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Abstract: Apolipoprotein (apo) B, the critical structural protein of the atherogenic lipoproteins, has
two major isoforms: apoB48 and apoB100. ApoB48 is found in chylomicrons and chylomicron
remnants with one apoB48 molecule per chylomicron particle. Similarly, a single apoB100 molecule is
contained per particle of very-low-density lipoprotein (VLDL), intermediate density lipoprotein, LDL
and lipoprotein(a). This unique one apoB per particle ratio makes plasma apoB concentration a direct
measure of the number of circulating atherogenic lipoproteins. ApoB levels indicate the atherogenic
particle concentration independent of the particle cholesterol content, which is variable. While LDL,
the major cholesterol-carrying serum lipoprotein, is the primary therapeutic target for management
and prevention of atherosclerotic cardiovascular disease, there is strong evidence that apoB is a more
accurate indicator of cardiovascular risk than either total cholesterol or LDL cholesterol. This review
examines multiple aspects of apoB structure and function, with a focus on the controversy over
use of apoB as a therapeutic target in clinical practice. Ongoing coronary artery disease residual
risk, despite lipid-lowering treatment, has left patients and clinicians with unsatisfactory options
for monitoring cardiovascular health. At the present time, the substitution of apoB for LDL-C in
cardiovascular disease prevention guidelines has been deemed unjustified, but discussions continue.

Keywords: apolipoprotein B; LDL-C; atherosclerosis; biomarker; statin

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide and its preva-
lence is expected to continue to rise over the next 15 years [1,2]. According to the American
Heart Association (AHA), one in three people will be affected by some form of CVD during
their lifetime [3]. The two most common clinical manifestations of CVD are coronary artery
disease (CAD) and ischemic stroke [4]. As a major cause of morbidity and mortality in
the United States of America and worldwide, complications of atherosclerosis, including
myocardial infarction, chronic kidney disease and stroke, are major contributors to the
financial burden of healthcare costs [5,6]. The overall approach to reducing CVD morbidity
and mortality is focused on primary and secondary prevention and control of modifiable
risk factors [7,8]. Despite all efforts, substantial residual risk remains and new lines of
attack against atherosclerotic CVD are needed [9]. One avenue that merits exploration is
apolipoprotein B (apoB) and its prominent position as a causal factor in atherosclerosis [10].

Atherosclerosis is a progressive disease of large- and medium-sized muscular arteries,
characterized by elevated lesions called fibrous plaques that encroach upon the vessel
lumen and disturb blood flow. Atherosclerosis is the major cause of CVD. A hallmark of
atherosclerosis is the retention of cholesterol-rich low-density lipoprotein (LDL) and other
apoB-containing lipoproteins within the arterial wall (Figure 1) [11]. Development of the
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fatty streak and subsequent transition to fibrous plaque is primarily dependent upon the
absorption of modified forms of cholesterol by subendothelial macrophages in an inflamma-
tory setting. Thus, elevated levels of cholesterol in the circulation promote atherosclerosis
and CVD [12,13]. Measurement of serum apoB reflects total LDL-C, intermediate density
lipoproteins (IDL-C), VLDL-C, and lipoprotein(a) (Lp(a)) particle concentrations because
each particle contains exactly one molecule of apoB100. Thus, apoB can be considered a
powerful tool for assessment of atherogenic lipid status.
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es. Phagocytosis allows for the accumulation of lipids within macrophages, producing foam cells. 
OxLDL-laden foam cells amass and form the fatty streak and eventually the lumen-narrowing 
atheromatous plaque that restricts blood flow. Additionally, inflammatory signaling pathways are 
activated, leading to increased cell migration and LDL modification. 
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Figure 1. Atherosclerosis involves apoB-containing lipoproteins. The atherosclerotic process begins
with compromise of the endothelial barrier, allowing apoB-containing LDL cholesterol to migrate
into the arterial intima. Activated endothelium fosters attachment, migration and proliferation of
vascular smooth muscle cells (SMC) and macrophages. Retained apoB-containing lipoproteins are
oxidatively modified within the vascular intima. Oxidized (ox)LDL contains protein components,
creating a net negative charge, making the particles highly attractive to macrophages. Phagocytosis
allows for the accumulation of lipids within macrophages, producing foam cells. OxLDL-laden foam
cells amass and form the fatty streak and eventually the lumen-narrowing atheromatous plaque
that restricts blood flow. Additionally, inflammatory signaling pathways are activated, leading to
increased cell migration and LDL modification.

ApoB is a key structural protein component of all major atherogenic lipoproteins. It
plays multiple roles in regulating lipid metabolism and is considered to be a physiologically
relevant measure of actual number of atherogenic lipid particles. This review will explore
the importance of apoB in the atherosclerotic process and its potential role as a biomarker
and treatment target. The structure and function of apoB will be discussed. Areas of conflict
and controversy will be addressed. In addition, we will focus on future directions of lipid-
lowering agents and whether or not apoB should play a more central role in controlling
and monitoring dyslipidemia.

2. ApoB: Characteristics and Composition

The protein constituents of lipoproteins, apolipoproteins, are found bound to the
lipoprotein surface and are largely responsible for the lipoprotein properties, transport and
metabolism [13–15]. Of the numerous apolipoproteins, apoB is an essential component of
VLDLs and its metabolites IDLs and LDLs as well as chylomicrons and their remnants [14].
The apoB particle serves as a frame and is crucial in the maintenance of the structural
stability of the lipoprotein (Figure 2) [16,17].
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Figure 2. Apo B in a lipoprotein particle. A single molecule of apoB is irreversibly bound to the surface
of the lipoprotein particle. The lipid content of the surface consists of a monolayer of phospholipid
and free cholesterol. The hydrophobic core is composed of triglyceride and cholesterol esters.

ApoB is encoded by the APOB gene, and occurs in two forms: full-length apoB100,
consisting of 4536 amino acids; and apoB48, a truncated form consisting of the N-terminal
2152 amino acids [18–21]. Although encoded by the same gene, they play distinct roles in
physiology. In humans, apoB48 is primarily synthesized and expressed within the intestine
and is present in chylomicrons and their remnants [22,23]. In contrast, apoB100 is mainly
synthesized and expressed in the liver and is an integral component of VLDL, IDL and
LDL (Figure 3) [24,25]. Therefore, of the two forms, apoB100 is more clinically relevant in
determining the level of circulating atherogenic lipoproteins [26]. Amongst the plasma
apolipoproteins, apoB100 is unique not only because of its large size but also due to its
moderate hydrophobicity and inability to transfer between lipoproteins [27–30].

