acutely and dose dependently impair attention (328,
329), memory task performance (142, 300, 302) and spatial
working memory (212). On the other hand, it appears that other
domains such as the recall and vividness of autobiographical
memory may be accentuated (142–145).

Language and Perception
A computational analysis of semantic and non-semantic
language in HCs who received IV LSD (75 µg) and placebo
reported that LSD was associated with unconstrained speech
(increased verbosity and a reduced lexicon) which was noted
to be similar to speech changes during manic psychoses
(330). Automated natural language processing methods (331,
332) or digital text analysis (333) may have the potential
to improve prediction of psychosis outcomes and there are
early indicators that quantitative descriptions of psychedelic
experiences derived using Natural Language Processing may
play a role in predicting therapeutic outcomes or trajectory in
psychedelic therapy (47).

Psychedelicsmay induce visual imagery (334–336), distortions
in the perception of time and space (337, 338) and synaesthesia
(339, 340). Auditory and tactile perceptual changes occur less
frequently but can occur at higher doses (210, 341). The
implications of alterations in these systems for personalized
psychedelic therapy are not fully clear, though it is interesting
to note the recent proof of concept study showing a role for
psilocybin therapy in migraine suppression (17), a condition
known to be associated with aberrant connections from the
somatosensory cortex to the frontal lobe (342).

Psychedelics over-engage primary sensory cortices and
mostly encompasses visual hallucinations (often geometric)
with preserved insight monitoring whereas hallucinations in
psychosis, are mostly related to overactivation of associative
networks, mainly include auditory hallucinations and poor
reality monitoring (341). Electrophysiological correlates of
IV DMT induced complex visionary experiences during
“breakthrough” periods in 13 HCs were associated with a
delta/theta rhythmicity (343). A further analysis of the same EEG
data with eyes closed reported an EEG wave signal similar to
those observed during eyes-open visual stimulation (344). The
changes in resting state EEG, which included decreased spectral
power in the alpha/beta bands, accompanied by widespread
increases in signal diversity, were not specific to the visual system,
but also correlated with somatic and metacognitive/affective
domains (343, 344). Interestingly, a recent EEG study in
freely moving rats showed some overlap with human studies,
with a time-dependent global decrease and desynchronization
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TABLE 3 | Currently registered clinical trials with psychedelics: potential for future integration of outcomes with RDoC.

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

Alcohol Addiction

Alcohol use

disorder

phase 2,

randomized,

double blind,

placebo

controlled, parallel

n = 60

NCT04141501

Psilocybin 25mg,

po, once (3-and

6-mo follow-up)

Mannitol

TLFB, MET

fMRI; rsFC

cue-reactivity &

Autobiographic

memory bloods;

genome-wide

epigenetic markers

ethylglucuronid, AST,

ALT, GGT, Cortisol

blood cells

differentiated into

cortical neurons

Potential

threat (anxiety)

Sustained threat

Reward

responsiveness:

anticipation,

initial response,

satiation

Reward learning:

probabilistic and

reinforcement

learning,

habit

Reward valuation:

ambiguity/risk,

delay, effort

Attention working

and

Declarative memory

Cognitive control:

goal

selection, updating,

response

selection; inhibition/suppression

Affiliation and

attachment

Perception and

understanding of

self and others

Circadian

rhythms sleep

and

wakefulnessarousal

Alcohol

dependence

phase 2

n = 180

NCT02061293

Psilocybin

25mg/70 kg po at

week 4, 25-40

mg/70 kg po at

week 8 Psilocybin

25-40mg/70 kg at

38 weeks

Diphenhydramine

50mg po at week

4, 50-100mg po at

week 8

PACS, AASE,

Readiness rulers,

TLFB, SIP

Motivational

Enhancement and

Taking Action (META)

Alcohol use

disorder

n = 10

Open label

Phase 2

NCT04718792

Psilocybin 25mg po

once Blood psilocin

levels

11-DASC, MEQ,

AWE-S, EDI, PACS,

AASE, MAAS

Other Addiction

Nicotine

dependence

n = 80

40 psilocybin

40 nicotine patch

NCT01943994

Psilocybin

(30mg/70kg)

13-week CBT for

smoking cessation

Subgroup; 50 (25 per

group) MRI week 2

before Target Quit Date

& week 5 (if abstinent

3rd MRI at 3

months)urinary

cotinine, Breath

Carbon Monoxide (CO)

Potential

threat (anxiety)

Sustained threat

Reward

responsiveness:

anticipation,

initial response,

satiation

Reward learning:

