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a b s t r a c t

The COVID-19 pandemic provides an opportunity to explore the impact of government
mandates on movement restrictions and non-pharmaceutical interventions on a novel
infection, and we investigate these strategies in early-stage outbreak dynamics. The rate of
disease spread in South Africa varied over time as individuals changed behavior in
response to the ongoing pandemic and to changing government policies. Using a system of
ordinary differential equations, we model the outbreak in the province of Gauteng,
assuming that several parameters vary over time. Analyzing data from the time period
before vaccination gives the approximate dates of parameter changes, and those dates are
linked to government policies. Unknown parameters are then estimated from available
case data and used to assess the impact of each policy. Looking forward in time, possible
scenarios give projections involving the implementation of two different vaccines at
varying times. Our results quantify the impact of different government policies and
demonstrate how vaccinations can alter infection spread.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the declaration of the COVID-19 pandemic by theWorld Health Organization onMarch 11, 2020, many nations began
to consider the implications of the spread of this disease within their borders and across the world (Cheng et al., 2020; Garba
J. Edholm).
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et al., 2020; COVID-19 Outbreak in Countries from, 2021). Whilst waiting for the development of an effective and safe vaccine,
governments focused attention on other interventions in an attempt to curb the spread of infection. Broadly speaking, these
can be split into preventative actions, such as social distancing and stay-at-home mandates, and surveillance actions, such as
contact tracing and testing. Nonpharmaceutical interventions include masking, hand-cleaning, sanitizing, and air filtering.
The COVID-19 pandemic provides a rare opportunity to explore the impact of these interventions on a novel infection and
thereby link them to early-stage outbreak dynamics.

By the end of 2020, safe and effective vaccines were starting to become available in some countries. The vaccines have
been shown to improve outcomes for infected individuals and to reduce risk of infection and onward transmission from
vaccinated to unvaccinated individuals (Katella, 2021). Under this scenario of vaccine availability, we are able to scrutinize the
data to determine the impacts of vaccination and the effects of delaying the vaccine roll-out beyond the start of 2021 in
certain geographical areas.

Our interest lies not simply in understanding the data, but in using mathematical modeling to explore a range of alter-
native scenarios inwhich the preventative and surveillance actions are initiated at different time points. In doing this, we can
gauge the impacts of the actions and provide a systematic framework for this approach.

South Africa had the largest COVID-19 burden in Africa, with its cumulative cases contributing about 36% of the total in
Africa and at a rate three times more than the second-place country (COVID-19 Outbreak in Countries from, 2021; Africa
Centers for Disease Control, 2021). Data on COVID-19 cases, policy changes on management of the disease, and vaccina-
tion rates and protocols are readily available in the public domain (COVID-19 Resources for Republic of, 2021). South Africa
was also one of the first African countries to roll out COVID-19 vaccination (Africa Centers for Disease Control, 2021). Whilst it
would be possible to consider infection dynamics across the country, given the restrictions on movement (COVID-19
Resources for Republic of, 2021) and the need for individuals to interact in order for infection to spread, we focus on Gau-
teng, the single most-populous region of South Africa. Gauteng contains several large population centers including the cities
of Johannesburg, Ekurhuleni, and Tshwane. Although it is the smallest province in the country, covering less than 2% of the
total land area, Gauteng accounts formore than 25% of South Africa's population. This densely populated region has registered
1,095,360 confirmed cases of COVID-19 since April 2020 (Statista and Confirmed Coronavirus, 2021). We investigate how the
various changes in guidelines over time related to closures and social distancing affect the transmission and spread of COVID-
19, with our model parameterized for Gauteng. Changes in government guidelines and human behavior can lead to a time-
varying transmission rate, due to changing contact rates and possibly due to new variants. We formulate a system of ordinary
differential equations (ODEs) to represent the transmission of COVID-19, including contingencies for vaccination.

A number of authors have focused their attention on building and analyzingmathematical models to explore the impact of
COVID-19 in Africa. These models provide important context for our work. For instance, they highlight the pandemic
disruption caused to HIV treatment programs (Jewell et al., 2020) and the impact of response strategies (Taboe et al., 2020;
Van Zandvoort et al., 2020). More generally, mathematical models and statistical analysis have been used to predict spread
and scale of outbreaks at the start of the pandemic (Atangana & Araz, 2021; Musa et al., 2020), to understand the continental
heterogeneity in COVID-19 impact (Musa et al., 2022), and to explore the comparatively low transmission and mortality rates
that have been observed across the continent (Bouba et al. Kong).

