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Conventional HIV T cell vaccine strategies have not been successful in containing acute peak viremia, nor in pro-
viding long-term control.We immunized rhesusmacaques intramuscularly and rectally using a heterologous ad-
enovirus vectored SIV vaccine regimen encoding normally weakly immunogenic tat, vif, rev and vpr antigens
fused to the MHC class II associated invariant chain. Immunizations induced broad T cell responses in all vacci-
nees. Following up to 10 repeated low-dose intrarectal challenges, vaccinees suppressed early viral replication
(P = 0.01) and prevented the peak viremia in 5/6 animals. Despite consistently undetectable viremia in 2 out
of 6 vaccinees, all animals showed evidence of infection induced immune responses indicating that infection
had taken place. Vaccinees, with and without detectable viremia better preserved their rectal CD4+ T cell pop-
ulation and had reduced immune hyperactivation asmeasured by naïve T cell depletion, Ki-67 and PD-1 expres-
sion on T cells. These results indicate that vaccination towards SIV accessory antigens vaccine can provide a level
of acute control of SIV replication with a suggestion of beneficial immunological consequences in infected
animals of unknown long-term significance.
In conclusion, our studies demonstrate that a vaccine encoding subdominant antigens not normally associated
with virus control can exert a significant impact on acute peak viremia.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Novel vaccine strategies are needed for an effective HIV vaccine. The
most successful vaccine strategies to date involved live attenuated viruses
(Daniel et al. 1992), yet the potential for reversion to pathogenic viruses
makes these too risky for serious consideration as vaccine candidates. Ad-
enoviral vectors are a prime candidate to replace live attenuated vaccines,
since they have a genome large enough to incorporate genes for several
antigens, express antigens for extended periods of time and induce stable
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and protective effectormemory T cells (Finn et al. 2009; Holst et al. 2008;
Holst et al. 2015; Steffensen et al. 2013). Nevertheless, prior trialswith ad-
enoviral vectors have only shown partial efficacy, and in some cases,
seemingly promoted infection (Buchbinder et al. 2008).

A potentially critical problem faced by both live-attenuated and non-
persisting vectored immunization is immunodominance. The initial im-
munization selects for the most immunogenic T cell specificities, which
maybecomehighly dominant following challenge, favoring early virus es-
cape (Liu et al. 2012). To circumvent this problem, we reasoned that anti-
gens naturally expressed in abundance in the early stages of infection
(e.g., gag) could be replacedwith accessory antigens, provided that stron-
ger and broader responses could be elicited towards these less immuno-
genic antigens. In mice, such an experiment resulted in broader immune
control against a persistent lymphocytic choriomeningitis virus (LCMV),
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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as compared to the response obtained using only the most immunogenic
antigen (Holst et al., 2015). Against HIV, such a strategy of avoiding the
most dominating antigens offers the additional benefit of targeting epi-
topes that has not been evolutionary modified for immune escape
(Monaco et al. 2016). For targeting SIV, we therefore constructed two dif-
ferent adenoviral vectors, human adenovirus type 5 vector and chimpan-
zee type 63 adenoviral vector (ChAd63), expressing accessory antigens
not classically associated with strong immune responses to this infection
(tat, vif, rev and vpr). To overcome theweak intrinsic immunogenecity of
the selected antigens, we used our previously published MHC class II as-
sociated invariant chain based genetic adjuvant (Capone et al. 2014;
Holst et al., 2008; Holst et al., 2015; Spencer et al. 2014) coupled to SIV
mac239 derived tat, vif, rev and vpr expressed as a single fusion protein,
and administered these vaccines in a combined rectal and intramuscular
heterologous prime-boost immunization. We have previously found
combinedmucosal and parenteral immunization to be critical for optimal
for mucosal immunosurveillance, effector cell mobilization and control of
acute and chronic infection (Hoegh-Petersen et al. 2009; Uddback et al.
2016). We first ascertained that these vectors were immunogenic in
mice. We then vaccinated 6 Indian origin rhesus macaques three months
apart to assess whether non-classical epitopes could induce control of
pathogenic SIVmac251 challenge as compared to 6 unimmunized
controls.

