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Abstract
Effective identification of previously implausible safety signals is a core component of successful pharmacovigilance. Timely, 
reliable, and efficient data ingestion and related processing are critical to this. The term ‘black swan events’ was coined by 
Taleb to describe events with three attributes: unpredictability, severe and widespread consequences, and retrospective bias. 
These rare events are not well understood at their emergence but are often rationalized in retrospect as predictable. Phar-
macovigilance strives to rapidly respond to potential black swan events associated with medicine or vaccine use. Machine 
learning (ML) is increasingly being explored in data ingestion tasks. In contrast to rule-based automation approaches, ML 
can use historical data (i.e., ‘training data’) to effectively predict emerging data patterns and support effective data intake, 
processing, and organisation. At first sight, this reliance on previous data might be considered a limitation when building ML 
models for effective data ingestion in systems that look to focus on the identification of potential black swan events. We argue 
that, first, some apparent black swan events—although unexpected medically—will exhibit data attributes similar to those 
of other safety data and not prove algorithmically unpredictable, and, second, standard and emerging ML approaches can 
still be robust to such data outliers with proper awareness and consideration in ML system design and with the incorporation 
of specific mitigatory and support strategies. We argue that effective approaches to managing data on potential black swan 
events are essential for trust and outline several strategies to address data on potential black swan events during data ingestion.
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Key Points 

‘Black swan events’ are unexpected, severe situations that, 
in retrospect, can seem predictable. A subset of safety risks 
seen in pharmacovigilance are such black swan events.

Adequate data ingestion is core to safety. Machine 
learning (ML) during pharmacovigilance data ingestion 
should make both data intake and processing more effec-
tive and enable signal detection and management, or—at 
an absolute minimum—not hinder it.

Routine use of ML in pharmacovigilance data ingestion 
requires considering the potential for black swan events. It 
needs to support both adequate ingestion of familiar and 
common reporting patterns or attributes and unexpected 
changes in reporting that might signify a black swan event.

There are many manifestations of potential black swan 
events in pharmacovigilance data, but ML can be antici-
pated to support or enable the adequate ingestion of data 
on these events if ML best practice and—when needed—
mitigatory strategies are employed.

1 Introduction

The ability to effectively capture, organise, compile, analyse, 
share, and act on highly heterogenous data in a timely man-
ner is at the heart of pharmacovigilance [1]. As data vol-
umes grow [2], coupled with the complexity and variability 
of international regulation requirements, there is a pressing 
need to ensure that emerging scientific and technological 
advances are harnessed to ensure data management remains 
workable and effective and that the focus remains on patient 
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safety [3]. Pharmacovigilance systems are necessarily com-
plex as they ingest data from very different sources. They are 
therefore made up of many distinct process steps with differ-
ent purposes across data intake, processing, and reporting. 
All of this must happen in a timely and effective manner [4].

‘Intelligent automation’ uses automation technologies 
to streamline and scale decision making across organiza-
tions. Intelligent automation simplifies processes, frees up 
resources, improves operational efficiencies, and has vari-
ous applications [5]. Intelligent automation incorporates 
robotic process automation and ML with other processes to 
enable rapid and effective intake, processing, and reporting 
of heterogenous data at scale. Of course, it is paramount that 
systems incorporating algorithmic learning can identify and 
appropriately manage unexpected, and even rare, data points 
to build trust in these systems.

2  Trusted Intelligent Automation and Data 
Ingestion

Given the large amount of manual effort routinely required in 
pharmacovigilance operations to effectively manage safety data, 
the promise of intelligent automation in pharmacovigilance is 
enormous [6, 7]. Rule-based systems are in production use, 
for example, in duplicate checking and data quality review [8, 
9]. More and more opportunities for robotic process automa-
tion will be identified, and solutions and increasing numbers 
of solutions will therefore continue to have a clear impact on 
the automation of routine tasks. However, the complexity and 
breadth of medical knowledge limits the possibility of capturing 
all relevant information in rules [10]. The additional benefits of 
automation will be seen as ML capabilities in safety evolve to 
supplement rule-based data ingestion and communication [6]. 
ML has advanced enormously in recent years, and we believe 
that what are now standard ML approaches from other indus-
tries and areas can and will be increasingly applied in pharma-
covigilance. Although the usefulness of ML will be limited for 
some current tasks by the current volume of training data [6], 
for other tasks—particularly those that are the same or simi-
lar to those in broader healthcare—no such limitation should 
be anticipated, e.g., voice input technology to facilitate work 
in electronic healthcare records [11]. Ultimately, ML will be 
routinely used across all parts of the pharmacovigilance data 
lifecycle, from data ingestion to analysis and augmented deci-
sion making, as automation becomes increasingly ‘intelligent’.