In the specific context of South Africa, two studies have been published that investigate the impact of interventions using
systems of ODEs. In the first, the impact of social distancing on the number of COVID-19 cases was explored for the period
MarcheMay 2020 (Nyabadza et al., 2020); our modeling study extends the period of consideration and increases the model
complexity to include additional population compartments to reflect more-recent knowledge about infection transmission.
The second model (Mukandavire et al., 2020) focuses again on the early stages of the outbreak and considers the utility of a
vaccination in containing disease. Again, our work builds on this by considering specific vaccines and implementation no
earlier than January 2021 when they became available in some countries (but not South Africa).

Based on the multitude of policy shifts during the COVID-19 outbreak, and our knowledge of how such shifts affect
parameter values from (Burton et al., 2021), we planned for specific parameters to vary based on certain time periods over the
course of the pandemic. Specific time points where values changed correspond to inflection points in the data and recorded
policy changes. Vaccine distribution was at a very low level during the time period under consideration; thus the parameters
for the model without vaccination were estimated using incident data, with only two parameters changing as time-varying
step functions. After estimating our parameters from the data, including appropriate time-varying rates, we present the fit of
our simulated model to our data. We then consider various scenarios involving varying transmission and vaccination rates to
illustrate the course of the infection if certain behaviors continued.
2. Understanding the data

Data for this project was obtained from a repository of South Africa COVID-19 data, maintained by the Data Science for
Social Impact research group at the University of Pretoria (Katella, 2021; Data Science for Social Impact Research Group @
University of Pretoria, 2021). It consists of weekly cumulative confirmed cases for the province of Gauteng, South Africa
and is shown in Fig. 1 (Coronavirus Disease, 2021).

The epidemic curve demonstrates a number of key features: initial exponential growth in case numbers due to the novel
form of the virus; reduction in the rate of increase in July 2020 associated with state policy intervention; and subsequent
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Fig. 1. Depiction of weekly cumulative confirmed case data for the province of Gauteng, South Africa (Katella, 2021; Data Science for Social Impact Research
Group @ University of Pretoria, 2021; Coronavirus Disease, 2021). Approximate behavior-change dates are highlighted in red. We have labelled the time in-
tervals between changes as Ti, i ¼ 1, 2, …, 5, as described in the text.
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repeated changes in the rate of increase in cases due to periodic changes in policy and intervention which lead to increased
rates of infection (when interventions were relaxed) or reduced rates of infection (when interventions were tightened).

We translate the changes in government policy and individual behaviors into our model by assuming that two key model
parametersdnamely, the infection transmission coefficient and the rate of identifying positive COVID-19 cases through
testingdvary over time.

To correctly identify the time-dependent nature of these two parameters, we combined information from two sour-
cesdthe epidemic curve and the government guidelinesdin the following way. From the data on cumulative cases, we were
able to estimate points of inflection. These points separate regions in which the epidemic is worsening (rate of cumulative
cases increasing over time) from the periods in which it is improving (rate of cumulative cases decreasing over time). Our
hypothesis was that these points of inflection should broadly correspond to times where government guidelines changed.
Clearly there are likely to be time-delays with any implementation, but our choices of time-dependent parameters align well
with changes taking place rapidly (for example, a lockdown will reduce the transmission parameter b).

Interrogation of government guidelines provided the following timeline of policy changes:

1. March 30 to July 12, 2020: This was a learning and adjustment period. Having declared a national disaster, the government
imposed a three-week lockdownwhere citizens were told to stay at home and only essential services and businesses were
able to continue to work at large. No alcohol or cigarette sales were permitted and citizens were not allowed to travel or
attend any form of gatherings. Phased relaxation of this lockdownwas introduced using a five-level alert system. By early
June 2020, the country was at alert level 3, inwhich alcohol sales were permitted, schools and universities were reopened,
and limited air travel was allowed. South Africa recorded its highest number of infections in one day (13,674) within this
first wave. This prompted some renewed strict restrictions such as bans on alcohol and family visits, and night curfew
being restored.

2. July 13 to October 10, 2020: Temporary school closures were announced around July 23 for four weeks. The risk-adjusted
alert system level was reduced to 2 in mid-August before further relaxation of restrictions went down to level 1. Almost all
economic activities opened with increased mobility and crowding within and outside households. Towards the end of this
period, a new variant, beta, emerged in the coastal regions of South Africa with a transmissibility rate twice that of the
original variant, alpha.

3. October 11 to December 27, 2020: Differentiated regional alert levels were used as a refined version of interventions that
were less necessary in some areas than others. A surge in cases up to 145% was observed in some coastal regions; this was
attributed to interactions in educational settings, the festive season, and other big events. Spread of infection was seen to
occur mainly in the younger age group of 15e19 year-olds. Some restrictions were put in place during the festive season to
restrict spread.