Herewe show that all animals showed broad vaccine induced CD8+
T cell responses and a trend towards delayed or absent viremia follow-
ing repeated low-dose intra-rectal challenges (P= 0.08). After 10 rectal
challenges, all 6 controls were infected whereas 2 vaccinated animals
remained aviremic. Furthermore, 3 out of the 4 infected vaccinees dem-
onstrated amarkedly attenuated early infection taking several weeks to
reach an otherwise normal set-point viremia. Despite undetectable vi-
remia in two animals, all vaccinees exhibited infection induced T cell re-
sponses demonstrating that all animals had become infected during the
challenges, with two animals achieving rapid and durable viremic sup-
pression. Consequently, we have observed a rather pronounced vaccine
induced effect on early viral replication (P=0.01 for reduced early virus
load). All vaccinated animals with or without directly detectable infec-
tion exhibited long term immunological benefits such as reduced rectal
CD4+ T cell depletion and highly limited CD8+ T cell hyperactivation.

Our results demonstrate that SIV accessory antigens vaccine can pro-
foundly improve acute virological control of SIVmac251 challenge,with
potential long-term immunological benefits.

2. Materials & Methods

2.1. Animals

CD1 mice were purchased from Taconic M&B (Ry, Denmark). The
murine immunization studies were approved by the Danish National
animal experiments inspectorate. For the nonhuman primate studies,
purpose bred, Indian-origin rhesus macaques were obtained from, and
housed at the Tulane National Primate Research Center (Tulane). Ani-
mals were randomly assigned to treatment or control groups before
MHC typingwas performed. All procedureswere carried out in strict ac-
cordance with the recommendations in the Guide for the Care and Use
of Laboratory Animals of the National Institutes of Health (NIH) and
with the recommendations of the Weatherall report: “The use of non-
human primates in research”. The Institutional Animal Care and Use
Committee (IACUC) of Tulane University approved all macaque proce-
dures described under protocol permit number P0181. All procedures
were performed under anesthesia using ketamine or telazol, and all
efforts were made to minimize stress.

2.2. Vaccines and Antigen Design

To induce potent CD8+ T cell responses from otherwise weak anti-
gens we applied the genetic adjuvant MHC class II associated invariant
chain (Ii) and fused this molecule to a tat, vif, rev and vpr fusion antigen
with sequences frommac239 (tvrv). The tat antigen contained reported
inactivating mutations in the cysteine position 56 (C56S) and arginine
in position 82 (R82L) corresponding to the C27S and R55L mutations
described by Mayol et al. for HIV tat (Mayol et al., 2007). Ii functions
as a potent genetic adjuvant for CD8+ T cells (Capone et al., 2014;
Holst et al., 2008; Spencer et al., 2014). The antigenwas encoded in het-
erologous adenovirus vectors based on chimpanzee adenovirus type 63
and human type 5 (Colloca et al., 2012). The hAd5 vector incorporated
the rhesus macaque Ii isoform 2 sequence amino acids 1–190 whereas
the chimpanzee type 63 adenoviral vector (chAd63) incorporated the
human Ii isoform 1 sequence as genetic adjuvants (Capone et al.,
2014). The viruses were rescued by co-transfection in HEK293 cells
and cloned by agarose overlay (hAd5) or as full-length vector genomes
in BJ5183 cells (Ch63) before rescue on adenovirus producer cells. Fol-
lowing rescue the viruses were amplified using standard methods and
purified using CsCl banding after ultracentrifugation (Becker et al.
1994). Adenovirus particle titers were determined by OD measure-
ments at 260 nm and infectivity of hAd5 vectors was verified by
Adeno-X rapid titer kit. The integrity of the adenovirus genomes was
determined using restriction enzyme digest of purified vector genomes
and direct sequencing of the antigen expression cassette.

2.3. Antigen Expression

To verify expression of the antigen HEK293 cells were infected with
hAd5-tvrv, Ch63-tvrv, hAd5 control or Ch63 control and 48 h post infec-
tion cell lysate was used for western blotting. The primary detection re-
agent was mac251 specific polyclonal antisera obtained through the
NIH AIDS Reagent Program, Division of AIDS, NIAID. Polyclonal Rabbit
anti-human HRP conjugated antibody (Dako P0214) was used as the
secondary antibody with LumiGLO® Chemiluminescent Substrate Sys-
tem (KPL 54-61-00) as detection reagent and the blot was read using
an ImageQuant LAS 4000 biomolecular imager.