The apoB100 polypeptide is made up of five domains: βα1, β1, α2, β2, and α3, with
α representing a predominantly α-helical structure and β representing a predominantly
β-sheet structure [31–33]. The N-terminal sequence is vital in the formation of VLDL due
to its interaction with the microsomal triglyceride transfer protein (MTP) [34,35]. MTP
in the endoplasmic reticulum is required for the first step in apoB generation, transfer of
triglycerides, phospholipids and cholesterol esters to the apoB particle [36]. The β-sheet
domains are fundamental in establishing irreversible strong bonds to the lipid core that keep
lipoproteins anchored to the original apoB particle to which they have been attached [14].
An amphipathic α-helix domain is located between the two β-sheet domains, typical in
other apolipoprotein structures as well [37]. Elongation of the β-sheet domains around
the lipoprotein imbues apoB100 with a distinct amphipathic quality which allows the
stable binding of lipids, especially those within the lipoprotein core [16,32]. These lipid-
associating regions are key features for the integrity of LDL particles.
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Figure 3. Apolipoprotein (apo) B in atherogenic lipoprotein formation. ApoB is the critical structural protein of all
atherogenic lipoproteins. It has two major isoforms: apoB48 and apoB100. ApoB48 is found only in chylomicrons (CM) and
chylomicron remnants. It mediates the secretion of chylomicron particles from the intestines. Chylomicron remnants are
taken up by the liver. Free fatty acids generated from chylomicron remnants are used by the liver to make triglycerides
that are incorporated into nascent VLDL. VLDL particles, each harboring a single apoB100 molecule, are secreted from the
liver carrying endogenous, hepatically synthesized triglycerides. VLDL particles shrink with loss of surface components
to HDL and are catabolized to IDL by lipoprotein lipase (LPL). Then, IDL is converted to LDL. It is LDL that carries the
majority of the circulating cholesterol. LDL can be oxidatively modified and taken up by macrophages which leads to excess
accumulation and the formation of foam cells.

Ribosomes on the surface of the endoplasmic reticulum synthesize apoB100, which is
subsequently translocated through a channel to the lumen of the endoplasmic reticulum.
ApoB100 secretion is regulated primarily at the post-translational stage [13,38,39]. Typically,
secretory proteins are synthesized on the cytosolic surface of the ER followed by rapid
translocation through the membrane to the lumen of the ER. However, apoB100 is unlike
other secretory proteins in that it becomes associated with the ER membrane very early
in the post-translational period, resulting in exposure of the nascent polypeptide to the
cytosol [13]. This exposure allows for between 50 and 80% degradation of the newly synthe-
sized apoB100 by hepatocytes. Thus, this rapid co-translational degradation predominantly
determines the amount of protein secreted by the cells. Furthermore, whether nascent
apoB100 is degraded or secreted depends on the availability of the major lipoprotein lipids,
triglycerides, cholesteryl esters, and phospholipids [40]. If the amount of lipid available
to lipidate apoB in the endoplasmic reticulum is inadequate or if MTP is not function-
ing properly, the chaperone protein binding immunoglobulin protein (BiP) will bind to
apoB and target it for proteasomal degradation [41–43]. Proteasome-independent post-
translational degradation of apoB has also been documented [44]. MTP and the amount of
lipids available are major determinants of apoB100 translocation in addition to its assembly
and secretion [14,45,46]. MTP and apoB100 interact physically at the site of apoB100 translo-
cation across the ER where MTP facilitates the coordinated transfer of lipids and folding of
the polypeptide as it exits the ribosome and enters the ER lumen [13,32]. MTP inhibition
can block the secretion of apoB100 [13,47]. Subsequent maturation of apoB100 occurs in the
golgi apparatus prior to secretion from the hepatocyte [48,49]. The addition of a major load
of triglycerides occurs in the golgi apparatus and plays a significant role in determining
the size of the VLDL secreted [14,50,51]. Therefore, the amount of triglyceride available in
the hepatocytes directly impacts VLDL assembly. States of excess triglyceride production,
such as obesity, untreated diabetes mellitus, or in persons consuming a diet high in simple
carbohydrates, lead to the formation of triglyceride-rich VLDL [52–54]. After a high-fat
meal, the concentration of triglyceride-rich large VLDL and chylomicrons increases [55].
The size and density of apoB-containing particles is directly dependent on the availability
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of triglyceride [56]. A number of additional factors, such as the availability of insulin and
fatty acids, can also influence the secretion of these apoB-containing lipoproteins.

In humans, the liver is predominantly responsible for the uptake and disposal of
the majority of circulating apoB-containing lipoproteins. Uptake is carried out via three
primary receptors: the LDL receptor, heparin sulfate proteoglycans, and scavenger receptor
class B type I (SR-BI). The LDL receptor has a half-life of about 25 h and is responsible
for the clearance of more than two-thirds of normal LDL, accomplished via binding to
a specific site within the α3 domain of apoB100 [16,37,57,58]. The primary binding re-
gion that interacts with the LDL receptor, termed site B, is located at residues 3356–3368
of apoB [16,57]. Binding between the LDL receptor and apoB100 only occurs after the
polypeptide has undergone a conformational change which results due to the lipolysis of
VLDL to LDL [59,60]. Loss-of-function mutations in the LDL receptor or apoB can result
in familial hypercholesterolemia, which is characterized by extremely elevated plasma
LDL levels, thus leading to accelerated atherosclerosis [61]. Additionally, gain-of-function
mutations in PCSK9, a proprotein convertase that accelerates the degradation of the LDL
receptor, also results in high LDL concentrations [62]. Following endocytosis, LDL sepa-
rates from the LDL receptor. The LDL, with a long half-life of 2- to 3-days, is transported to
the lysosomes where it is degraded and its lipid cargo released, while the majority of LDL
receptors are recycled to the cell surface [63–65]. In this way, apoB100 is essential in the
catabolism of VLDL, LDL and IDL via its interaction with LDL receptors in the plasma.