4. December 28, 2020 to March 30, 2021: The national alert level 3 prohibited indoor and outdoor gatherings for 14 days
from December 28. Additional restrictions in mid-January until mid-February involved closing land ports of entry. Easing
of restrictions to level 3 opened public spaces and economic activities. By the end of February, the national alert level was
at 1. Vaccination of health care workers began.

5. March 31 to June 6, 2021: Vaccination of health workers continued and began with people of age 60 years or more. The
delta variant emerged in Gauteng, which caused the alert response to move from level 1 to level 2.
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For details of the alert levels, refer to (Lockdown has Pushed COVID, 2020; President Cyril Ramaphosa, 2021a; Level 1
Lockdown in Numbers, 2020; President Cyril Ramaphosa, 2021b; COVID-19 Special Public Health Surveillance, 2021;
Disaster Management Act, 2021a; Coronavirus COVID, 2021; President Cyril Ramaphosa, 2020; Disaster Management Act,
2021b; Disaster Management Act, 2021c; Disaster Management Act, 2020a; Disaster Management Act, 2020b).

Combining this information with the points of inflection found in the cumulative cases data, we estimated the following
four dates for behavioral change: July 13, 2020, October 12, 2020, December 28, 2020, and March 30, 2021. These dates
correspond to the times at which certain parameters change values in ourmodel, resulting in five time periods whichwe label
Ti, i ¼ 1, 2, …, 5, as shown in Fig. 1. More details on our process are given in Section 4.

A number of pharmaceutical and biotech companies have developed vaccines for COVID-19, each of which differs in the
biotechnology used, efficacy, and geographic availability. In South Africa, two commonly available vaccines are those
developed by Pfizer and Johnson & Johnson. Based on the information presented in (Katella, 2021), the Pfizer vaccine can be
assumed to be 95% effective at preventing individuals from contracting the disease and 95% effective at preventing symp-
tomatic disease (vaccinated individuals becoming ill and developing symptoms). The vaccine developed by Johnson &
Johnson claims to be 64% effective at preventing disease specifically in South Africa and 81% effective at preventing symp-
tomatic disease (vaccinated individuals becoming ill and developing symptoms) (Katella, 2021). We use these values to
choose vaccine-related parameters when we consider the implementation of vaccination programs in South Africa.
3. Model structure

Our full model system comprises nine compartments in a coupled system of nonlinear ODEs. The compartments are taken
to represent: S susceptible individuals, V fully vaccinated individuals, E exposed individuals, EV exposed after vaccination
individuals, A asymptomatic individuals, I pre-symptomatic and symptomatic infected individuals, Q individuals with
confirmed infections,H individuals in the hospital with confirmed infections, and R recovered individuals. We do not consider
partial vaccinationdconsequently, we assume that individuals remain in the unvaccinated class until the vaccine is effective
(typically two weeks after the final vaccine dose administered).

Asymptomatic individuals remain asymptomatic throughout the disease process, while pre-symptomatic individuals are
not presently symptomatic but will later become symptomatic. Note that pre-symptomatic individuals transmit the infection
at a rate similar to symptomatic individuals, and thus the pre-symptomatic and symptomatic individuals are combined in the
I class. Asymptomatic individuals transmit the infection at a much lower rate than pre-symptomatic and symptomatic in-
dividuals, and this difference is indicated in the force of infection termwhich has a larger coefficient c on the I term than the A
term. The transitions between compartments are illustrated in Fig. 2. The parameters (with units) are described in Table 1.

We assume that the behavior and policy changes discussed in Section 2 altered the transmission rate b at which the
disease spreads as well as the testing infrastructure and capacity rate k. For this reasonwe allow these two parameters to vary
over time using the inflection points and the policy mandates identified in Section 2. Equations for our compartmental model
are given by:
Fig. 2. Flow diagram of compartmental model with vaccination.
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Table 1
Parameters in the model, including their definitions and units.