Probabilistic and

reinforcement

learning,

habit

Reward valuation:

ambiguity/risk,

delay, effort

Attention Working

and

declarative memory

Cognitive control:

goal

selection, updating,

response

selection; inhibition/suppression

Affiliation and

attachment

perception and

understanding of

self and others

Circadian

rhythms sleep

and

wakefulness

arousal
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TABLE 3 | Continued

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

Cocaine use

disorder

n = 40

phase 2

randomized pilot

NCT02037126

Psilocybin 0.36

mg/kg po

Diphenhydramine

100mg po

fMRI: DMN rsFC

Glutamate-Glutamine

(Glx)in the anterior

cingulate cortex and

hippocampus urine

cocaine metabolites

criminal involvement

outcomes

Opioid use

disorder

phase 1

open-label

NCT04161066

Psilocybin two

doses po 4

weeks apart

augmentation

buprenorphine/

naloxone, plus

guided counselling

OCS, MEQ, TLFB,

GSES, MLQ, BPI, GQ,

COWS

Methamphetamine

use disorder

n = 30

single blind,

randomized,

parallel

phase 1 & 2

NCT04982796

Psilocybin twice

(25mg & 30mg two

weeks apart) plus

6-week

psychotherapy

during residential

rehabilitation

program

Self-report

methamphetamine use

and urine Stimulant

Craving

Questionnaire-Brief,

BDI, SDS, GAD-7,

Experiences in Close

Relationships-Short

form CRP, IL-6, TNF-a,

IL-8, IL-10

Reward

responsiveness

Reward learning

Reward valuation

Affiliation and

attachment

perception and

understanding of

self and others

Habit

Eating Disorders

Anorexia

nervosa

open-label pilot

phase 1

n = 18

NCT04052568

Four moderate to

high doses

psilocybin, 20mg at

the first session,

then remain at

previous dose, or

increase by 5mg up

to a max 30mg

HADS, EDQLS,

EDE-Q, ANSOCQ

BMI

Acute

threat (fear)

Potential

threat (anxiety)

Sustained threat

Reward

responsiveness:

anticipation,

initial response,

satiation

Reward learning:

probabilistic and

reinforcement

learning,

habit

Reward valuation:

ambiguity/risk,

delay, effort

Attention working

and

declarative memory

Cognitive control:

goal

selection, updating,

response

selection; inhibition/suppression

Perception:

somatosensory

and visual

Perception and

understanding of

self & others

Circadian

rhythms sleep

and

wakefulnessarousal

Sensorimotor

dynamics

Habit

Anorexia

nervosa

open label

phase 2

n = 20

NCT04505189

3 doses of

psilocybin, max

25mg po

RMQ, EDE, EDE-Q

fMRI (2)

EEG (up to 5)

(Continued)
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TABLE 3 | Continued

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

Anorexia

Nervosa

open label

phase 2

n = 20

NCT04661514

Psilocybin 25mg po

once

EDE, PASTAS, BISS,

YBC-EDS-SRQ, EDI,

EDE-QS, QIDS, CIA,

ED-RR, 5D-ASC

Depression and Neurological Conditions

Mild Cognitive

Impairment

or early

Alzheimer’s

Disease

and clinical

depression

symptoms

open-label, phase

1, n = 20

NCT04123314

Psilocybin

(15mg/70 kg week

4 and 15 or

25mg/70kg

week 6)

CSDD, QOL-AD Loss Potential

threat (anxiety)

Sustained threat

Reward

responsiveness:

anticipation, initial

response

Attention working

and

declarative memory

Cognitive control

Language

Affiliation and

attachment

Perception and

understanding of

self

Circadian

rhythms sleep

andwakefulness

arousal

Depression and

anxiety in

Parkinson’s

Disease

n = 10

open-label

single-arm pilot

NCT04932434

Psilocybin 10mg if

tolerated 25mg 2

weeks later

MADRS, HAM-A,

PROMIS apathy &

Positive Affect and

Well-Being scales

neuro-qol (depression

& lower extremity

function, cognitive

function, fatigue,

concern with death and

dying, social roles and

activities scales

Loss Potential

threat (anxiety)