In addition to LDL receptor binding sites, apoB100 possesses at least eight potential
proteoglycan (PG)-binding sites [66,67]. Of these, two sites have been proposed to act
cooperatively in the association with proteoglycans: site A at residues 3148–3158 and site B
at residues 3359–3369 [68,69]. The main sites that interact with proteoglycans are sites A
and B, sites that also bind to the LDL receptor [14,70]. ApoB-containing lipoproteins bind
to PGs via ionic interactions between the negative charged sulfate and carboxyl groups of
the glycosaminoglycans (GAGs) and the positively charged basic amino acid lysine and
arginine residues of the apoB100 [16,71]. This binding of apoB100 to proteoglycans in the
arterial wall is particularly significant as it is considered to be the primary mechanism for
the retention of LDL in the subendothelium [72]. The retention and aggregation of apoB-
lipoproteins within the arterial wall can be attributed to the intrinsic tendency of damaged
or modified apoB100 to aggregate. Proteolysis of apoB by enzymes in the arterial intima
can change particle conformation at a molecular level, promoting fusion, aggregation and
accumulation in the arterial wall [71,73].

On the other hand, apoB48 is primarily found on chylomicrons and their remnants
and is primarily cleared by the heparin sulfate proteoglycan (HSPG) pathway since they do
not contain an LDL-receptor binding domain [74,75]. The significance is largely found in
diabetes, where high glucose interferes with perlecan biosynthesis, resulting in a decrease
in HSPG. This leads to elevated plasma levels of apoB48 containing lipoproteins and
ultimately severe postprandial dyslipidemia [76]. While chylomicrons themselves are too
large to penetrate the arterial wall, their remnants may do so and are therefore thought to
contribute to lipid accumulation in atherosclerotic plaque [77].

3. Biomarkers for CVD: LDL-C and ApoB
3.1. The Lipid Profile and LDL-C as a Biomarker

Currently, the American Heart Association recommends a screening lipid panel every
4–6 years in patients over the age of 20. However, patients with CVD or at high risk of
cardiovascular-related events should be screened more frequently [78,79]. A routine lipid
panel consists of total cholesterol, HDL-C, LDL-C and triglycerides, along with cholesterol
ratios. Total cholesterol, HDL-C and triglycerides are directly measured, whereas the
LDL-C levels are estimated using the Friedewald equation. The Friedewald equation,
which is subject to inaccuracy in the presence of high triglycerides and other conditions
like diabetes, estimates LDL-C as total cholesterol minus HDL-C and very-low-density
cholesterol (VLDL-C), with VLDL-C estimated as triglycerides divided by a fixed factor of
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5 [80–83]. Ultracentrifugation followed by β-quantification is the gold standard to directly
measure LDL-C, but this method is impractical, expensive and generally reserved for
research use [84,85].

Traditionally, LDL cholesterol has been used to assess the risk associated with CVD
and is a frequently used surrogate CVD risk marker in clinical trials [86–89]. However,
LDL-C is an imperfect predictor and many individuals with normal LDL-C levels develop
CVD [90].

LDL is generally characterized as a combination of cholesterol contained in a variety
of lipoproteins defined by a density between 1.006 and 1.063 g/mL. However, this includes
IDL and VLDL, LDL remnants. This range can be further limited to 1.019 to 1.063 g/mL,
which is inclusive of LDL only and can be further subdivided for LDL analysis [91]. LDL
particles vary in size, composition and density. They have an average diameter of 18–25 nm
with roughly 3000 lipid molecules in total. Each LDL particle contains one apo B-100
molecule. LDL cholesterol plays a central role in atherogenesis and estimating risk, but
LDL cholesterol content does not reflect LDL particle concentration because metabolic
processes involving lipids affect lipid size and composition. The relative ratio of cholesterol
to triglycerides in LDL can vary greatly [92]. In a study of 118 healthy individuals, the ratio
ranged from 1.8 to 11.5 [93]. This significant amount of variability further suggests that
LDL-C alone is not sufficient as an indicator of cardiovascular health, since the particle
content differs within individual LDL molecules and risk calculators assume a constant
cholesterol concentration per molecule of LDL.

Moreover, in individuals with diabetes and metabolic syndrome, although LDL-C
levels are normal, the overall lipid profile is pro-atherogenic with high triglycerides and
low HDL-C. An added atherogenic factor in those with diabetes and metabolic syndrome
is a significant increase in small dense LDL particles. These unique lipid abnormalities
pose an increased risk for cardiovascular events, but the normal LDL-C levels can mislead
clinicians, who then may not initiate lipid-lowering therapy [92]. A new biomarker may
more accurately represent CVD risk and improved management in these patients.

As of 2013, the ASCVD risk calculator has been recommended to predict the 10-year
risk of “hard” cardiovascular events, including nonfatal MI, fatal CAD, nonfatal and
fatal stroke [94]. The calculator takes into account age, sex, race, blood pressure, total
cholesterol, HDL-C, LDL-C, history of diabetes, smoking, hypertensive treatment, aspirin
and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoA reductase) inhibitors
(statins). Based on the score, high- or low-intensity statins are recommended, along with
therapy targeting LDL-C [95].

Current guidelines suggest lowering LDL-C as much as possible, as stated by the
American Heart Association and the American College of Cardiology [8]. Analysis of data
from the Treating to New Targets (TNT) study, a clinical trial in which stable CAD patients
with LDL-C above 130 were randomized to 10 mg or 80 mg of atorvastatin per day for
about 5 years, has shown that the predictive power of LDL-C is less significant than that of
other potential biomarkers such as apoB and non-HDL-C [96]. However, these levels are
still not generally suggested as a first-line target for medical therapies.

For the past 30 years, studies have shown that decreasing LDL-C significantly de-
creases the risk of coronary heart disease (fatal or non-fatal myocardial infarction) [97].
However, CVD risk reduction achieved via lipid-lowering therapy in most clinical studies
does not exceed 30% [87,98]. Furthermore, recent meta-analyses have shown that despite
achieving target LDL-C levels with lipid-lowering treatment, there is still a high residual
risk of coronary artery disease-related events that should be addressed by clinicians [99,100].
In the PROVE-IT TIMI 22 trial, 22.7% of patients still had major cardiovascular events
(MCVE) at 2 years of follow-up, despite achieving recommended LDL-C levels, suggesting
that a more sensitive biomarker may be necessary to minimize subsequent cardiovascular
events [101].