Effectively negotiating the regulatory challenges of vali-
dating emerging ML-based technologies is also key to build-
ing confidence and trust among pharmacovigilance stake-
holders [12].

ML credibility and reliability are based on demonstrated 
learnings from the most seen types of training data ingested 

in development. Although this may be representative and 
voluminous, it does not represent the universe of potential 
inputs. Further trust can be built by appropriately identifying 
and learning from these outliers by, for example, comput-
ing a low confidence score or triaging for manual (human) 
assessment.

Intelligent automation solutions must ultimately show 
that a combination of rules-based systems and ML can 
ensure, as effectively and reliably as possible, that data in 
safety databases are promptly available for analysis and 
reflect all known and relevant information from a suspected 
adverse event (AE) occurrence (see Fig. 1).

The use of ML in safety can be broadly distinguished 
by asking two questions [6]. First, can ML further our abil-
ity to find novel data patterns as we conduct signal detec-
tion or consider data aspects in our evaluations that might 
otherwise be suppressed or hidden and therefore missed 
(e.g., variable combinations for propensity score estimation 
in pharmacoepidemiology studies) [13]? Second, to what 
extent can we do existing data ingestion work, particu-
larly the more routine operationally repetitive tasks, more 
efficiently and effectively through learning from data? Or 
take on new work that was not previously possible [4]? For 
example, ‘autoencoding’ verbatim text to International Con-
ference on Harmonisation Medical Dictionary for Regula-
tory Activities (MedDRA) code AE terms during data entry 
[14] is an ML opportunity, assuming sufficient training data 
exist to enable ML to systematically handle the data, where 
pre-identified specific rules may be impossible or at least 
limiting. Although the first use is out of scope for this manu-
script, we should note that the analytic challenges to resolve 
across these two pharmacovigilance application areas are 
often very similar (e.g., identifying medical events in free 
text) [15]. However, the aims of ML in data entry and data 
output analysis are very different: ML for data analysis on 
the outputs is to enable the ability to find interesting patterns 
and outliers; ML in automation focuses on effective learning 
from previous data to adapt processes and approaches more 
effectively. As an example, ML in data ingestion might help 
filter out noise and errors while ensuring that the original 
core data are represented with excellent fidelity and minimal 
information loss.

2.1  The Concept of Black Swan Events

Although unexpected findings affect all elements of drug (and 
vaccine) development, this is perhaps most keenly felt in the 
field of safety surveillance, where—in addition to surveillance 
of known or suspected safety issues and the potential occur-
rence in routine healthcare practice—the identification of 
previously unanticipated safety issues is of paramount impor-
tance. In refining our understanding of the safety of routinely 
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used medicines, the capability to effectively identify previously 
unexpected safety signals is crucial [16].

Even a rare safety issue can lead to drastic changes in the 
recommended usage or even the withdrawal of a medicine or 
vaccine already used in routine healthcare delivery. An accurate 
understanding of the emerging safety profiles of medicines and 
vaccines during development is vital for effective and appropri-
ate progressing of drug and vaccine development programmes.

The concept of ‘black swan events’ is of relevance to 
pharmacovigilance. Taleb [17] defines a black swan event 
as one of extreme impact that, although outside the realm 
of regular expectations (i.e., prospectively unpredictable), 
prompts humans to concoct explanations for its occurrence 
after the fact, making it seemingly explainable and predict-
able (i.e., retrospectively distorted). Humans are often irra-
tional when considering risk and probabilities [18]. Sand-
man et al. [19] argued that the public’s response to risks is 
driven by the nature of the hazard and their outrage that such 
events could happen, accompanied by a strong urge to blame 
someone if and when they do occur. This tendency natu-
rally leads to retrospective distortion as selective attention is 
given to different sources of risk. The social amplification of 
risk can be seen as an ex-post attempt to make up for failures 
to anticipate extreme events [20]. In addition to impact and 
retrospective predictability, all black swans are ‘outliers’ as 
they are unexpected given what has been seen before.