2.4. Mouse Immunizations and T Cell Responses

Mice were immunized subcutaneously behind the footpad of the
right hind leg using 2 × 107 infectious units of hAd5 and 109 particles
of Ch63 vaccine. For measurements of CD8+ T cell specific immune re-
sponse, single cell suspensions of splenocytes were obtained by press-
ing the organs through a fine steel mesh, followed by centrifugation
and resuspension in RPMI cell culture media. The cells were then incu-
bated with overlapping peptide pools from the vif and vpr proteins ob-
tained from theNIHAIDSReagent Program at a concentration of 1 μg/ml
of each peptide. Stimulation and staining was performed as described
(Christensen et al. 2003) except that the cells were incubated without
monensin for the first hour and then for 5 h in the presence of 3 μM of
monensin. Functional epitope specific CD8+T cell responseswere enu-
merated by surface staining for CD8 (Pe/Cy5.5 or Pacific Blue), CD44
(APC/Cy7), CD19 or B220 (PerCP/Cy5.5 and pacific blue respectively)
and intracellular staining for IFN-γ (APC). Thus, cells enumerated in
this study represent numbers of CD8+, CD44+, IFN-γ+ and CD19/
B220- cells in the spleens of analyzed mice and are presented after sub-
traction of background responses seen without peptide stimulation.
Total numbers were calculated by multiplying the total number of
cells in the spleens determined using a hemocytometer, and the per-
centage of specifically gated cells. All antibodies were mouse cells
were purchased from Biolegend. Cell samples were run on a Becton-
Dickinson LSRII FACS machine, and data analyses were performed
using Flow Jo (Tree Star) software.

2.5. Primate Immunizations and Challenges

To evaluate the efficacy of the vaccine 6 Indian origin rhesus ma-
caques were vaccinated with hAd5 vectors encoding the tat, vif, rev,
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and vpr antigen and boosted 3 months later with Ch63 vectors. First,
macaques (n = 6) were intramuscularly and rectally inoculated with
5 × 1010 particles of the hAd5 vectored DNA vaccine in 1 ml inocula at
week 0, and then boosted intramuscularly and rectally with 2 × 1010

particles of the Chimp Ad63 vector vaccine in 1 ml inocula 12 weeks
later (wk 12). An additional 6 macaques were sham inoculated with
PBS as controls. Following the initial animal experimentation protocol;
beginning 4½ months after the last immunization, macaques were rec-
tally challenged weekly for 5 weeks with 1 ml of a 1:500 dilution of
SIVmac251 made by Ronald C. Desrosiers (New England National Pri-
mate Research Center) and provided by Nancy Miller (NIAID, NIH)
(Tuero et al. 2015). Viremia was assessed on samples collected after
each challenge, but analyzed after the completion of all the challenges.
Since two sham controls and three vaccinees remained uninfected, a
new infection protocol was made and an additional 5 weekly rectal
challenges were resumed beginning at wk. 43, but this time with 1 ml
of a 5 fold higher (1:100) dilution. Bloodwas collected weekly through-
out challenges and for 4 weeks after the last challenge before virus load
analysis. Monitoring was continued with monthly samples thereafter
for flow cytometry and monitoring plasma viremia. Plasma viral load
was detected with a PCR assay with a linear detection limit of 28 cop-
ies/ml of plasma as previously described (Monjure et al. 2014). Lymph
node biopsies were collected from all animals before the first challenge
and 6 months after the last challenge. Cell suspensions prepared from
lymph nodes were stained by CD3, CD4 and CD8, and CD4+ T cells
were sorted/quantified from lymph nodes by FACS Aria for RT-QPCR
using an ultrasensitive protocol with a detection limit b 2 copies.