Symbol Interpretation Units

b transmission rate per day
1/a length of exposure period days
e proportion of asymptomatic out of infectious individuals unitless
m COVID-19 death rate in I and Q per day
mH COVID-19 death rate in H per day
k testing rate resulting in isolation per day
r hospitalization rate per day
c scaling factor of infected compartment unitless
g1 recovery rate of asymptomatic individuals per day
g2 recovery rate of infected individuals per day
g3 recovery rate of individuals with confirmed cases per day
g4 recovery rate of hospitalized compartment per day
q vaccination rate per day
p1 scaling factor on the force of infection for V unitless
e1 proportion of asymptomatic out of infectious vaccinated unitless
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dS
dt

¼ �ðlþ qÞS

dE
dt

¼ lS� aE

dA
dt

¼ aεE þ aε1EV � g1A

dI
dt

¼ að1� εÞE þ að1� ε1ÞEV � ðmþ kðtÞ þ g2ÞI

dQ
dt

¼ kðtÞI � ðg3 þ rþ mÞQ

dH
dt

¼ rQ � ðmH þ g4ÞH

dR
dt

¼ g1Aþ g2I þ g3Q þ g4H

dV
dt

¼ qS� l1V

dEV
dt

¼ l1V � aEV

(1)

where all model parameters are non-negative and are defined in Table 1. The force of infection for susceptibles S is given by
l ¼ bðtÞ Aþ cI
Sþ E þ Aþ I þ Rþ V þ EV

;

and the vaccinated individuals V have a modified force of infection,

l1 ¼ ð1�p1Þl;
due to having a reduced chance of becoming exposed (with 0 < p1 < 1) (Katella, 2021). Note that the denominator of the
force of infection only includes the compartments that are available to be in contact with the susceptibles S i.e., we assume
that the two compartments Q and H are isolated and are not in contact with the susceptibles.

Having split the time frame for our modeling into five distinct intervals Ti, i ¼ 1,…, 5, the time-dependent parameters b(t)
and k(t) are assumed to take the form:

biðtÞ ¼ bi; kiðtÞ ¼ ki; for t2Ti; i ¼ 1;…;5:
Since an infectious pre-symptomatic or symptomatic individual is more likely to transmit COVID-19 than an asymptomatic
individual, we scale the contact rate with I by a factor of c within the force of infection (Centers for Disease Control and
Prevention, 2021). Due to the lack of widespread testing of asymptomatic individuals in this province, we do not include a
route for asymptomatic individuals tomove into theQ class.We assume that individuals in I,Q, andH compartments could die
from a COVID-19 infection. Individuals in the A, I, Q, and H compartments can recover from the disease. The proportion of EV
that become asymptomatic A is larger than without vaccination, (Katella, 2021) which corresponds to
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Table 2
Bounds imposed on our parameters in the optimization problem.

Parameter Bounds

Symbol [Lower Bound, Upper Bound] Sources

r [1/12, 1/3] Zhang et al., 2020, 2021

m [0, 1/50] Mizumoto & Chowell, 2020; Zhang et al., 2021

mH [1/14.9, 1/6.4] Linton et al., 2020; Sanche et al., 2020

g4 [1/17.3, 1/8] Sanche et al., 2020

bi [0.00001, 1] Parameter Estimates for 2019 Novel, 2019

ki [1/20, 1] Zhang et al., 2020
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ε< ε1:
As with many modeling problems involving infectious diseases, COVID-19 is an infection where the value of the basic
reproduction number R0 has practical significance. It corresponds to the initial outbreak and can be used to see how the
infection was growing at that time. Using the Next Generation Matrix Method (Diekmann et al., 2010; van den Driessche &
Watmough, 2002) with b and k held constant at the values estimated in interval T1, we calculate the basic reproduction
number for this model to be

R0 ¼ bε

g1
þ cbð1� εÞ
kþ mþ g2

: (2)
We can interpret the two terms as representing the two routes of transmission through the A (first term) and I (second
term) compartments. Our derivation can be found in the Appendix. Using parameter estimates from our time period T1 (see
Section 4 below), and Equation (2) we estimate that, for Gauteng Province, at the start of the outbreak

R0 ¼ 1:68:
Field studies for the same period in Gauteng Province estimate R0 to fall between 1 and 2.19 (The Initial Daily COVID,
2020), which gives us confidence in our parameter estimates.

4. Parameter estimation

We obtained estimates formany of themodel parameters from the literature; these are given in Table 3 together with their
references. The remaining parameters were estimated using our data from Gauteng (Coronavirus Disease, 2021). To account
for inconsistent reporting rates over the course of a given week, we transformed the data that was reported as cumulative
confirmed daily cases into weekly data. We estimate unknown parameters by formulating a least-squares optimization
problem with the goal of minimizing the difference between the recorded number of weekly cumulative confirmed cases in
Gauteng and our model's output. The objective function to be minimized is

J ¼ kWQ �WQ*k2
kWQ*k2

;

where the vector WQ contains the weekly cumulative number of confirmed infections from the model and the vector WQ*
contains the corresponding values from the data.