Europeans referred to a black swan as something impossible 
until actual black swans were discovered in Australia in 1697. 
The term black swan event has been perhaps most used in the 
financial industry, for example, to refer to the global finan-
cial crisis of 2008–2009 [21]. It has also been used to refer 
to the Ebola epidemic in Africa in 2015 [22]. Most recently, 
the COVID-19 pandemic has been referred to as a black swan 
event in terms of its widespread impact [23, 24].

Taleb’s definition of a black swan event as prospectively 
unpredictable depends on the observer. An event that was 
a black swan to one person (or algorithm) may have been 
predictable and therefore not a black swan to another. Pre-
sumably, at least some Australians in 1697 would have dis-
missed the notion of white swans. One needs to be aware of 
the possible existence of future potential black swans, and 
therefore systems and processes should detect, or at least 
flag during ingestion, data that might signify potential black 
swan events proactively and prospectively.

3  Black Swan Events in Safety Data

The concept of black swan events has only received cur-
sory reference in the pharmacovigilance literature, and not 
in the context of intelligent automation [25, 26]. We con-
sider a pharmacovigilance black swan event to be a drug or 

Fig. 1  ICSR process overview 
and how a ICSR ML enabled 
process could approach the 
challenge of preventing loss of 
fidelity of data. HCP healthcare 
practitioner, ML machine learn-
ing, PV pharmacovigilance
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vaccine–AE combination that became a new, unexpected 
safety signal and then had a big impact on the benefit–risk 
profile of the medicine/vaccine, which some may have sub-
sequently felt could have been identified earlier with the ben-
efit of hindsight. For this manuscript, we define ‘big impact’ 
as a safety risk that significantly affects the known bene-
fit–risk profile of a medicine or vaccine, leading to changes 
in medicine or vaccine utilization. ‘Unexpected’ could mean 
that data accruing are systematically different from what 
was previously in the pharmacovigilance system (data in 
general or, more narrowly, increased reporting of a specific 
drug/vaccine–AE pair; i.e., a ‘data outlier’) and/or that the 
emerging risk was unpredictable in terms of contempora-
neous medical knowledge, irrespective of reporting pattern 
(a ‘medical outlier’). Table 1 shows examples of different 
historic pharmacovigilance safety signals and/or risks that 
could be considered black swan events. They are distinct in 
terms of the nature of medical knowledge at the time of risk 
identification or in terms of data outlier manifestation. Black 
swan events may be either medical or data outliers or both 
data and medical outliers. This table emphasizes the vari-
ety of potential black swan events that a pharmacovigilance 
system must look to identify a priori.

ML at its core requires learning from data, and algorith-
mic performance relies on sound, contemporaneous, up-to-
date training data to learn. The use of ML in automated 
ingestion raises concern that outliers, including potential 
black swan events, may be smoothed away into the general-
ity of the data as noise rather than attracting the focus they 
deserve as data points that may be systematically different 
from the other observed data and therefore require further 
investigation. Black swan events present one specific chal-
lenge to the trusted use of ML approaches in pharmacovigi-
lance. ML researchers actively study the handling of ‘out-
of-distribution’ data and providing uncertainty estimates for 
model predictions [27–30].

Much of the safety data to be ingested into pharmacovigi-
lance systems are neither unexpected (e.g., reporting of well-
established safety issues) nor serious (mild), and some have 
minimal potential to impact the understood benefit–risk 
profile of a medicine [3]. A credible ML-enabled intelligent 
automation process for data ingestion needs to appropri-
ately ingest the data manifestation of these known/famil-
iar/predictable AEs and appropriately handle the rare new 
information, including potential pharmacovigilance black 
swan events. The data manifestation of a potential black 
swan event would be data outliers in quantitative terms, 
i.e., drug–event pairs more frequently reported than might 
have been anticipated, or aspects of their reports or clinical 
outliers that are clinically convincing data on safety reports 
alluding to clinical novelty (see Table 1).