The 2018 AHA/ACA guidelines place emphasis on using maximum-intensity statins
to decrease LDL-C as much as possible, as it will further decrease the risk of cardiovascular
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events [78]. Aggressive treatment is inarguably beneficial, but estimated LDL-C using
the Friedewald equation underestimates true LDL-C levels, and at low levels of LDL-C,
the other variables used in the Freidelwald equation are no longer negligible, making the
equation inaccurate and LDL-C levels an unreliable estimate of risk [102].

Additionally, even when achieving recommended LDL-C levels, there is still a high
residual risk of cardiovascular-related events [99]. Furthermore, in a 2003 survey by the
National Cholesterol Education Program, 62% of coronary artery disease patients achieved
the LDL-C goal of <100 mg/DL, but only 33% achieved both the LDL-C and non-HDL-C
goals [103]. Combined with the studies showing high risk of subsequent MCVE despite
achieving target LDL-C levels, this further supports the theory that LDL cholesterol is an
incomplete reflection of MCVE risk and new biomarkers may be beneficial in improving
our ability to identify persons at risk for CVD and in improving outcomes for CVD patients.

3.2. Non-HDL-C as a Biomarker

A number of clinical studies have shown that as triglycerides rise, especially above
400 mg/dL, the Friedewald equation underestimates the true LDL-C value, interfering with
assessment of true cardiovascular risk [79,104,105]. Furthermore, nonfasting specimens
may be enriched in chylomicrons that contain triglycerides, and this also leads to an
underestimation of LDL-C [106].

Recent studies have shown that both apoB and non-HDL cholesterol levels may be
equivalent, if not better, indicators of CVD and risk of MCVE compared to LDL-C [107–109].
However, the use of non-HDL-C levels has only been advocated as a first-line target by one
association, the National Lipid Association, and apoB levels are only recommended as an
alternative to LDL-C by the Canadian Cardiovascular Society [110,111]. The 2019 European
Society of Cardiology/European Atherosclerosis Society (ESC/EAS) Guidelines for the
management of dyslipidemias support the evaluation and consideration of non-HDL-C
and apoB as secondary targets for lipid control [112].

Non-HDL cholesterol is highly correlated with apoB levels but is not always consistent.
There is a large variability in apoB levels relative to non-HDL-C. Non-HDL-C is a sum of
the cholesterol in atherogenic particles, while apoB is found as a single molecule in each
atherogenic particle [113].

ApoB was found to be a better predictor than non-HDL-C in identifying more patients
with a compromised cardiovascular profile, according to a population-based sample [114].
In addition, a number of differences between non-HDL-C and apoB were noted, such as
that increasing levels of non-HDL-C were not associated with a significant increase in the
presence of CVD in women. However, an increase in CVD prevalence was noted in both
sexes with increasing apoB levels. Moreover, the discriminatory power for the presence of
CVD was significantly higher for apoB than for non-HDL-C.

A recent review comparing non-HDL-C and apoB has noted that apoB and non-HDL-C
are more accurate measures in ASCVD risk assessment, especially in hypertriglyceridemic
individuals, non-fasting individuals, and in those with very low LDL-C concentrations.
However, the review did not have enough information to compare apoB and non-HDL-C
to each other [115].

A more recent discordance analysis of non-HDL-C versus apoB showed that apoB
is the more accurate marker of cardiovascular risk, as apoB can identify elevated num-
bers of small cholesterol-depleted LDL particles that are neither identified by LDL-C or
non-HDL-C. In addition, apoB is better as a target in patients with mild to moderate
hypertriglyceridemia (175–880 mg/dL), diabetes, obesity or metabolic syndrome [116].

Overall, little research has been completed to compare apoB and non-HDL-C as
predictors of CVD prevalence. From the little research already carried out, it seems that
apoB has some advantages, but more work is needed.
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3.3. ApoB as a Biomarker

Approximately half of all patients with recurrent coronary syndrome have normal
cholesterol levels on standard lipid profiles, and despite having achieved the recommended
LDL-C levels, these patients are still at high risk of cardiovascular-related events [117–119].
At the forefront of promising biomarkers lie apoB and non-HDL-C [117,120].

A single molecule of apoB is present in every atherogenic particle; therefore, it has
been proposed as a better predictor of cardiovascular events. Standard LDL-C, on the other
hand, is a measurement of lipid concentration in lipoprotein particles that are heteroge-
neous and vary in size, density and lipid content [121]. Over 90% of total apoB is normally
found in LDL particles [122,123]. However, since the lipid composition differs between LDL
particles, these values do not strongly correlate with LDL cholesterol levels [113,124,125].
Recent studies have shown that apoB has a higher sensitivity and specificity than LDL-C
in predicting cardiovascular events, such as myocardial infarction (MI) in both men and
women, independent of age [126]. In a population of Japanese patients with established sta-
ble CAD documented by coronary artery stenosis exceeding 75% on coronary angiography,
a virtual-histology intravascular ultrasound of the culprit lesions demonstrated greater
lesion length and higher plaque volume and percentage of necrotic core volume in patients
with high plasma apoB levels when compared to patients with low plasma apoB levels. No
correlation was found between apoA1 and the percentage of necrotic core volume of the
target coronary artery lesion. In this population, the apoB level was a very good indicator
of the size of necrotic core and a potential biomarker for unstable plaque with an advantage
over LDL-C [127].

Statins, first-line agents for lipid-lowering, bring about a significantly greater decrease
in LDL-C than in apoB levels. This discordance suggests a need for a more precise method
of routine lipid monitoring [113].

Additionally, in individuals with LDL-C levels below the median value, apoB can be
used to assess MCVE risk, independent of whether or not the atherogenic particles are pre-
dominantly LDL-C [16]. This feature is of great significance, especially in diabetic patients,
where atherogenicity has a higher level of dependence on lipoproteins other than LDL,
such as triglycerides [128]. The inclusivity associated with apoB is one possible explanation
for its enhanced predictive capability in determining MCVE risk. ApoB includes LDL-C,
VLDL-C, IDL-C and lipoprotein(a), as opposed to LDL cholesterol alone. These other highly
atherogenic particles play a key role in CVD and should be accounted for when assessing
the risk of subsequent cardiovascular events [129–132]. Furthermore, apoB is a direct
measure of the atherogenic particle number rather than cholesterol concentration, which
can vary from one atherogenic particle to another as a result of lipid metabolism [113].