2.6. Primate Antigen Specific T Cell Responses

To detect SIV-specific T cell responses in macaques, PBMCs (1 × 106)
isolated from heparinized blood were incubated at 37 °C in a 5% CO2 en-
vironment for 6 h in the presence of RPMI 1640-10% FCS alone
(unstimulated), a pool of 15-mer Gag, Tat, vif, Vpr or Rev peptides
(5 μg/ml each peptide), or staphylococcal enterotoxin B (1 μg/ml;
Sigma-Aldrich, St. Louis, MO, USA) as a positive control. All cultures
contained brefeldin A (Sigma-Aldrich), as well as 1 μg/ml of anti-CD49d
and anti-CD28 costimulatory molecules (BD Biosciences). Cultured cells
were stained with monoclonal antibodies specific for CD3 (SP34), CD4
(L200), CD8 (SK1), and Aqua Live/Dead (Invitrogen). After being fixed
and permeabilized with Cytofix/Cytoperm solution (BD Biosciences),
cells were stained with antibodies specific for IFN-γ (4S.B3) and TNF-α
(MAB11) andwashed by Perm/wash buffer (BDBiosciences). All antibod-
ies and reagents were purchased from BD Biosciences PharMingen (San
Diego, CA, USA). Labeled cells were finally resuspended in BD Stabilizing
Fixative Buffer, and acquired on a FACSVerse cytometer (Becton Dickin-
son, San Jose, CA, USA). Data were analyzed using FlowJo software (Tree
Star). Cut-off values for positive responseswere basedon responses in un-
vaccinated animals before challenges and without antigen stimulation.
The cut-off value was 0.32% of IFN-γ positive CD8+ T cells and 0.06% of
IFN-γ positive CD4+ T cells. ELISA assay: MaxiSorp (NUNC) flat bottom
plates were coated with 0,1 μg Tat protein (obtained from NIBSC. Cat.
No. ARP685) in carbonate buffer overnight and subsequently blocked
with PBS (5% BSA, 0.05% Tween). Monkey serum samples were diluted
1:200 in PBS (5% BSA, 0.05% Tween), 2-fold dilution series were made
and 100 μl was added to each well and incubated for 1 h. The secondary
antibody was HRP-linked polyclonal rabbit anti-human (HRP-coupled,
po no. P0214) diluted 1:2000 and 100 μl was added to eachwell. Antibod-
ies were detected by adding 100 μl OPD buffer for 20min, and the absor-
bance at 490 nm was measured on VERSAmax microplate reader.
Washing with PBS (0,1% Tween) was performed between each step.

2.7. Tissue Collection and Immune Cell Phenotyping

Flow cytometry for surface staining was performed using standard
protocols (Xu et al. 2015). Cells from lymph nodes and blood were
stained with: CD3 (SP34), CD4 (SK3), CD8 (SK1), CD95 (DX2),
CD45RA (L48) and CD28 (CD28.2) (all fromBDBiosciences Pharmingen,
San Diego, CA), CXCR5 (MU5UBEE, eBioscience), PD-1 (EH12.2H7,
BioLegend), CCR7 (GO43H7) and LIVE/DEAD Fixable Aqua Dead Cell
Stain Kit (Invitrogen, Grand Island, NY). For assessing proliferation,
PBMC was surface stained, treated with FACS lysing solution, washed,
and intracellularly stainedwith anti-Ki67 (Clone B56). Isotype-matched
controls were included in all experiments. Samples were resuspended
in BD Stabilizing Fixative (BD Biosciences) and acquired on a FACS
FORTESSA (Becton Dickinson, San Jose, CA). Data were analyzed with
Flowjo software (Tree Star, Ashland, OR).
2.8. Statistics

Various non-parametric tests were applied to compare the number
of escaped challenges between vaccinated and unvaccinated animals:
we used a Kaplan-Meier plot and a log-rank test to compare the survival
function for the number of escaped challenges, and a Fisher's exact test
was used to compare the frequency of escaping 0–2, 3–4, or N5 chal-
lenges across treatment groups. Bothmethods provide valid test results
since we used randomization-based exact p-values as recommended by
Nolen et al. (2015) (Nolen et al. 2015).

Early mean virus load 1–4 weeks after successful challenge were
compared using Mann-Whitney U test. Two animals which never had
detectable infection were included in this analysis using the assay de-
tection limit. This was justified by the detection of immune responses
to non-vaccine encoded SIV proteins after the fifth challenge.