4  Machine Learning to Pre‑Empt, Alert, 
and Mitigate Potential Black Swans 
During Safety Data Ingestion

In Sect. 4.1, we list some ML implementation strategies to 
pre-empt and alert to potential black swan events during 
data ingestion, so that signal detection with any approach 
is at least as likely to—as quickly as possible—identify the 
emerging safety issue as would have been possible with 
more manual data ingestion processes. Table 2 shows a 
range of examples of how ML might be applied to aspects 
of data ingestion and illustrates the pitfalls of injudicious 
ML implementation that could lead to poor representa-
tion of data in safety databases, potentially impacting sig-
nal detection. On the other hand, there is no certainty, of 
course, that manual curation and processing have always 
optimally helped in the identification of black swan events, 
and one can anticipate that, in the future, ML perhaps 
might identify some such deficiencies.

Further perspective is needed here: As discussed earlier, 
black swan events are considered from a specific human 
vantage point. Safety is littered with examples that some 
would consider black swan events, although some of these 
safety issues may have seemed unexpected from a contem-
poraneous medical knowledge viewpoint while exhibit-
ing more typical patterns of accumulating data seen with 
many emerging safety issues. Such typical data patterns 
would be increasing volumes of reports describing a spe-
cific vaccine/drug–event pair or related concepts, etc., and 
the increasingly informative cumulative data conveyed on 
reports represents typical pharmacovigilance information, 
e.g., well-known coded adverse drug reaction terms and 
other information important in safety data assessment, so 
that the ‘unexpectedness’ is focussed on the lack of plausi-
bility between the drug/vaccine and AE. Such safety issues 
would therefore present in such a way that effective intel-
ligent automation with ML would be unlikely to be prob-
lematic from an algorithmic perspective in terms of case 
intake and processing, enabling the data to be efficiently 
handled with minimum human involvement while retain-
ing the fidelity of the stored and transmitted data to that 
originally received. Some of the black swan event exam-
ples in Table 1 have data patterns similar to those seen 
previously (volume and nature of data conveyed on safety 
reports); some do not. Therefore, emerging issues with 
different data patterns require different mitigatory surveil-
lance strategies. There may be a lack of data for some, or 
data may differ from what was seen previously. Although 
we concur with others that there is enormous potential for 
more effective learning from data for medicines and vac-
cines [31], practical approaches are needed to handle and 
learn effectively from ‘predictable’ data (i.e., data similar 
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in properties to historic data such as ongoing reporting 
of common well-established AEs) but also to pre-empt 
and be aware of potential black swan events and optimally 
learn from data outliers. Such practical approaches could 
realize the full potential of data-driven technologies in 
pharmacovigilance and, fortunately, are well-studied in the 
technical ML literature; see the discussions of ‘out-of-
distribution learning’ in Hendrycks et al. [30], Blundell 
et al. [32], Shafaei et al. [33], and Meinke et al. [34].

4.1  Considerations for Pharmacovigilance Use 
of Machine Learning to Avoid and Pre‑Empt 
Potential Black Swan Events

The following points should be considered when using 
ML-based systems to enable pre-emption of and alerting 
to potential black swan events in data ingestion and related 
tasks in pharmacovigilance.

• Have in place a pre-planned mitigatory process to provide 
essential confidence and trust in the use of ML systems. 
If a black swan does occur, have a process to deal with 
unexpected outcomes.

• ‘Data drift’ can occur over time as models are used 
in production [35, 36]. That is, the data can gradually 
change over time, perhaps almost imperceptibly becom-
ing very distinct from the data at production launch: This 
property of data drift needs to be monitored by defining 
and then complying with ‘significant change’ triggers 
for human review [37, 38]. Such a trigger is a metric or 
metrics that measure against model performance and, if a 
threshold is breached, will redirect for a human to review 
more extensively instead of the routine use of the ML 
model. Humans are generally better suited to deal with 
unexpected patterns outside of the expected scope, and 
significant change triggers will be a pre-defined threshold 
that forces the system to require careful human review 
over its trained model. Such periodic reviews may lead 
to changes to the ML model through retraining on new 
data and redeploying the updated algorithm.