To aid the optimization process we bounded each parameter using information from (Parameter Estimates for 2019 Novel,
2019) and from the sources listed in Table 2.

Our parameter estimation simulations begin on March 30, 2020 and take daily time steps until the date our data ends,
which is June 6, 2021. Initial values for our simulations include the population of Gauteng for S0 and the exact value from the
data forQ0. The initial values of E0, A0, and I0 are chosen using the information about the average lengths of time spent in those
classes and the asymptomatic infected being about one-third of the total infected (Centers for Disease Control and Prevention,
2021). The values of H and R are taken as zero because of the paucity of information linked to the onset of the outbreak. Initial
values are summarized below:
S0
 E0
 A0
338
I0
 Q0
 H0
 R0
15,488,137
 30
 15
 30
 411
 0
 0
We solve our least-squares optimization problem in MATLAB version R2021a using the MultiStart and fmincon functions
(Burton et al., 2021; Edholm et al., 2019; Levy et al., 2017). Given a starting point for our objective function J, the fmincon



Table 3
Parameter values with a citation or estimated value from data. Note that T1 is for the first time period, T2 is the second time period, and so on, which
correspond to Fig. 1.

Parameters from Literature

Symbol Value Symbol Value Symbol Value

a 0.25 (Johansson et al., 2021; Sanche
et al., 2020)

e 0.3 (Centers for Disease Control and
Prevention, 2021)

c 1.25 (Centers for Disease Control and
Prevention, 2021)

g1 0.14 (Cheng et al., 2020; Johansson
et al., 2021)

g2 0.14 (Cheng et al., 2020; Johansson
et al., 2021)

g3 0.1 (Johansson et al., 2021; Renardy et al.,
2020)

p1 Pfizer) 0.95 (Katella, 2021) e1
(Pfizer)

0.95 (Katella, 2021)

p1 (J & J) 0.64 (Katella, 2021) e1 (J& J) 0.81 (Katella, 2021)

Constant Estimated Parameters

r 0.142 m 0.014 mH 0.094

q 0.003 g4 0.067

Estimated Parameters that Change Over
Time

Symbol T1 T2 T3 T4 T5

b 0.539 0.169 0.277 0.199 0.419

k 0.739 0.339 0.098 0.506 0.499
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algorithm outputs a local minimum on the surface of J. To help find the global minimum, MultiStart allows us to exhaustively
test different starting values throughout our bounded range. We used 10,000 different starting points, each of which
converged to a unique local minimum on the surface of J. The smallest objective function value obtained was J¼ 0.01. To align
with what took place in Gauteng, one final condition we have on our parameter values is that the resulting simulation must
produce two infection peaks, the second of which should be greater than or approximately equal to the first.

Table 3 depicts the parameter estimates that we obtained either from fitting the model to data or from the literature. The
only exception is our estimate for qwhich we chose to correspond to a vaccination capacity of around 40,000 individuals per
day (Department: Health, 2021).

The estimated mean values of the generation interval, serial interval, incubation period, and latent period have varied
geographically and temporally since the beginning of the COVID-19 outbreak in Hubei, China (Griffin et al., 2020). These
values affect the estimate of R0 and decisions about intervention actions (Ferretti et al., 2020; Griffin et al., 2020; Lipsitch
et al., 2003; Wallinga & Lipsitch, 2007); as we indicated earlier, our prediction for R0 falls within the bounds estimated
from Gauteng daily reported cases which suggests that we have reasonable parameter estimates for the onset of COVID-19 in
the region. More recent work on the mean generation intervals (time lag between infections of a primary case and its sec-
ondary case) indicates that the sum of the mean latent period (Xin et al., 2021) and mean infectious period may be shorter
than predicted earlier in the epidemic (Tang et al., 1262). This would affect our parameters, a and g2, but for the purpose of
this work, we fix the value of these parameters using estimates from the initial period of outbreak.

5. Results

In this section, we present results from our numerical exploration of different responses to public health policy changes.
We consider dynamics both with and without vaccination implementation since vaccines were not readily available in South
Africa until June 2021.

Numerical solution of our model system (1) in the absence of any vaccination intervention using the estimated parameters
given in Table 3 is shown in Fig. 3. The figure indicates that we have established a good model fit to the cumulative cases of
COVID-19 in Gauteng, and so we label this as the baseline scenario from which we explore hypothetical, alternative sce-
narios. Also see the two peaks in confirmed cases from this baseline scenario in Fig. 4.