Sustained threat

Reward

responsiveness

Reward learning

Reward valuation

Attention Working

and

declarative memory

Cognitive control

Language

Affiliation and

attachment

perception and

understanding of

self

Circadian rhythms

sleep

andwakefulness

arousal

Sensorimotor

dynamics

Depression and Alcohol Addiction

MDD with

co-occurring

Alcohol use

disorder

double-blind,

placebo-controlled

phase 2

n = 90

NCT04620759

Psilocybin 25mg po

oncbrief

Motivational

Interviewing

intervention

GRID-HAMD, TLFB,

QIDS-SR, STAI blood

GGT, carbohydrate

deficient transferrin,

AST/ALT ratio

Loss Potential

threat (anxiety)

Sustained threat

Reward

responsiveness

Reward learning

Affiliation and

attachment

perception and

understanding of

self

Circadian rhythms

sleep

andwakefulness

arousal
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TABLE 3 | Continued

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

Major Depressive Disorder (MDD)

MDD

randomised,

double-blind,

active-placebo-

controlled

n = 60

NCT03866252

Treatment arm:

100µg LSD (first

session) and 100 or

200µg LSD

(second session)

po control arm

25µg LSD (first

session) and 25µg

LSD (second

session) po

IDS-SR/C, BDI,

SCL-90, EAQ, EHS,

JHS, TAS, VAS, SCQ,

5D-ASC, MS,

HAQ-T/P, AMRS-C/P,

NEO-FFI, Religiosity

Scale (Z-Scale), PEQ

sleep; actigraphy

blood BDNF

salivary cortisol

awakening responses

macrophage migration

inhibitory factor and

interleukin-1 beta

fMRI; DTI, ASL

Loss Potential

threat (anxiety)

Sustained threat

Reward

responsiveness

Affiliation and

attachment

perception and

understanding of

self

Circadian

rhythms sleep

andwakefulness

arousal

MDD

n = 60

randomized,

double blind,

placebo

controlled, parallel

phase 2

NCT03715127

Psilocybin 0.215

mg/kg, po, once

mannitol

po (placebo)

BDI, MADRS, 5D-ASC

fMRI

MDD

n = 80

randomized,

double-blind,

parallel

phase 2

NCT03866174

NCT04353921

Psilocybin 25mg

po once or niacin

100mg

po (placebo)

MADRS, SDS web

surveys & telephone

interviews at months 2,

3, 4, 5 and 6, 8, 10, 12,

14, 16, 18, 20, 22 and

24

MDD

n = 18

placebo-

controlled, blinded

phase 1

NCT03554174

2 experimental

sessions 4

weeks apart two of

the following three:

1) placebo 2)

psilocybin (0.1mg/kg)

3)

psilocybin (0.3mg/kg)

GRID-HAM-D,

QIDS-SR16

EEG:

auditory Long-Term

Potentiation (LTP) task

Rey Auditory Verbal

Learning Test (RAVLT)

(modified computer

version)

affective go/no task
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TABLE 3 | Continued

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

MDD

double-blind

placebo-controlled

design

n = 60

NCT03380442

Psilocybin 25mg

po once

Comparator: single

intranasal

125mg ketamine/saline

QIDS, HAMD, MADRS

fMRI before and one

week after drug

(self-referential

processing)

blood peripheral gene

expression and

molecules

MDD

& Healthy

phase 1

n = 6

NCT04711915

open label,

non-randomized,

crossover,

fixed order; 0.1

mg/kg DMT IV 0.3

mg/kg DMT IV

ASC, VAS (anxiety,

tolerability), reinforcing

effects

EEG

HR, BP

MDD

& Healthy

n = 68

NCT04673383

Double-blind,

randomised, placebo-

controlled N,N-

DMT fumarate

IV (SPL026)

Safety and tolerability

data

MADRS

Treatment Resistant Depression (TRD)

TRD

open label

n = 20

NCT04739865

Psilocybin 25mg po

once as adjuvant to

SSRI

MADRS, CGI Loss Potential

threat (anxiety)

Sustained threat

Reward

responsiveness

Affiliation and

attachment

perception and

understanding of

self

Circadian rhythms

sleep

andwakefulness

arousal

TRD

n = 15

open-label

phase 2

NCT04433858

Psilocybin 25mg po

once

MADRS

TRD

n = 16

NCT04698603

Open label, non-

randomized,

5-MeO-DMT

(GH001), inhalation

Safety and tolerability

HR, BP, RR, O2 (%),

temp, bloods;

biochemistry,

hematology, urinalysis,

ECG

MADRS, BPRS,

CADSS, C-SSRS, PVT,

DSST

(Continued)
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TABLE 3 | Continued

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

Bipolar Depression

Type 2 Bipolar

Disorder (BP-II)