• Continually monitor for unanticipated changes in model 
performance metrics (e.g., leveraging extreme value the-
ory, which focuses on statistical properties of rare events) 
[39].

• Ensure metadata, which explain the data, are kept cur-
rent for linking, grouping, and interpreting data fields for 
increased insight into the data profile.

• Orthogonal data mining (i.e., using different algorithms 
that are as independent as possible to discover previously 
unknown patterns/outliers representing fragments or 
indicators of emerging black swans) reduces the proba-
bility of missing an outlier by using two distinct methods. 
Similarly, ensemble methods [27, 40] can also be used; Ta
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these create multiple distinct models and then combine 
them to produce improved results.

• Issue periodic model robustness challenges to find any 
weaknesses/limiting assumptions, such as the use of 
‘adversarial attack’ approaches, which look to deliber-
ately subvert otherwise reliable ML systems [41]; con-
tinually assess the impact of input to the model (e.g., 
with sensitivity analyses and input data perturbation); 
and observe changes in the amount or distribution of 
missing data. This approach would aim to understand 
model behaviour when interacting with unexpected 
data to create a more robust system or model.

• Model prediction needs to account for rare events that 
do not occur in the training data; an ML method should 
always compute and make the level of confidence in 
predictions transparent to users and always have a way 
of returning ‘NULL’, ‘prediction unable to be made’, 
and ‘requires human review’ responses when prediction 
is not possible [42–44].

• Frequently update the model with new training data to 
ensure ongoing model generalizability. Model retraining 
should be triggered by a metric(s) measuring a drift in 
the data to evaluate model performance. Cost-sensitive 
loss functions should be applied to judge the quality and 
capability of the models, which look to weigh up the 
cost of missing a rare event. If retraining is not triggered 
within a set amount of time, consider setting a time-based 
trigger for retraining.

• Articulate clearly any uncertainty in ML models using 
methodological approaches. For example, if using an 
neural network model, add a diversity term in the loss 
function during training [45] and consider the uncer-
tainty to the fullest extent possible in resulting use [46] 
to make the potential for when and where black swan 
events might occur as clear as possible to users.

• Enhance credibility and useability to the extent possible 
by explainability, not only of how the model works and 
underlying assumptions but also regarding uncertainty in 
the model. Ensure trust in the evaluation and assessment 
methods used to develop the ML approach and maximize 
the reproducibility of ML analyses [47] to enable others 
to test and challenge the approach and reduce the chance 
of black swan events.

• Employ existing explanation methods for prediction 
models to better understand the influential input param-
eters of a model and thereby enable one to determine 
whether a model is likely to be robust to changes in the 
environment or confounding factors [48].

• Appropriate training of the users of the ML application 
is essential [49].

• When practising ML, the pre-processing step is part of 
the model and should have precision and recall metrics 

associated with it, and the performance of the whole sys-
tem should ideally be measured or constructed at once for 
‘end-to-end learning’, starting from raw data with deep 
learning.

• Data should never be smoothed or left out to make the 
ML easier to execute. Instead, ensure enough data, and 
use methods that address the ambiguity.

• Critical analysis of known and likely mechanistic factors 
influencing treatment and diseases could be leveraged 
to better understand what factors of variation a model 
would have to be robust to and to formalise how changes 
in our understanding over time may necessitate model 
adaptation [50].

5  Conclusion

ML is increasingly being explored in pharmacovigilance 
as a component of pharmacovigilance systems to enable 
adequate data ingestion and related tasks. Systems for intel-
ligent automation need to effectively manage common and 
reported safety data and rarer data points such as black swan 
events. Safety needs to harness the standard approaches used 
in the broader ML community as well as recent advances 
and implement ML systems that recognise the possibility 
of rare events and are designed accordingly. Black swan 
events are, by their nature, a fact of life. The design of ML-
based systems for pharmacovigilance needs to recognize and 
actively plan for the possibility of such events.

With trusted and reliable strategies to avoid and mitigate 
potential black swan events, overall systems leveraging ML 
can realize their maximum impact for data intake and pro-
cessing, making overall surveillance activities more effec-
tive, including for safety.
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