Major drawbacks to any transition to standard measuring of apoB include impracti-
cality and cost, in addition to hesitancy by clinicians to welcome this change. Nevertheless,
monitoring lipoprotein levels aside from LDL-C may be critical in managing risk and mini-
mizing morbidity and mortality due to CVD in specific subsets of patients such as those
with diabetes, as discussed in Section 4 (How Do Pro-Atherosclerotic Risk Factors Affect
ApoB levels?) [99]. In addition, without directly measuring apoB levels, atherogenic dys-
lipoproteinemias, such as remnant lipoprotein disorder, will continue to be underdiagnosed
and undertreated [133].

Measuring apoB by immunoassay may be expensive and time-consuming, and its
accuracy may vary [134]. As an alternative, circulating apoB is often estimated using an
algorithm, but these values are only approximations based on lipid variables such as the
total cholesterol and HDL [135] or LDL and triglycerides [136], and their clinical relevance
has not been confirmed.

Interestingly, de Vries et al. have shown that binding of apoB-containing lipoproteins
to circulating erythrocytes, detected by flow cytometry, is associated with lower cardiovas-
cular mortality. This inverse relationship between atherosclerosis and levels of erythrocyte-
apoB binding can be considered as another means to use apoB as a biomarker [137].
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3.4. ApoB to ApoA1 Ratio as a Biomarker

While ApoB acts as a major transporter for all atherogenic particles, apoA1 is an anti-
atherogenic lipoprotein responsible for transporting cholesterol within HDL-C [138–140].
ApoA1 activates lecithin-cholesterol acyltransferase (LCAT), an enzyme that esterifies
plasma cholesterol and increases the cholesterol carrying capacity of HDL (Figure 3). The
ratio of apoB/apoA1 reflects the balance between the two opposing forces and has been
proven to be an accurate indicator of CVD risk. The greater the ratio, the more cholesterol
is circulating in the plasma and being deposited into the arterial wall [141].

Multiple prospective studies, including the INTERHEART study and Apolipoprotein-
related Mortality RISK (AMORIS) trial, have shown a positive linear association between
any risk of a cardiovascular event and increasing apoB/apoA1 ratio [126,142–144]. In the
AMORIS study, subjects with a first cardiovascular event prior to age 50 exhibited elevated
total cholesterol, triglycerides, LDL-C, glucose, apoB, and apoB/apoA-1 ratio compared to
controls up to 20 years before the cardiac event [145]. This supports treating and remedying
the discrepancy in lipoprotein levels between persons with a high risk for a cardiovascular
event at a young age and those without this risk.

Sierra-Johnson et al. used data from The Third National Health and Nutrition Ex-
amination Survey (NHANES III) combined with National Death Index information and
laboratory analysis of lipids/apolipoproteins in a prospective study of a representative
multi-ethnic sample in the United States of America to evaluate cardiovascular risk pre-
dictors [146]. When comparing the accuracy of the prediction of coronary heart disease
mortality based on apolipoprotein levels, they found that both apoB and the apoB/apoA1
ratio proved better than traditional cholesterol markers. When testing the superiority of
apoB/apoA1 over apoB alone, they found that the difference was not statistically signifi-
cant when adjusting for risk factors, such as obesity, smoking, dyslipidemia, hypertension,
diabetes, and high C-reactive protein (CRP). Therefore, there was no proven benefit of using
apoB/apoA1 over apoB alone. They thus concluded that apoB is the primary underlying
source of the high predictive power of the apoB/apoA1 ratio and the lesser importance
of apoA1 in the assessment of risk. On the other hand, the use of apoB/apoA1 has other
benefits. The apolipoprotein ratio is associated with insulin resistance in non-diabetic
subjects and can therefore be helpful in patients whose phenotypes are independent of
apoB [147].

3.5. When Does ApoB Show an Advantage over HDL-C?

A number of studies have shown that under specific circumstances, apoB alone is a
better predictor of MCVE than the apoB/apoA1 ratio. Data from the INTERHEART study,
a global study of over 12,000 cases of first acute myocardial infarction and over 14,000 age-
and sex-matched controls, showed that the power of apoB to predict myocardial infarction
was consistently higher than non-HDL-C or LDL-C up to age 70. An analysis of patients
enrolled in single-center, cross-sectional community-based studies at the University of
Pennsylvania found that in Caucasians with type 2 diabetes, plasma apoB, but not LDL-C,
may be an indicator of coronary artery calcification beyond traditional risk factors [148]. The
apoB/apoA1 ratio was better than the non-HDL-C/HDL-C ratio in predicting the presence
of carotid plaques in patients on peritoneal dialysis [149]. The apoB/apoA1 ratio also
showed improved accuracy over TC/HDL-C in predicting adverse cardiovascular events
in a prospective study of patients with established coronary heart disease (CHD) [144].

In summary, both apoB and apoB/apoA1 are better than traditional cholesterol risk
markers for CVD under some circumstances. The use of apoB or apoB/apoA1 holds
promise for both evaluating risk and targeting treatment; however, further research is
needed to establish whether the ratio adds value over apoB alone [150].
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4. How Do Pro-Atherosclerotic Risk Factors Affect ApoB Levels?
4.1. ApoB, CVD and Demographics

Cardiovascular risk prediction is of high importance for clinicians and patients as
a way to assess the risk of developing future symptomatic CVD, thereby allowing for
preventive interventions to be instituted in those patients who are most likely to benefit.
Accurate estimates of CVD risk are sought in hopes of decreasing CVD morbidity and
mortality [151–153]. CVD risk is determined by an accumulation of non-modifiable and
potentially modifiable factors throughout a lifetime [153–158]. Often, multiple risks factors
and comorbidities are present in an individual, and the progression of CVD is accelerated
by their interaction, not only additively but also synergistically [159,160].

ApoB levels generally do not differ across ethnicities, but the amount of oxidized
phospholipid carried per apoB particle is higher in African Americans than in Caucasians
or Hispanics, possibly indicating more atherogenic particles in African Americans [161,162].
ApoB levels are lower on average in females than males, and catabolism occurs at a higher
rate in females [163]. In a Swedish study, the mean apoB concentration was 1.31 ± 0.35 g/L
in males versus 1.22 ± 0.36 g/L in females [164]. ApoB levels are higher in women after
menopause, probably because of a slower catabolic rate [165].