To examine the likelihood of a randomand independent vaccine effect
on detectable acquisition and viral replication we used a non-parametric
test basedon thenumber of escaped challenges and themeanviral load in
the first 4 weeks after infection (censored if no infection occurred). For-
mally, we added the Mann Whitney U test statistics for (i) comparing
the number of escaped challenges, and (ii) for comparing the viral load
across groups where only infected animals were included in the latter.
The exact distribution of the combined test and the two-sided p-value
was approximated using a Monte Carlo sampling approach, with data
simulated under the relevant null hypothesis that neither detectable
acquisitation nor early viral replication was affected by vaccination.

Differences in T cell responses and phenotype distribution between
vaccinees and controls were compared using Mann Whitney U test.
Within group differences over time were compared using Wilcoxon
sign test. Differences between groups of changes over time were ana-
lyzed by comparing the grouped individual animal changes using
Mann-Whitney U test.

All statistical analyseswere carried out using R [R Core Team (2014).
R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. http://www.R-project.org/].
For non-parametric tests we used the R-packages ‘exactRankTest’ and
‘coin’ for computation of exact p-values.
3. Results

3.1. The Ii-tvrv Vaccine is Expressed, and Elicits Responses in Mice

The vaccine was constructed as a fusion of the MHC class II associat-
ed invariant chain to a tat, rev, vif and vpr fusion antigen. To assess the
functionality and immunogenicity of the adenovirus constructs (Fig.
1a), we first confirmed expression of the transgene (Fig. 1b). Then, out-
bred CD1mice were vaccinated in a heterologous prime-boost regimen
initiated with human adenovirus type 5 and either boosted or not with
Chimpanzee adenovirus vectors 56 days later. The antigen specific re-
sponses in these outbred mice were variable, but the results demon-
strated that the antigen was immunogenic and responses were
increased by the Ch63 booster immunization (Fig. 1c).

http://www.R-project.org


Fig. 1. Design, expression and in vivo immunogenicity of adenoviral vaccines and primate trial set-up. a, Design of the expression cassette encoded in the adenoviral vaccines. 1° vaccine
depicts the hAd5 vaccine which uses Rhesus macaque MHC class II associated invariant chain amino acids 1–197 as an adjuvant for a tat, vif, rev and vpr fusion protein (tvrv) encoded
under the CMV promoter and SV40 polyadenylation sequence. 2° vaccine depicts the Ch63 based booster vaccine which uses the human MHC class II associated invariant chain
isoform 1 and a bovine growth hormone polyadenylation sequence, but otherwise is designed as the priming vaccine. b, the hAd5 and Ch63 vaccines and controls expressing
irrelevant antigen were used to infect HEK293 cells and cell lysate were used for western blot using primate SIV infected serum and cross-reactive anti-human HRP antibody for
detection. c, outbred CD1 mice were vaccinated with the hAd5 vaccine and left for 64 days (gray circles) or boosted with Ch63 vaccine after 56 days and sacrificed 8 days later (black
symbols). Shown are intracellular levels of IFNγ in splenocytes from individual mice stimulated ex vivo with overlapping vif and vpr peptide pools. d, the time course of vaccinations,
challenge rounds and time points for parallel samples analyzed. Dplc is an abbreviation of days post last challenge. e, all animals included in the experiment were typed for common
Mamu-A and Mamu-B alleles and the DRB*203 allele after their group designation. POS denotes an animal positive for the indicated allele, N denotes negative.
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3.2. Ii-tvrv is Partially Effective in Controlling an SIV mac251 Challenge

We next included 12 Indian origin rhesus macaques in a vaccine
trial, 6 sham immunized and 6 thatwere vaccinatedwith the hAd5 vec-
tor and the Ch63 vector 3 months later, followed by sampling for blood
CD8+ T cell responses 3 months later again. Weekly intrarectal chal-
lenges were performed in two rounds of 5 challenges initiated
4½ month after the last immunization (immunization and challenge
schedule is outlined in Fig. 1d). The macaques were randomly selected
and assigned, but later typed for common MHC alleles (Fig. 1e). The
known resistance alleles A*08 and B*17 were equally distributed
among vaccinees and controls whereas three controls had A*01 alleles
associated with prominent early gag specific T cell responses compared
to one in the vaccinees. After the initially planned five low-dose chal-
lenges (1:500 dilution, see M&M) we could not detect viremia in
three of the vaccinees and twounvaccinated controls.We therefore per-
formed a second challenge roundwith five inoculations of a higher dose
of virus (1:100): 2 vaccinated animals remained free fromdetectable vi-
remia whereas the last controls became infected (Fig. 2a–c). Overall,
vaccination reduced the per-exposure risk of detected infection by
64% and increased the number of challenges needed for detection of infec-
tion, but the reduced detection ratewas not significant (P=0.08). The two
vaccinees that remained uninfected were also negative for viral RNA
and DNA in lymph node biopsies taken 6 months after their last
challenge using ultra-sensitive PCR on sorted lymph node CD4+ T cells
(not shown).