Depression

open-label,

n = 12

phase 2

NCT04433845

Psilocybin 25mg po MADRS Loss Potential

threat (anxiety)

Sustained threat

Reward

responsiveness

Reward learning

Obsessive Compulsive and Related Disorders

OCD

phase 1

n = 30 (15 each

group)

NCT03356483

Psilocybin

0.25mg/kg,

po, once niacin

250mg

Y-BOCS, A-YBOCS,

MADRS, BDI, OBQ-44,

OCI-R, OC-TCDQ,

STAI, Q-LESQ-SF,

MEQ, BABS, COM-R,

SMiLE, CEQ, 5D-ASC,

PANAS-X, PEQ, NRS,

PEBS, IDAQ, MBDS,

IOS, EPQ, AUDIT,

UFEC, DUDIT, SRNU,

PSQI, URICA, CGI,

SDS, LOT-R, PI-R

fMRI: rsFC

cortisol, CRP, ACTH,

IL-4, IL-6, IL-10, IL-12,

INF-gamma, TNF-alpha

Acute

threat (fear)

Potential

threat (anxiety)

Others;

uncertainty

intolerance

reward learning &

responsiveness to

reward

hypervigilant to

reward feedback

and opt immediate

relief (reduction of

anxiety)

habit

Cognitive control

goal selection,

updating,

representation, and

maintenanceresponse

selection, inhibition,

or suppression,

performancemonitoring

Affiliation and

attachment

perception and

understanding of

self

Circadian rhythms

sleep

andwakefulness

arousal

Motor actions

action planning

and selection,

initiation,

inhibition and

termination,

execution

sensorimotor

dynamics,

habit

OCD

n =15

phase 1

NCT03300947

3 groups;

psilocybin

100mcg/kg

psilocybin

300mcg/kg

lorazepam 1mg po,

once weekly for

8 weeks

YBOCS, MADRSEEG;

Error Related Negative

Potential (ERN)

fMRI: functional

connectivity between

the Caudate Nucleus

(CN) and Orbital Frontal

Cortex (OFC)

Body

Dysmorphic

Disorder

n = 12

open-label

phase 2

NCT04656301

Psilocybin 25mg po

once

BDD-YBOCS Acute

threat (fear)

Potential

threat (anxiety)

Cognitive control Perception;

somatosensory

& visual

(Continued)
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TABLE 3 | Continued

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

Trauma/PTSD

PTSD, chronic

Depression, MS,

HIV, and

SARS-CoV-2-

Long Haulers

Syndrome

n = 30

non-randomized

phase 1

NCT05042466

Psilocybin plant

medicinemicrodosing

1gm to 1/5 gm

every 2nd day for

8 weeks

GAF, BAM, PTSD

Checklist for DSM-5

(PCL-5)

Sustained threat

Loss

Attention working

and

declarative memory

Cognitive control

Affiliation and

attachment

perception and

understanding of

self

Circadian

rhythms sleep

andwakefulness

arousal

PTSD

phase 2,

multicentre,

fixed-dose open

label

n = 20

COMP201

Psilocybin 25mg Sustained threat

Loss

Attention working

and

declarative memory

Cognitive control

Affiliation and

attachment

perception and

understanding of

self

Circadian rhythms

sleep

andwakefulness

arousal

Generalized Anxiety Disorder (GAD)

GAD

(Psi-GAD-1) n =

72

randomised

triple-blinded

active-placebo-

controlled

ACTRN

12621001358831

Two dosing

sessions 3 weeks

apart dose 1: 25mg

psilocybin dose 2:

25 or 30mg (if dose

1 exhibits limited

acute

subjective response)

comparator:

diphenhydramine

75mg (or 100mg)

HAM-A, GAD-7,

QIDS-SR, Mini-SPIN,

AG-D, PDSS-SR, SDS,

PWI, UBCS, AUDIT,

DUDIT, self-reported

number of cigarettes

smoked, AIM, IAM, FIM

Potential

threat (anxiety)

Sustained threat

Reward

responsiveness

Reward learning

Reward valuation

Attention working

and

declarative memory

Cognitive control

Affiliation and

attachment

perception and

understanding of

self

Circadian rhythms

sleep

andwakefulness

arousal

Pain/Headaches

Fibromyalgia

n = 30

double-blind,

placebo-

controlled

phase 2

NCT05068791

Psilocybin 0.36

mg/kg po or

dextromethorphan

2.6 mg/kg po

Self-reported pain

severity, PGIC, BPI

Loss Reward

responsiveness

Cognitive control

Perception:

somatosensory

Affiliation and

attachment

perception and

understanding of

self

circadian rhythms

sleep

andwakefulness

arousal

Sensorimotor

dynamics

(Continued)
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TABLE 3 | Continued