4.2. Specific Risk Factors: Body Weight, Hypertension, Diabetes

In general, a number of known CVD risk factors have a stronger correlation to apoB
levels than to LDL-C and other biomarkers. Patients with normal levels of non-HDL-
cholesterol, but high levels of apoB have a higher BMI, waist circumference, systolic blood
pressure, fasting insulin and C-reactive protein—all important established risk factors for
CVD [159].

A large anonymized clinical laboratory analysis of over 30,000 men and women
not on lipid-lowering medications showed that a change in body weight was associated
with significant changes in apoB and non-HDL cholesterol that provided information
beyond triglyceride and LDL-C measures [166]. A small study of 44 normal weight and
39 obese subjects, all with high LDL-C, comparing dietary intervention with 7 days of
either a diet enriched in polyunsaturated fats or saturated fatty acids, showed that the
polyunsaturated fat diet lowered both LDL-C and apoB and the BMI × diet interaction
showed less improvement in LDL-C and apoB in the obese subjects [167]. A recent meta-
analysis with combined data on 335 overweight and obese healthy or hyperlipidemic
subjects on calorie-restricted diets found significant reductions in apoB concentrations with
6–12% weight loss. In non-weight loss dietary comparisons, the Mediterranean diet was
most closely associated with lower plasma apoB [168].

The accuracy of atherogenic risk attributable to apoB varies at different ages. Although
the risk for a coronary event increases with age, the cardiovascular risk associated with the
apoB level decreases with age, indicating that apoB may be a better biomarker for CVD
in younger patients than in older ones. Results of the CARDIA (Coronary Artery Risk
Development in Young Adults) study showed that in persons followed for approximately
25 years beginning as young adults (mean age of 25 years), high apoB at a young age was
strongly associated with coronary calcifications, a surrogate CVD risk marker, in middle
age (mean age 50 years) [169]. Multiple other biomarkers of cardiovascular risk are also
noted to be more accurate in younger patients than in older ones. These include total
cholesterol, LDL-C, non-HDL-C, HDL-C and apoA1 [170].

ApoB may be useful in predicting CVD risk in states of insulin resistance such as
metabolic syndrome and type 2 diabetes [148,171,172]. ApoB is highly associated with
type 2 diabetes and research has shown that apoB levels may be a risk factor for type 2 dia-
betes [173,174]. ApoB quantification is especially useful in patients with insulin resistance
and elevated triglyceride levels above 150 mg/dL, where the Friedewald equation becomes
inaccurate and loses its ability to provide a measure of atherogenic load [80–83,175,176].

In non-diabetic patients, apoB—but not LDL-C—corresponded positively with dys-
functional white adipose tissue and delayed clearance of fat, hyperinsulinemia, insulin
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resistance, and activation of the IL-1β system, all of which are known risk factors for type
2 diabetes [168,177]. In fact, epidemiological studies have shown that apoB predicts the
development of type 2 diabetes as much as 3–10 years in advance of clinical onset [178–180].

4.3. The Clinical Significance of Small Dense LDL

Small dense LDL particles are associated with excessive CVD risk [181,182]. Among
the properties of these small dense LDL particles that make them atherogenic are their
ease of penetration into the arterial wall, poor binding to LDL receptors and prolonged
circulation time in the bloodstream [183]. Small dense LDLs have enhanced susceptibility
to damage from both oxidation and glycation and their level in plasma is highly correlated
with plasma triglyceride and apoB concentrations [184–186].

Plasma levels of small dense LDL particles may be elevated in patients with inflamma-
tory diseases such as rheumatoid arthritis and systemic lupus erythematosus, which also
carry increased CVD risk [187,188]. They are also elevated in states of hyperglycemia such
as gestational diabetes, type 2 diabetes and diabetic retinopathy [189–192]. Viktorinova
and colleagues found that the level of small dense LDL in persons with diabetes can be es-
timated based on the ratio of LDL/apoB such that there is an inverse relationship between
these parameters [193]. Since LDL and apoB are more routinely measured than small dense
LDL, calculating this ratio can be applied as a CVD risk measure reflecting small dense
LDL prevalence [194]. Zheng et al. [195] link compromised clearance of apoB-containing
lipoproteins to both hypertriglyceridemia and a shift in LDL composition favoring small
dense particles, possibly through a pathway driven by apoC-III. Small dense LDL levels
also correlate with the occurrence of peripheral arterial disease [196–198].

5. ApoB as a Target of CVD Treatment

While apoB may be an applicable target for decreasing risk associated with CVD, only
a handful of treatments have been designed to impact the levels of this protein (Table 1).
Recent evidence has shown that patients with autoantibodies that directly target apoB
have, in fact, lower rates of CVD. Specifically, patients who had plasma levels with a high
concentration of antibodies targeting native peptide 210 of apoB-100 had a 45% lower risk
of developing a myocardial infarction. This suggests that apoB is not only a prognostic
factor but also an important target for minimizing disease progression [199].

Table 1. Lipid-lowering therapies that reduce ApoB.

Therapy Type of Compound Mechanism of Effect on ApoB

statins Competitive inhibitors of HMG-CoA
reductase

Lower apoB concentration by decreasing entry of
apoB-containing lipoproteins LDL and VLDL

into plasma

anacetrapib
(development discontinued) Small molecule oxazolidinone Potent selective CETP inhibitor. Reduces

apoB-containing lipoprotein particles

niacin Nicotinic acid (vitamin B3)
Modulates liver synthesis of triglycerides,

limiting VLDL assembly, resulting in
intrahepatic apo B degradation

evolocumab and alirocumab Fully human anti-PCSK9 monoclonal
antibodies

PCSK9 inhibitors increase hepatic LDL receptors,
which remove apoB-containing LDL particles

from the circulation. Lp(a) also decreased,
mechanism not understood

mipomersen
(development discontinued)

Synthetic phosphorothioate antisense
oligonucleotide apoB inhibitor

Prevents translation of the apoB mRNA into
protein, leading to decreased VLDL and LDL

lomitapide Small molecule that binds directly to and
inhibits MTP

Inhibition of MTP in hepatocytes and enterocytes
by lomitapide reduces plasma levels of all

ApoB-containing lipoproteins.
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Table 1. Cont.