In Section 5.1, we explore how different responses to the public health interventions would have impacted cumulative
COVID-19 cases in the absence of vaccination. In Section 5.2 we compare key metrics output from the model for the two
vaccines commonly available in South Africa, assuming different dates when they became generally available.

5.1. Infection dynamics without vaccination

Fig. 5 shows model predictions against the actual cumulative case data assuming no additional policy or behavior changes
at the end of each of the time intervals Ti, i ¼ 1, 2, 3, 4. This means that the parameters in place at the end of a specific time
interval were used for the simulation for the remainder of the entire simulation run, and these are denoted as Scenarios 1e4
in Table 4. When this happened at the end of a time period where case numbers were increasing, our model predictions show
large, unsurprising, increases in COVID-19 infections compared with the actual data. Similarly, at the end of a time interval
339



Fig. 3. Simulation output using our estimated parameters is plotted alongside the confirmed cumulative case data and exhibits a good fit to the shape of the
infection curve. Our values for b and k change four times at the locations indicated by * (for further details on these change times, see Section 2).

Fig. 4. Simulation output using our estimated parameters is plotted alongside the weekly confirmed case data and exhibits a good fit to the shape of the infection
curve.
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where restrictions were imposed and had caused lower infection rates, if those behaviors continued into the next time period,
we see a significant reduction in the number of new cases. We explore these impacts further in Table 4, to see how the in-
terventions and relaxation of restrictions affected the global maximum number of infected individuals in the population
(calculated as A þ I þ Q þ H), the number of cumulative confirmed cases, and how many infected people were hospitalized
(calculated as H) when that number was at a peak. These results are shown in Table 4 as Scenarios 1e4, respectively; our
choice of metrics was motivated by the data that has been regularly reported throughout the pandemic as critical for public
health decision making.

Scenario 1 confirms that if no intervention had taken place at the end of the time period T1, then the public health outcome
would have been significantly worse. The healthcare system would have been overloaded with several hundred thousand
patients. In some sense, Scenario 2 is the best-case scenario if the public health interventions implemented in period T2 had
been continued at the same level through June 6, 2021. Of course, this does not take into consideration any economic or social
welfare issues which would certainly have been negatively impacted by the more-extreme interventions. Having said that,
this scenario gives an indication of the levels of infection and hospitalization that could have occurred. Scenarios 3 and 4
mimic 1 and 2 but add insight into the size of hospital peaks, in particular, the second one.

Scenarios 5e8 present a more-theoretical exploration of the model predictions since they take the parameter estimates
from each of the time intervals Ti, i ¼ 2, 3, 4, 5, and assume these hold for the entire period of simulation starting in March
2020. This idealizationwould clearly not have been possible (since it requires retrospective implementation), but it highlights
340



Fig. 5. This plot simulates what could have taken place if infection dynamics that result from specific values of bi and ki had persisted rather than changed to new
values.
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the importance of considering the largest possible time interval for parameter estimation to avoid focusing on a single in-
terval which may produce different parameter values and infection outcomes. As an example, in Scenario 6 we see that if the
parameters estimated for the time interval T2 were used for the model simulation from the outset, the number of COVID cases
and hospitalizations would have been predicted to be significantly lower. Meanwhile, for Scenario 8dwhich has high
parameter values from T5dthe outputs are unrealistically large reflecting the possibility of unchecked spread. Whilst there
has always been potential to allow model parameters to vary throughout numerical experiments, the explicit public health
interventions seen globally for COVID have brought this feature to the fore.
5.2. Impact of vaccination

In this analysis we ignore the differences in biotechnology used to deliver the dose, cost of implementation, and the
number of doses required to become fully vaccinated, and instead focus on the effectiveness of each vaccine. Using the
associated parameter estimates for T5 given in Table 3, we undertook a series of numerical experiments to explore how delays
in rolling out the vaccination program and vaccine efficacy impact the key public health metrics.

We considered two start dates for vaccination: January 4, 2021 represents an aspirational date corresponding to the roll
out of programs in several countries including the UK and USA; and June 7, 2021 which reflects a realistic start date for the
program of vaccination in South Africa. In both cases, we simulated the model system from March 30, 2020 to an end date
April 4, 2022.

We present the results of our exploration in Table 5 and note that they appear consistent with an intuitive understanding
of what vaccination would achieve. The program reduces COVID numbers and hospitalizations; the more effective the vac-
cine, the better it does; and delays to implementing a vaccination strategy can significantly increase the number of infections
and subsequently people needing hospital care.

