
Clinically relevant GABARAP deficiency abrogates bortezomib-induced immunogenic 
cell death in multiple myeloma
Liwei Zhaoa,b, Zhe Shena,b, Guido Kroemera,b,c, and Oliver Kepp a,b

aCentre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France; 
bMetabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France; cDepartment of Biology, Institut du Cancer Paris CARPEM, 
Hôpital Européen Georges Pompidou, AP-HP, Paris, France

ABSTRACT
Recently, it was revealed that the high-risk, poor-prognosis downregulation of GABA type A receptor- 
associated protein (GABARAP) causes a defect in both autophagy and surface exposure of calreticulin 
(CALR) in multiple myeloma (MM) cells responding to bortezomib. Hence, GABARAP-defective MM cells 
fail to undergo immunogenic cell death.
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Main text

Immunogenic cell death (ICD) elicited by antineoplastic drugs 
relies on an increase in the adjuvanticity and antigenicity of 
cancer cells which together ignite adaptive anticancer immune 
responses.1,2 ICD inducers can impact the immunopeptidome 
while triggering premortem stress circuitries that promote the 
release and surface exposure of a specific set of danger-associated 
molecular patterns (DAMPs). Eukaryotic translation initiation 
factor 2 subunit 1 (eIF2α) serves as the main integrator of ICD- 
related cellular stress pathways, orchestrating the onset of autop-
hagy as well as endoplasmic reticulum (ER) stress, which in turn 
facilitate the liberation of ATP and the translocation of calreti-
culin (CALR) from the ER to the plasma membrane, 
respectively.3 Extracellular ATP can ligate purinergic receptor 
P2Y2 (P2RY2) expressed on dendritic cells (DCs), thus attract-
ing DCs to the tumor bed, while surface exposed CALR acts as 
an ‘eat-me’ signal that interacts with CD91 on the membrane of 
DCs, thus causing DC-mediated phagocytosis of portions of the 
cancer cell. Other DAMPs that participate to the dialogue 
between DCs and cancer cells succumbing to ICD include 
ligands released from malignant cells acting on pathogen recog-
nition receptors expressed on DCs, as this has been described for 
annexin A1 acting on formyl peptide receptor 1 (FPR1) and 
high-mobility group box 1 (HMGB1) acting on toll-like receptor 
4 (TLR4) to trigger DC chemotaxis and maturation, respectively. 
Moreover, in the course of ICD, malignant cells produce type 
I interferon (IFN) which further promotes inflammatory cyto-
kine release to attract T cells into the tumor microenvironment. 
Altogether, ICD promotes the DC-mediated processing and 
presentation of tumor antigen, eventually leading to the activa-
tion of cytotoxic T lymphocytes (CTLs) that can induce the IFN- 

γ-mediated lysis of residual cancer cells, while establishing 
immune memory, thus preventing tumor recurrence and facil-
itating durable therapeutic efficacy.1,4

Over the past decade, it has become evident that several 
distinct pharmacological classes of anticancer agents can 
induce ICD. Thus, chemotherapeutics such as anthracyclines 
and oxaliplatin, as well as the proteasome inhibitor bortezo-
mib, have been described to induce ICD. Moreover, certain 
targeted agents, cardiac glycosides, as well as the antibiotic 
bleomycin, showed ICD-inducing properties, contrasting 
with other standard-of-care cytotoxicants such as cisplatin 
that fail to elicit anticancer immunity.2–9

In the past the mechanisms of especially anthracycline- 
induced ICD have been deciphered in their molecular details, 
as this applies to the ER stress-dependent vesicular transport of 
CALR to the plasma membrane and the autophagy-mediated 
lysosomal liberation of ATP. Moreover, several strategies to 
ameliorate the immunostimulatory effects of ICD have been 
proposed. Those include, but are not limited to, the induction 
of autophagy by IGF-1 receptor inhibitors, chalcones, short- 
term fasting or caloric restriction mimetics, thereby boosting 
ATP release and enhancing anticancer immunosurveillance.10–14

In a recent article, Annamaria Gulla and colleagues showed 
that the loss of GABA type A receptor-associated protein 
(GABARAP) expression, which is often found in high-risk 
multiple myeloma (MM) patients, leads to a malfunction in 
autophagy and also disrupts surface exposure of calreticulin 
(CALR) via Golgi-mediated vesicular transport during borte-
zomib-induced ICD.15 Consequently, GABARAP deficiency 
diminishes DC-mediated phagocytosis of MM cells, in turn 
limiting antigen processing and hampering 
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immunosurveillance by T lymphocytes. Accordingly, MM 
patients with low levels of GABARAP exhibit decreased 
tumor immune cell infiltration and dismal prognosis. In 
GABARAP-deficient MM cells cultured in vitro, the autophagy 
inducer rapamycin restored Golgi morphology while facilitat-
ing CALR exposure. In summary, combination of bortezomib 
with rapamycin might constitute a promising approach to 
overcome ICD resistance in MM patients lacking GABARAP 
(Figure 1).

The exact mechanism of autophagy-mediated Golgi 
restoration and CALR exposure remains elusive and future 
experiments should focus on elucidating the molecular 
mechanisms of this intriguing crosstalk. Furthermore, clin-
ical studies must evaluate the feasibility to combine borte-
zomib or other ICD inducers with rapamycin or other 
autophagy enhancers including rapalogs to stimulate antic-
ancer immunosurveillance.
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Figure 1. (a) Induction of autophagy in cells with defective GABARAP expression restores Golgi-mediated calreticulin exposure in multiple myeloma. The absence of 
GABA type a receptor-associated protein (GABARAP) in high-risk multiple myeloma impairs autophagy and interferes with bortezomib-induced immunogenic cell death 
(ICD) by disrupting calreticulin (CALR) relocation, reducing dendritic cell phagocytosis and limiting anti-tumor T cell responses (A). Rapamycin restores autophagy, 
facilitates Golgi vesicular transport and reinstates CALR exposure, thus enhancing ICD in GABARAP-deficient cells treated with bortezomib (b). Combining bortezomib 
with rapamycin may overcome ICD resistance in MM patients with defective GABARAP expression.
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