Therapy Type of Compound Mechanism of Effect on ApoB

dabigatran Novel, synthetic, specific, non-peptide
thrombin inhibitor

Antithrombotic effect due to binding
competitively to the active site on human

thrombin. ApoB lowering is a pleiotropic effect,
mechanism unclear.

bempedoic acid
8-hydroxy-2,2,14,14-

tetramethylpentadecaned-ioic
acid

Inhibits ATP-citrate lyase in the liver, which
decreases liver cholesterol synthesis and reduces

serum LDL levels by upregulating LDL
receptors.

evinacumab Fully human monoclonal antibody
directed against ANGPTL3

Antagonizes ANGPTL3-mediated inhibition of
lipoprotein lipase and

endothelial lipase, increasing clearance of
apoB-containing lipoproteins.

fibrates
Amphipathic carboxylic acids that act as

peroxisome proliferator receptor α
agonists

Reduce plasma triglycerides by inhibiting their
hepatic synthesis and increasing their catabolism.

Lower LDL-C, non-HDL-C and apoB.

inclisiran siRNA conjugated to triantennary
N-acetylgalactosamine carbohydrates

Inhibits PCSK9, thereby reducing levels of
apoB-containing lipoproteins.

Lipoprotein classes constantly exchange their lipid components. One of the most
crucial proteins in the lipid metabolism pathway is the cholesteryl ester transfer protein
(CETP), a hydrophobic glycated protein that facilitates the exchange of cholesteryl esters
and triacylglycerol between HDL and apoB-containing lipoproteins [200–202]. Since CETP
results in the formation of more apoB-containing triglyceride-rich lipoprotein particles
such as VLDL and is inversely associated with HDL particle size and composition, it is
considered atherogenic. The inhibition of CETP and cholesteryl ester transfer was expected
to increase HDL-C whilst decreasing LDL-C and other particles that harbor apoB, thereby
lowering the risk of cardiovascular-related events. However, clinical results were, at first,
surprising [203,204]. Three CETP inhibitors, torcetrapib, dalcetrapib and evacetrpib, when
tested in humans, which either increased cardiovascular risk or were neutral, while a
fourth, anacetrapib, showed modest cardiovascular benefit [205–208]. Of these drugs, only
anacetrapib, in the phase 3 randomized, placebo-controlled REVEAL trial (Randomized
Evaluation of the Effects of Anacetrapib through Lipid-Modification), showed a 9% relative
risk reduction in major coronary events in persons with pre-existing ASCVD after a median
of 4 years of treatment [209,210]. This effect of anacetrapib has been attributed to decreased
LDL-C accompanied by a reduction in apoB-containing lipoprotein particles but may
also be explained by a decrease in small VLDL particles [211]. Furthermore, anacetrapib
may increase the number of cell surface LDL receptors, thus increasing clearance of apoB-
containing lipoproteins. Unfortunately, anacetrapib induces excess lipid accumulation
in adipose tissue, and so it will not be developed further. Further studies are certainly
necessary to refine our knowledge of CETP and improve targeting of this protein in ways
that may optimally address cardiovascular risk. A study by Ference et al. in 2019 [212] shed
light on the importance of apoB particle number in determining CHD risk. They looked at
data on 654,783 people, 91,129 of whom had CHD, and found that triglyceride-lowering
variants in the lipoprotein lipase gene and LDL-C–lowering variants in the LDL receptor
gene each lessened the cardiovascular event risk to a similar degree when measured based
on absolute change in apoB. This suggests that it is the net absolute change in the number
of apoB-containing lipoprotein particles rather than the cholesterol content of the LDL
particle that determines CHD risk. The implication of this result is that lowering LDL-C
by reducing the amount of cholesterol in each particle while not decreasing the particle
number will not be effective, even though LDL-C in the lipid profile goes down.

An agent widely utilized to regulate abnormalities in the metabolism of plasma lipids
and lipoproteins as well as in the treatment of ASCVD is the B-complex vitamin niacin [213].
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Niacin is beneficial in reducing triglycerides and apoB-containing lipoproteins, including
VLDL and LDL, through two main mechanisms. One way in which niacin regulates
circulating triglycerides and VLDL is by decreasing free fatty acid mobilization from
adipose tissue stores. In addition, niacin acts as a noncompetitive inhibitor of hepatocyte
diacylglycerol acyltransferase–2, a critical enzyme in the synthesis of triglycerides. With
less triglyceride availability, intracellular hepatic apoB degradation accelerates, and this
leads to decreased secretion of VLDL and LDL particles by the liver. Niacin improves
multiple lipid parameters, and its lipid-altering efficacy is comparable to statins; however,
it is underutilized due to the adverse experience of flushing [214–219]. This adverse
reaction is often mitigated via laropiprant, a prostaglandin D2 receptor (DP1) antagonist
that reduces niacin-induced flushing [220,221]. It has been combined with extended-release
niacin into a fixed-dose tablet that improves key lipid parameters associated with increased
CHD risk in patients with primary hypercholesterolemia or mixed dyslipidemia [222–225].

Among the human monoclonal antibodies that have established efficacy and safety in
achieving desirable LDL-C targets are evolocumab and alirocumab [226]. These PCSK9
inhibitors are used to treat primary hyperlipidemia and have been found to reduce my-
ocardial infarction and stroke in persons with established CVD [227,228]. The PCSK9
enzyme enhances degradation of the LDL receptor; therefore, its inhibition allows for
greater accumulation of this receptor, enhancing clearance of apoB-containing lipoproteins
and reducing the LDL and apoB particle number [229,230]. It has been suggested that if
the target LDL-C level is not achieved with the maximum tolerated statin dose, the next
adjunctive therapy to add after ezetimibe would be a PCSK9 inhibitor [231,232].

The inhibition of apoB production may be an effective therapeutic against CVD
since fewer apoB particles would lead to lowering of LDL-C and VLDL-C [233,234]. In
addition, apoB has been shown to play a key role in LDL-C-induced dysfunction of
vascular endothelium, leading the way to apoB-targeted therapy for ischemic CVD [235].
One strategy to reduce apoB is through antisense oligonucleotide technology. Mipomersen,
a 20-base-pair single-stranded DNA oligonucleotide that binds to the specific mRNA
sequence encoding human apoB-100, had great promise in human trials; unfortunately,
liver toxicity associated with this therapy led to its discontinuation [236,237].