Categorical

diagnosis

Psychedelic,

dose, therapy

Measures Negative-

valence

system

Positive-valence

system

Cognitive

systems

Social

processing

systems

Arousal/regulatory

systems

Sensorimotor

systems

Migraine

Headache

Post-Traumatic

Headache

n = 24

placebo

controlled,

randomized,

crossover

phase 1

NCT03341689

NCT03806985

Psilocybin 0.0143

mg/kg po,

psilocybin 0.143

mg/kg capsule

placebo:

microcrystalline

cellulose capsule

Migraine headache

days, frequency,

duration, intensity of

pain/photophobia/nausea/vomiting/

phonophobia,

functional disability

Potential threat

(anxiety)

Perception;

somatosensory

& visual

Circadian rhythms

sleep

andwakefulness

arousal

Adult ADHD

ADHD

phase 2a

(MinMed, 2021)

LSD microdosing Reward

anticipation, delay,

receipt

Cognitive control

working memory

verbal fluency,

executive function

AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyltransferase; PO, orally; CBT, cognitive behavioral therapy; rsFC, resting state functional; DMN, default mode network functional; BMI, Body mass

index; MADRS, Montgomery-Asberg Depression Rating Scale; BPAD II, Type 2 bipolar affective disorder; Y-BOCS, Yale-Brown Obsessive; A-YBOCS, Acute Yale-Brown Obsessive-Compulsive Scale; BDD-YBOCS, Yale-Brown Obsessive

Compulsive Scale Modified for Body Dysmorphic Disorder; BDI, Beck Depression Inventory; EAQ90, Symptom Check List; EAQ, Existential Concerns Questionnaire; IDS-SR, IDS-C, Inventory of Depressive Symptomatology (self-rated

and clinician-rated); FFMQ, Five Facet Mindfulness Questionnaire; EHS, Elliot Humility Scale; 5D-ASC, Dimensions-Altered States of consciousness; GRID-HAM-D, GRID-Hamilton Depression Rating Scale; QIDS-SR16, Quick Inventory

of Depressive Symptoms; HAMD, Hamilton Depression Rating Scale; HAM-A, Hamilton Anxiety Ratings Scale; WSAS, Work and Social Adjustment Scale; SDS, Sheehan Disability Scale; OBQ-44, Obsessive Beliefs Questionnaire; OCI-R,

Obsessive-Compulsive Inventory-Revised; OC-TCDQ, Obsessive Compulsive Trait Core Dimensions Questionnaire; STAI, State-Trait Anxiety Inventory; Q-LESQ-SF, Quality of Life Enjoyment & Satisfaction Questionnaire; MEQ, Mystical

Experience Questionnaire; BABS, The Brown Assessment of Beliefs Scale; COM-R, The Community Observer Ratings of Changes in Subjects’ Behaviour and Attitudes; SMiLE, Schedule for Meaning in Life Evaluation; CEQ, Challenging

Experience Questionnaire; 5D-ASC, 5-Dimension - Altered States of Consciousness; 11-DASC, 11-Dimensional Altered State of Consciousness scale; PANAS-X, Positive and Negative Affect Schedule Expanded Form; PEQ, The

Persisting Effects Questionnaire; NRS, Nature Relatedness Scale; PEBS, Pro-Environmental Behavior Scale; IDAQ, Individual Differences in Anthropomorphism Questionnaire; MBDS, Mind-Body Dualism Scale; IOS, Inclusion of Others

in Self Scale; EPQ, Ethical Positions Questionnaire; AUDIT, Alcohol Use Disorders Identification Test; UFEC, Utilization of Facility and Emergent Care; DUDIT, Drug Use Disorders Identification Test; SRNU, Self-reported Nicotine Use;

PSQI, Pittsburgh Sleep Quality Index; URICA, University of Rhode Island Change Assessment; CGI, Clinical Global Impressions; SDS, Sheehan Disability Scale; LOT-R, Life OrientfMEation Test Revised; PI-R, Padua Inventory-Revised;

EDI, Ego Dissolution Inventory; PACS, Penn Alcohol Craving Scale; AASE, Alcohol Abstinence Self-efficacy; MAAS, Mindful Attention Awareness Scale; AWE-S, Awe Experience Scale; TLFB, Time Line Follow Back; MET, Multifaceted