Since we are undertaking this exploratory work using parameters from time period T1, the levels of infection which we
obtain are larger than observed. Moreover, since we are extrapolating our simulation until April 2022, we are not surprised to
see bigger infected levels than for the baseline case.
6. Discussion and conclusion

COVID-19 has provided mathematical modellers with access to detailed data on key infection metrics such as incidence of
infection and infection-related deaths, together with data on public health interventions such as hospitalization and vacci-
nation. There are certainly inaccuracies within the data sets, but they represent a rich data source to interrogate. The approach
that we have taken heredidentifying points of inflection in the dataddoes exactly that, and it led us to identify key dates at
which public health interventions caused a change in the cases of COVID-19 in Gauteng Province, South Africa. This was
undoubtedly helped by the daily reporting of COVID-19 cases and illustrates a methodology which could be used with other
infectious disease data sets.

The existing published models for COVID-19 in South Africa focussed on the early stages of the epidemic. Building upon
this, we have demonstrated the impact of public health interventions and have predicted what would have happened at each
stage if those interventions and corresponding rates had continued. In part, we undertook these explorations to support any
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Table 4
Summary of key information from simulating scenarios. The table column (Global) Max Infected also records the date at which the largest number of infected
individuals occurs. Row 1 summarizes our baseline simulation as seen in Fig. 3. Scenarios 1e4 summarize the simulations shown in Fig. 5, continuing the
parameters to the end from the first, second, third, and fourth changes. The information found in Scenarios 5e8 was obtained by holding parameters from
each given group constant for the duration of the simulation.

Scenario Max Infected (date) Cumulative Confirmed
Cases

Total in
Hospital

1st Hospital Peak
(date)

2nd Hospital Peak
(date)

Baseline simulation using estimated
parameters

Baseline 70,322 (7/16/20) 474,648 257,670 16,123 (7/20/20) 14,922 (1/8/21)

Summarizing simulations in Fig. 5

1 1,402,803 (9/18/20) 6,906,308 3,822,977 385,847 (9/22/20) N/A

2 70,323 (7/16/20) 226,514 125,276 16,123 (7/19/20) N/A

3 836,901 (3/18/21) 2,823,107 1,557,400 16,123 (7/20/20) 1,118,056 (3/25/21)

4 70,323 (7/16/20) 416,728 230,551 16,123 (7/20/20) 14,922 (1/8/21)

Fixing parameters from a given section for
duration

5 456 (3/30/20) 724 287 N/A N/A

6 937,647 (10/23/20) 2,804,247 1,552,217 125,081 (10/30/20) N/A

7 456 (3/30/20) 750 300 N/A N/A

8 837,389 (11/14/20) 5,302,811 2,935,303 214,753 (11/19/20) N/A

Table 5
Keymetrics from vaccination simulations. The top portion considers vaccination beginning on 1/4/21while the bottom portion begins vaccination on 6/7/21.
The end date in both cases is 4/4/22. The Cumulative Confirmed Cases is the number of cases from the start of the simulation for vaccination until April 4,
2022.

V start 1/4/21 Max Infected Cumulative Confirmed Cases Total in Hospital 3rd H Peak Total V Total EV

Pfizer 60,296 97,896 65,447 330 10,503,215 908

J & J 60,296 774,180 436,284 11,055 10,155,676 618,777

None 626,811 4,671,953 2,597,767 160,981 0 0

V start 6/7/21 Max Infected Cumulative Confirmed Cases Total in Hospital 3rd H Peak Total V Total EV

Pfizer 201,280 1,653,919 920,419 51,170 6,835,309 46,521

J & J 375,935 2,960,281 1,643,341 89,092 5,951,945 735,231

None 626,811 4,513,906 2,503,479 160,981 0 0
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future public health decisions that may be needed, but also to highlight the impact of the interventions. Our focus on Gauteng
Province, rather than all of South Africa, was intentional in this respect. Gauteng is the most-densely populated region in
South Africa, and since COVID-19 infection is spread through close contact, we consider density as a proxy for likelihood of
interaction between individuals. Moreover, travel restrictions that were widespread around the globe resulted in unprece-
dented levels of isolation between large urban areas. This meant that infection transmission between different cities in South
Africa was likely to be less significant than transmission within cities.

Once we identified the distinct time periods Ti, i ¼ 1, 2, …, 5, we were able to demonstrate the relative impact of the
changing parameters by undertaking a series of numerical experiments in which the two time-dependent parameters bi and
ki were fixed to values estimated in one of the time periods. Results from these simulations showed that changes in our
estimated parameter values lead to notably different infection dynamics and total incidents (see Fig. 5 and Table 4). This
analysis indicates that when modeling COVID-19 one should carefully explore the data to extract all relevant information
when estimating parameters. Additionally, since it is unlikely that parameter estimates from a limited time interval should be
used to explore an extended period of the epidemic, future researchers should consider whether parameter estimates are
realistic for the period of exploration or whether additional data should be sought.