Those animals in whichwe could directly detect infection also had a
markedly different course of infection compared to the controls.Where-
as all controls reached peak plasma viremia within 1 or 2 weeks after
detection of first viremia, in 3 out of the 4 vaccinated infected animals,
viral loads did not “peak”, but slowly reached their plateau phase four
ormore weeks after infection (Fig. 2d). However, once the infected vac-
cinees reached their plateau phase, no difference was observed in the
level of viremia in vaccinated animals and controls.

As the vaccine regimen was intended as a T cell based vaccine, the
apparent inability to infect 2 vaccinees and the trend towards delayed
detection of acquisition was a considerable surprise. In light of the un-
usual absence of peak viremia and the delayed set-point viremia in 3
out of 4 animals we therefore decided to initially compare differences
in viral load both based on the assumption that all animals had become
infected - with some simply being able to durably control the infection
below the detection limit (P = 0.01 for reduction of acute mean viral
load of the first 4 positive samples,Mann-WhitneyU test).We also test-
ed the likelihood that the statistical insignificant delayed detection of
acquisition aswell as the reduction of acute viremia in 3 out of 4 animals
were random and independent phenomena using a mixed test on
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acquisition and early viral load (P = 0.02) (cf. Materials and Methods
section for a full description of the viral load analysis).

Early partial control of infection was also reflected in measurements
of blood CD4+ T cells. With one exception, vaccinated animals main-
tained CD4+ T cells in the blood early after infection, but following
the first 100 days a slow decline was observed (Fig. 2e). Not surprising-
ly, the 2 animals with durable viremic suppression did not exhibit any
CD4+ T cell decline (not show). Unvaccinated controls exhibited a
rapid reduction of CD4+T cellswithin thefirst fewweeks of acquisition
of infection (Fig. 2f). When the studywas ended (one year after the first
challenge) two of the controls, but none of the vaccinees had been eu-
thanized due to disease progression.

Collectively, these data shows that the vaccine reduce early SIV251
replication.

3.3. Antigen Specific CD8+ T Cell Responses to Vaccination and Infection

To study vaccine induced T cell responses PBMC'swere collected and
analyzed by peptide stimulation and intracellular staining (ICS)
3 months after the booster immunization and one, two and three
weeks after detection of infection using peptide pools overlapping the
sequence of the vaccine antigens tat, vif, rev, and vpr, as well as gag.

In the pre-challenge samples, significant IFN-γ + CD8+ T cell
responses were detected against all four vaccine encoded antigens
(Fig. 3). Notably, each of the vaccinees responded to 3 or 4 of the 4 vac-
cine antigen peptide pools as defined by a response above the back-
ground of the assay and all of the non-immunized controls. For
visualizing post exposure responses we grouped the vaccinees into
the two animals that never had detectable infection (vaccinated –
aviremic), the three animals that exhibited significant delays in time
to reach peak viral load (vaccinated – delayed viremia) and the one an-
imal that showed normal viral load kinetics (vaccinated – normal vire-
mia). For the aviremic animals comparison samples were selected to
correspond to the day 7, 14 and 21 dpi samples from three of the 4 ini-
tially infected and viremic vaccinees. In this analysis, it is apparent that
all animals showed anamnestic responses towards the vaccine antigens,
and also showed potent gag specific responses by 14 and 21 dpi (Fig. 3).
This included the two animals fully protected from viremia after all 10



Fig. 3. Pre- and post-exposure antigen specific CD8+ T cell responses in vaccinated animals and controls. Plots depict the percentage of gated IFN-γ+ cells out of total CD8+ T cells in
PBMC's from individual animals stimulated with peptide pools covering the antigens indicated in the top left corner of the plots. Values are shown for blood samples collected before
challenge (cf. Fig. 1d) and at the indicated time after successful acquisition of infection. Dpi = days post infection. Vaccinated animals are grouped as indicated based on their levels of
acute viremia.
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challenges which strongly supports the hypothesis that these animals
had exhibited various levels of control of the infection rather than
prevention.