Empathy Test; PACS, Penn Alcohol Craving Scale; AASE, Alcohol Abstinence Self-Efficacy Scale; SIP, Short inventory of problems; CBT, Cognitive behavioural therapy; OCS, Opioid Craving Scale; GSES, Generalized Self-Efficacy Scale;

BPI, Brief Pain Inventory; TGQ, Gratitude Questionnaire; COWS, Clinical Opiate Withdrawal Scale; MLQ, Meaning in Life Questionnaire; GQ, Gratitude Questionnaire; HADS, Hospital Anxiety and Depression Scale; EDQL, Eating Disorder

Quality of Life Scale; EDE-Q, Eating Disorder Examination Questionnaire; ANSOCQ, Anorexia Nervosa Stages of Change Questionnaire; RMQ, Readiness and Motivation Questionnaire; EDE, Eating Disorder Examination; EDE-Q, Eating

Disorder Examination Questionnaire; EDE, Eating Disorder Examination; PASTAS, Physical Appearance State and Trait Anxiety Scale; BISS, Body Image State Scale; YBC-EDS-SRQ, Yale Brown Cornell Eating Disorder Scale; EDI, Eating

Disorder Inventory; EDE-QS, Eating Disorder Examination Questionnaire Short Form; CIA, Clinical Impairment Assessment; ED-RR, Eating Disorder readiness to change and motivation for change; CSDD, Cornell Scale for Depression

in Dementia; QOL-AD, Quality of Life Alzheimer’s Disease; IDS-SR/C; Inventory of Depressive Symptomatology; self-rated and clinician-rated; EHS, Elliot Humility Scale; JHS, Jankowski Humility Scale; TAS, Tellegen Absorption Scale;

VAS, The Visual Analog Scale; SCQ, States of Consciousness Questionnaire; MS, Mysticism Scale; HAQ-T/P, Helping Alliance Questionnaire (therapist version; patient version); AMRS-C/P, Adjective Mood Rating Scale; clinician version;

patient version; NEO-FFI, NEO-Five-Factor-Inventory; PEQ, Persisting Effects Questionnaire; DTI, Diffusion Tensor Imaging; ASL, Arterial Spin Labeling; CGI, Clinical Global Impression; ADHD, Attention deficit hyperactivity disorder;

CADSS, Clinician Administered Dissociative States Scale; C-SSRS, Columbia-Suicide Severity Rating Scale; PVT, Psychomotor Vigilance Test; DSST, Digit Symbol Substitution Test; CRP, C-Reactive Protein; IL-6, Interleukin; TNF, Tumor

Necrosis Factor; PGIC, Patient Global Impression of Change; BPI, Brief Pain Inventory; PROMIS, Patient-Reported Outcomes Measurement Information System; Neuro-QoL, Quality of Life in Neurological Disorders; BAM, Brief Addiction

Monitor; MS, multiple sclerosis; UBCS, Ultra Brief Checklist for Suicidality; GAD-7, Generalized Anxiety Disorder 7-item Scale; PWI, Personal Wellbeing Inventory; Mini-SPIN, Mini-Social Phobia Inventory; AG-D, Agoraphobia Dimensional

Scale; PDSS-SR, Panic Disorder Severity Scale - Self Rated; AIM, Acceptability of Intervention Measure; IAM, Intervention Appropriateness Measure; FIM, Feasibility of Intervention Measure.
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of EEG activity, particularly in the frontal and sensorimotor
cortex (345).

Similar to the previously discussed vulnerability to
adverse effects of psychedelics in people with incoherent
self-concept/aberrant salience in the context of psychosis
spectrum disorder, baseline dysfunction in the some of the
perceptual systems may increase the risk of adverse events in
psychedelic therapy. For example, there is limited high-quality
data on the rare condition—Hallucinogen Persisting Perception
Disorder (HPPD) (346–348), which in most cases is due to a
“subtle over-activation of predominantly neural visual pathways
that worsens anxiety after ingestion of arousal-altering drugs,
including non-hallucinogenic substances” (347). The authors
note that a personal or family history of anxiety and pre-drug use
complaints of tinnitus, eye floaters, and concentration problems
may predict vulnerability for HPPD (347).

SENSORIMOTOR SYSTEMS

Sensorimotor systems are primarily responsible for the control
and execution of motor behaviors, and their refinement
during learning and development (74). The Sensorimotor
Dynamics subconstruct: “processes involved in the specification
or parameterization of an action plan and program based on
integration of internal or external information, such as sensations
and urges and modeling of body dynamics. This process is
continuously and iteratively refined via sensory information and
reward-reinforced information.”