Our simulations related to the impact of vaccination was informed by details of the efficacy of the Pfizer and Johnson &
Johnson vaccines, since these are the vaccines most widely available in South Africa. We also considered the consequences of
unequal availability of vaccines around the world by assuming two different start dates for the vaccination program. The start
date of January 4, 2021 was chosen to be consistent with general roll-outs of programs in countries such as the UK, the USA,
and some European Union countries and was compared to a start date of June 7, 2021, which aligns with the general
availability of vaccines in South Africa. Our projections continue to April 2022 and so exact numbers must be treated with
caution. However, the message is cleardvaccination provides an important element in the fight against COVID-19, and delay
in delivering vaccines has a significant negative impact.
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At the time of this paper's analysis, the Omicron variant had just emerged, and thus our model involved data and
epidemiological properties of earlier variants. In the future, the model structure proposed here could either be modified to
include multiple variants or adapted through parameter values to explore the dynamics of the dominant variant. Despite the
dimensionality of our model (which has nine state variables), it is a simple representation of the dynamics of COVID-19. That
was intentional, to allow us to address the questions we chose to explore; but it also allows the model to be modified in the
future to address other important processes. For example, one could consider reinfection or wanning immunity from
vaccination if themodel covers a longer time period. Also one could includemobility data to better represent interactions and
movement in models with spatial components, using ideas from (Potgieter et al., 2021). Besides mobility issues, the size
distribution of households in a community may give more detail for possible types of interactions and for further information
about individual actions (Wu et al., 2020). When continuing to explore vaccination scenarios, optimal control techniques may
be used to choose allocation strategies.
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Appendix A. Basic Reproduction Number

At the outset of the COVID-19 outbreak, no vaccinations were available. Hence we take

Vð0Þ ¼ 0; EV ð0Þ ¼ 0; p1 ¼ 0; q ¼ 0;
which gives a model without vaccination and compartments V and EV. Using the Next Generation Matrix Method
(Diekmann et al., 2010; van den Driessche & Watmough, 2002) with constant parameters, we derive the expression for the
basic reproduction numberR0 for our system. Our infected compartments in order in this calculation are E, A, I, Q, and H. The
matrices of new infections and transitions are respectively, F and V, given by

F ¼

0
BBBBBBBBBB@

ðAþ cIÞSb
Sþ E þ Aþ I þ R

0

0

0

0

1
CCCCCCCCCCA

; V ¼

0
BBBB@

aE
g1A� aεE

ðkþ mþ g2ÞI � að1� εÞE
ðmþ rþ g3ÞQ � kI
ðg4 þ mHÞH � rQ

1
CCCCA
:

Computing the Jacobian matrices F and V of F and V respectively at the disease-free equilibrium

ðS0;0;0;0;0;0; 0Þ;
where S0 is the initial number of susceptibles before the COVID-infection is introduced into the system, we obtain

F ¼

0
BBBB@

0 b cb 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCA
; V ¼

0
BBBB@

a 0 0 0 0
�aε g1 0 0 0

�að1� εÞ 0 kþ mþ g2 0 0
0 0 �k mþ rþ g3 0
0 0 0 �r g4 þ mH

1
CCCCA
:

The inverse V�1 matrix of the Jacobian matrix V is given by
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V�1 ¼

0
BBBBBBBBBBBBBBBBBBB@

1
a

0 0 0 0

ε

g1

1
g1

0 0 0

1�ε

kþmþg2
0

1
kþmþg2

0 0

kð1� εÞ
ðkþmþg2Þðmþrþg3Þ

0
k

ðkþmþg2Þðmþrþg3Þ
1

mþrþg3
0

ð1�εÞkr
ðkþmþg2Þðmþrþg3Þðg4þmHÞ

0
kr

ðkþmþg2Þðmþrþg3Þðg4þmHÞ
r

ðmþrþg3Þðg4þmHÞ
1

g4þmH

1
CCCCCCCCCCCCCCCCCCCA

;

and the next generation matrix FV�1 is given as

FV�1 ¼

0
BBBBBBBBBB@

bε

g1
þ cbð1� εÞ
kþ mþ g2

b

g1

cb
kþ mþ g2

0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCCCCCCA

:

The reproduction number R0, which is the spectral radius of FV�1, is given by

R0 ¼ bε

g1
þ cbð1� εÞ
kþ mþ g2

:
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