Lomitapide, a small molecule microsomal triglyceride transfer protein (MTP) inhibitor,
exerts its effects in the liver by binding directly to MTP in the endoplasmic reticulum of
hepatocytes and enterocytes. MTP is an intracellular protein that catalyzes the transfer of
triglycerides onto apoB within the liver in the formation of VLDL [238]. Lomitapide, via its
effect on MTP, prevents the synthesis and secretion of VLDL, thereby causing a decrease in
the number of secreted apoB-containing lipoproteins [239–241]. It is administered orally
and is only indicated for the treatment of homozygous familial hypercholesterolemia as
an adjunct to a low-fat diet and other lipid-lowering treatments. Similar to mipomersen,
lomitapide has many adverse effects, which has limited its use and tolerability. Trials have
shown evidence of elevated transaminases and gastrointestinal side effects, leading to early
discontinuation of the drug by a large number of patients. Mipomersen is also a CYPP3A4
inhibitor, and its use is therefore limited in patients taking other medications metabolized
by this enzyme [242].

In addition, dabigatran, a small molecule oral anticoagulant that binds competitively
and selectively to the catalytic site of thrombin and is used for the prevention of ischemic
stroke in atrial fibrillation, has surprisingly been found to decrease apoB levels by as much
as 7% [243,244]. Although the exact cause of this pleiotropic effect has yet to be elucidated,
Joseph et al. suspect it may be due to competing activity of microsomal carboxylesterases.
This unexpected lowering of apoB has the potential to explain the success of dabigatran
in the reduction of stroke [244,245]. Further research into the mechanism by which this
drug decreases apoB levels may support the importance of apoB in the management of
hyperlipidemia.

Bempedoic acid is an inhibitor of hepatic ATP citrate lyase, an enzyme that functions
upstream of HMG CoA reductase. The inhibition of ATP citrate lyase decreases intracellular
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cholesterol biosynthesis and results in LDL receptor upregulation on hepatocytes. This
increases the liver uptake of LDL particles and reduces circulating LDL-C, non-HDL-C and
apoB levels [246,247].

Another therapeutic approach to CVD is the inhibition of angiopoietin-like protein
3 (ANGPTL3), a secretory glycoprotein that reversibly inhibits the catalytic activity of
lipoprotein lipase, the rate-limiting enzyme in triglyceride hydrolysis [248]. Evinacumab,
a fully human IgG monoclonal antibody against ANGPTL3, enhances VLDL catabolism,
thus lowering LDL, VLDL and triglycerides [249,250]. Evinacumab reduces apoB levels by
increasing apoB-containing lipoprotein clearance. It was recently approved by the FDA
as an adjunct to other LDL-C-lowering therapies for homozygous familial hypercholes-
terolemia [251].

Several drugs with primary targets other than apoB can lower apoB incidentally. Fi-
brates, which reduce plasma triglycerides by inhibiting their hepatic synthesis, also reduce
apoB levels by 10 to 20% [252,253]. Gemcabene, a lipid-lowering drug in development
that works by decreasing apoC-III and thus increasing VLDL clearance, also lowers apoB,
LDL-C and CRP [254].

6. Future Perspectives

New therapies that lower apoB are on the horizon and, despite the problems with
mipomersen, most promising is the application of antisense technology. Gene silencing
with antisense oligonucleotides is being used to directly interfere with PCSK9 production.
Inclisiran is a synthetic, double-stranded siRNA that yielded a sustained reduction of over
20% in apoB in phase 2 human trials [255].

When currently available lipid-lowering therapy is administered, the maximum de-
crease in risk of MCVE is 30–40%. However, poor compliance is a major obstacle in many
patients [256,257]. This widespread issue can be resolved with a vaccine exerting long-term
effects [258,259]. Antigen-specific immunoprotection via vaccination is a recent potential
approach to prevention and treatment of chronic diseases [260]. Mechanisms include the
production of antibodies, T-cell anergy, and the induction of regulatory T cells [261]. The
specificity of apoB peptides is key in avoiding side effects by host defenses. The two
forms of atherosclerosis vaccines being developed are antibody-inducing and regulatory T
cell-inducing. Vaccines based on apoB-derived peptides have shown promising results by
targeting an immune response via regulatory T cells and reducing atherosclerotic lesions
in mice [262]. Treating CVD with vaccines will face many challenges but holds a lot of
promise. Years of research lie ahead of us in exploring the role vaccination could play in
the treatment of CVD, as well as other inflammatory diseases [263].

7. Conclusions

Cardiovascular disease remains the leading cause of death worldwide [264]. Recent
data have shown a decline in mortality from CHD in the United States of America, but the
rate of decline is decelerating and, in younger adults under age 45, there is a lack of progress
in reducing cardiovascular deaths [265,266]. In this younger group, a rise in diabetes
mellitus and obesity may be hindering improvement in cardiovascular mortality [267].
It has been predicted that by the year 2035, over half of the US population will suffer
from some form of cardiovascular disease and projected annual costs may exceed 1 trillion
dollars [268]. Pharmacotherapy based on cholesterol management and lipid profile is the
cornerstone of treatment and prevention. However, even with lipid-lowering therapy,
the absolute risk of cardiovascular-related events remains elevated, and many patients
do not achieve lipid goals, most frequently those at high cardiovascular risk [269,270].
Current American guidelines focus on LDL-C-targeted therapy; however, as shown in
this review, there is a preponderance of data supporting a role for apoB in cardiovascular
risk prediction. ApoB has been proposed as a better predictor of MCVE because a single
molecule is found in every atherogenic particle and LDL-C levels alone can miss elevated
particle numbers [271].
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The evaluation of apoB mass in plasma by mass spectrometry allows the characteri-
zation of the proteome of the particles. With mass spectrometry, detection of individual
peptide components and comparison of molar ratios may improve risk prediction. Data
are supplied on individual subfractions within apoB-containing particles and the extent of
oxidation of phospholipids on apoB particles can be determined [192,272,273]. The method
is antibody-independent and can be automated. Mass spectrometry was applied in a study
by Bodde et al. that found a strong association between plasma levels of apoA1, apoB, and
the apoB/apoA1 ratio and first ST-segment elevation myocardial infarction [274].

The wide acceptance of LDL-C coupled with the added expense and complication
of measuring apoB has thus far prevented a major shift toward clinical application of
plasma apoB at the point-of-care [275,276]. This may change as standardization of apoB
measurement improves and as data supporting the benefits of apoB in cardiovascular
health assessment accumulate [277,278].
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