3.4. Antigen Specific CD4+ T Cell Responses to Vaccination and Infection

To measure T helper cell responses, antigen specific CD4+ T cells
were detected in PBMC's. Samples for these analyses were obtained
3 months post booster vaccination and 2 and 3 weeks post acquisition
of infection, after peptide stimulation under conditions similar to the
analysis performed on CD8+ T cells (Fig. 4). However, unlike CD8+ T
cell responses, CD4+ T cell responses were not readily detectable before
challenge. After challenge, vaccinated animals trended towards stronger
early responses than the controls, and maintained responses from two
to threeweeks post infection. By threeweeks post infection, the vaccinees
had significantly stronger responses against all tested antigens.

3.5. A Role for tat Specific Antibodies?

As the vaccine included tat antigen that has been claimed to be pro-
tective via antibodymediatedmechanisms (Bachler et al. 2013; Rezza et
al. 2005), we also measured tat responses by ELISA against full-length
tat protein (Table 1). Only the vaccinee with normal viremia demon-
strated a detectable response towards tat prior to the challenges and
the infected vaccinee that remained without a detectable tat response
had the lowest viral load of all infected animals. Thus, tat specific anti-
bodies seemunlikely to contribute to the delayed or suppressed viremia
observed in this trial.

3.6. Ii-tvrv Vaccine Reduces Naïve T Cell Depletion

To explore if the improved early virus control generated by the vac-
cinesmight have had beneficial effects beyond the early reduction of vire-
mia, we initially determined the numbers of naïve CD4+ and CD8+ T
cells in PBMCs before challenge and at the relatively early time-point of
60 days post last challenge (Fig. 5). Depletion of naïve T cells was consid-
ered an informative read-out as Nishimura et al. found this depletion to
predict disease activity and progression to AIDS after SIV infection
(Nishimura et al. 2007) and Hazenberg et al. reported similar findings in
HIV infected patients (Hazenberg et al. 2003). There were no significant
differences before challenge, but after challenge and infection, we found
the naïve populations to be significantly lower in the controls compared
to the infected vaccinees for both CD4+ T cells (Fig. 5a) and CD8+ T
cells (Fig. 5b).

3.7. Long-term Cellular Consequences of SIV Challenge in tvrv Infected
Animals

To investigate if the improved acute viremic control would have im-
munological long term consequences,we undertook a series of analyses



Fig. 4. Pre- and post-exposure antigen specific CD4+ T cell responses in vaccinated animals and controls. Plots depict percentage of gated IFN-γ+ cells of total CD4+ T cells in PBMC's
stimulated with peptide pools covering the antigens indicated in the top left corner of the plots. Values are shown for blood samples collected before challenge (cf. Fig. 1d) and at the
indicated time after successful acquisition of infection. Dpi = days post infection. Vaccinated animals are grouped as indicated based on their levels of acute viremia.
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on samples taken 180 days after the last challenge, when virus loads
were similar in the controls and the 4 infected vaccinees. Biopsies
were used to quantitate CD4+ T cell frequencies of total rectal T cells
(CD3+). We found that both groups showed reductions in rectal
CD4+ T cells (P b 0.05, Wilcoxon Signed Rank Test on all animals), in-
cluding the animals without detectable infection, but the relative level
of depletion was more pronounced in the controls (P b 0.05). In
Table 1
Tat antibody responses before and after challenge.
The tat antibody responsesweremeasured as end-point dilution titers in samples from in-
dividual macaques before the first challenge (90 days post booster immunization) and at
the end of the trial (50 weeks post first challenge). Starting dilution was 1:200. A blank
space denotes a titer of b200.