The highly complex Functional neurological disorders
(FNDs), previously known as conversion disorders, involve not
only sensorimotor, but also salience, central executive, and limbic
networks (349–351). There are no modern era clinical studies of
psychedelic therapy in FNDs and systematic reviews of studies
from several decades ago are not able to draw firm conclusions
due to small numbers of low-quality studies, often lacking
control groups and valid outcome measures (352, 353). It is also
worth noting that LSD (100 µg) increased sensory-somatomotor
brain-wide and thalamic connectivity in 24 HCs, while
concurrently reducing associative networks (32). Using a Roving
Somatosensory Oddball Task and simultaneous EEG/fMRI in 15
HCs, the same researcher showed that psilocybin (0.2 mg/kg)
disrupted tactile prediction error processing in the mPFC,
associated with increased salience attribution to non-salient
stimuli (354). It remains an open question whether the complex
and disrupted sensorimotor modeling of body dynamics and the
accompanying emotional processing in conditions such as FNDs
(or indeed eating disorders) can be therapeutically modulated by
psychedelic therapy (Table 3).

Psilocybiome—An Additional Unit of
Analysis?
In keeping with an interconnected systems based psychiatry
paradigm that conceptualizes the individual as a complex
composite of interacting systems across all levels of organization,
it has been proposed that the microbial ecosystem (microbiome)
may serve as an additional transdiagnostic unit of analysis

in the RDoC framework (355, 356). At the interface between
the individual and the environment, the microbiome is
intrinsically linked to human health and may play a contributory
physiological role in some psychiatric disorders (357–359). This
microbial signaling system communicates with the brain through
the gut-brain axis via the immune system (360), tryptophan
metabolism (361), the HPA axis (362), the vagus nerve (363) and
by the production of microbial metabolites, such as short chain
fatty acids (SCFA’s) (364). The microbiota-gut-brain (MGB)
signaling system operates throughout life but is particularly
important during early development when it influences the
development of the neural circuitry underlying social, cognitive,
and emotional brain domains (365, 366). Preclinical research
has revealed that neurotransmission, neurogenesis, myelination,
dendrite formation and blood brain barrier organization are
partially under the influence of this MGB axis signaling
system (367–371). At the behavioral level, MGB axis signaling
modulates cognitive function and patterns related to social
interaction, locomotor activity and stress management (362,
372, 373). The gut microbiome also modulates psychotropic
drug metabolism and absorption, which in turn modifies gut
microbiota composition (374–376). Thus, the gut microbiome
is an unconscious processing system that contributes to
emotional, cognitive, and behavioral regulation (377). Acute and
sustained psychedelic responses are influenced by bidirectional
biofeedback information signals from the periphery and the
environment. Consequently, the interaction of the classical
psychedelics and the microbiome and mycobiome (fungal
community) and associated signaling pathways, together with
the potential mediating influence of the microbiome on the
interaction between psychedelic therapy and acute and sustained
dietary behavioral patterns may have implications for the
optimization of precise-personalized-systems based psychedelic
therapy (378).

Personalized Psychedelic Therapy
The precise-personalized transdiagnostic paradigm is not
without critics and major challenges. As yet, it has not delivered
discernible translational benefits to patients (379). Regrettably,
there are no psychobiological signatures to guide clinical
practice, which still involves clinical assessment and trial and
error treatment approaches (380). It is not yet clear whether
a transdiagnostic paradigm will add translatable precision
to clinical psychiatry, which comprises the severe end of the
dimensions (381, 382). Some argue that the RDoC’s utility may
be limited for the most serious of mental disorders, including
dementia, autism, schizophrenia, and bipolar disorder, and may
be more useful for depression, anxiety disorders (including
PTSD/OCD) and some personality disorders (383, 384).

However, the precise-personalized integrative neuroscience
framework is at an early evolutionary stage (385) and the
divergence between therapeutic utility for some disorders
and exacerbation of others, indicates a role for the RDoC
constructs and associated underlying units of analysis, to
enhance the understanding and application of psychedelic
therapy. While transdiagnostic treatments are not unique
to psychedelic compounds, the potential for psychedelics to
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induce profound transient changes in emotion, thought and
perception with marked inter-individual variation, together
with the potential to exacerbate underlying pre-dispositions to
psychosis and mania (30, 226, 227) compels a greater emphasis
on a precise-personalized paradigm. Echoing the general lack
of personalized precision in clinical psychiatry, comprehensive
clinical assessments are the only available method to identify and
exclude participants with disorders that may be exacerbated by
psychedelic therapy.

Notwithstanding the reliance on clinical measures, currently
available strategies to optimize therapeutic outcomes involve
refinement of pharmacotherapy and psychotherapy schedules,
though the precise ratio has yet to be determined. It appears
that body weight adjusted dosing, albeit over a narrow
dosing range of 20–30mg, may have limited impact on the
subjective effects of psilocybin (386) and it remains to be seen
whether potential pharmacological modulators such as 5-HT2A
receptor gene polymorphisms influence therapeutic response.
Moreover, the precise interaction of other psychotropics
(SSRI, SNRI, antipsychotics, and mood stabilizers) (387) and
psychedelic therapy has yet to be determined. From the
psychotherapeutic angle, a high-quality systematized foundation
is a vital (388), though there is major scope for the advance
of personalization/individualization in the context of an RDoC
framework. It will also be interesting to consider the implications
of psychedelic therapy for the Neuroscience-based Nomenclature
project, developed to progress a more precise neuroscience based
psychopharmacological nomenclature (389).

There are preliminary indicators that the advances in the
mechanistic understanding of psychedelics may translate into
more precise-personalized approaches (41, 42). As translational
psychedelic science advances, a complete understanding of
the molecular cascades and bidirectional information exchange
processes between internal and environmental systems will
require analysis across genome, transcriptome, proteome,
metabolome, microbiome, epigenome, connectome, physiome
and exposome (environmental) levels (390). Deciphering the
precise interaction between these systemsmay advance treatment
personalization algorithms, perhaps assisted by advances in
technology, such as virtual reality (391, 392), smartphones (393)
and biosensors/biofeedback (394). Yet, it should be noted that
even if the whole endeavor reduces down to an elaborate set of
multi-layered fluctuating ones and zeros or some superposition
thereof, or special molecular configurations and information
processing pathways yet to be discovered, it is the relationship
between the complex configurations underlying our experiences
and the empathetic sharing and compassionate understanding of
those experiences with others and the environment that is the
matter of meaning and the potential of psychedelic therapy.

CONCLUSIONS AND PERSPECTIVES

Psychedelic science and its translational corollary psychedelic
therapy are evolving rapidly. Advances in the mechanistic
understanding of the underlying pathways, which involve
multiple interacting systems may also prompt the development

of novel compounds lacking undesirable properties. Several
large scale RCTs will determine whether psychedelic therapy
translates into the psychiatric clinic for a range of non-psychotic
spectrum disorders. Given the translatable transdiagnostic
antidepressant, anxiolytic, and anti-addictive therapeutic
potential of psychedelic therapy, deconstructing categorical
psychiatric diagnoses according to dimensional systems and
constructs that align with neurobiological systems may advance
more targeted applications, with the possibility of optimizing
therapeutic outcomes. As such, integration of the RDoC
transdiagnostic dimensional framework with psychedelic
therapy as it advances toward the psychiatric clinic has potential
to progress an interconnected systems based precise-personalized
psychedelic therapy paradigm and narrow the translational gap
between neuroscience and psychiatry.

Further insights can be gained from clinical studies in progress
with psychedelic therapy although the extent to which they
have been designed with this in mind may hamper efforts at
integration. Additionally, evolution of multimodal prediction
estimation algorithms based on dimensional psychobiological
signatures may optimize the delivery of psychedelic therapy and
ultimately augment clinical assessments. Apart from the vitally
important context (as broadly defined), exploratory studies have
proposed baseline functional connectivity patterns and cingulate
cortical thickness, autonomic nervous system activity, together
with psychological factors as therapeutic predictors. Further
unraveling the complex and dynamic molecular cascades and
information processing pathways across all levels of analysis
from micro to macro, within and between psychiatric disorders
and how they converge on the acute and sustained therapeutic
subjective trajectory may enhance a more complete systems
level understanding of psychedelic therapy and is an important
objective for translational neuroscience.

LIMITATIONS

This is a narrative review which attempts to conceptualize
psychedelic therapy in the context of an evolving RDoC
framework and primarily focuses on the effects of
psychedelics. The psychotherapy aspect as it relates to RDoC
is underdeveloped. This review does not focus on a systematic
analysis of the potential side-effects/risks of psychedelic therapy.
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