Vaccination status Monkey ID Status Pre-challenge End of trial

Vaccinated IT22 Protected
IA39 Partially protected
IT19 Protected
IH49 Partially protected 200
IG98 Partially protected 400
IJ60 Not protected 400 200

Not Vaccinated IJ92 Not protected
II39 Not protected
IR98a Not protected
IT06 Not protected
HV04 Not protected
IM44 Not protected 1600

a The indicated macaque had its last blood samples drawn 28 weeks after the first
challenge.
consequence, at 180 days post infection, the rectal CD4+ T cell counts
were more depleted in controls than in infected vaccinees (P b 0.05)
and all vaccinees maintained rectal CD4+ T cell frequencies of approx-
imately 40% (Fig. 6a). This is in contrast to the systemic CD4+ T cell
counts which were reduced in viremic animals. As the two vaccinated
animals with an undetectable viral load have exhibited both infection
induced immune responses and moderately reduced rectal CD4+ T
cell counts at levels similar to other vaccinees, we have decided to com-
ment and perform the statistical tests on the following additional re-
sults including either all vaccinees and/or excluding the two aviremic
vaccinees as indicated.
3.8. Tvrv Vaccine Reduces Chronic Immune Activation and Immune
Exhaustion

One of the important long-term consequences of HIV and SIV infec-
tion is chronic immune activation. To directly quantitate general T cell
activation, we measured the proportion of CD4 and CD8+ T cells ex-
pressing the marker of recent proliferation, Ki-67. Ki-67 expression
were at low levels on both CD4+ and CD8+ T cells before challenge,
but in both controls and vaccinees we observed increases in the fre-
quency of both CD4+ (Fig. 6c, significant for vaccinees only) and
CD8+ T cells expressing Ki-67 (Fig. 6d). Particularly within the CD8+
T cell compartment, these differences clearly distinguished the controls
from all vaccinees - also when only considering the detectably infected
vaccinees that at this time point had viral loads similar to the controls
(Fig. 6d). Notably, some studies have suggested that adenovirus



Fig. 5. Vaccination reduces naïve T cell depletion following infection. a, naïve CD4+T cells
were enumerated based on negative staining for CD95- and positive staining for CD28 in
pre-challenge (cf. Fig. 2a) and 60 dplc (days post last challenge, cf. Fig. 2a). b, naïve
CD8+ T cells were enumerated based on positive staining for CD45RA and CCR7 in pre-
challenge and 60 dplc blood samples. Shown are individual animals with brackets to
indicate that only infected vaccinees are included in the statistical comparisons.
Vaccinated animals are grouped as indicated based on their levels of acute viremia.
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vaccination causes generalized CD4+ T cell activation (Bukh et al.
2014). We observed no such effect, nor a trend before the challenges.

A now classical consequence of the increased immuneactivation and
chronic high viral load in HIV and SIV infection is CD8+ T cell exhaus-
tion. CD8+ T cell exhaustion and chronic activation correlates with
the expression of PD-1 on the surface of CD8+ T cells. As anticipated,
the infected control animals had profoundly increased PD-1 expression
on CD8+ T cells after the challenges in lymph node biopsies (Fig. 6e),
and this was also seen in detectably infected vaccinees, but significantly
higher PD-1 expression levels were reached in the controls than in the
viremic vaccinees (P b 0.01). As expected, the aviremic vaccinees
displayed very low PD-1 expression on the CD8 + T cells from lymph
node biopsies. A comparison of CD8+ T cells from PBMC samples
taken before challenge and 6 months post last challenge yielded the
same trends with higher PD-1 expression on controls compared to in-
fected vaccinees (Fig. 6f).

In summary, the analyses of naïve CD4+ and CD8+T cell depletion,
the preservation of rectal CD4+ T cells, and the reduced T cell prolifer-
ation and PD-1 expression on CD8+T cells, collectively provide a strong
case that vaccination improved early cell mediated control and reduced
and/or delayed SIV associated immune hyperactivation.
4. Discussion

The non-structural antigens tat and rev are expressed early in the
virus life-cycle and together with vif and vpr, they are among the least
immunogenic antigens during natural infection with HIV (Betts et al.
2002). This suggests that vaccine induced tat, vif, rev and vpr specific re-
sponses would not dominate other T cell responses after infection
(Holst et al., 2015). To compensate for the expected low immunogenic-
ity, we used the potent genetic adjuvant, the MHC class II associated in-
variant chain (Capone et al., 2014; Holst et al., 2008; Holst et al. 2011;
Holst et al., 2015; Spencer et al., 2014), to induce robust T-cell responses
prior to challenge with pathogenic SIVmac251. We decided to perform
vaccinations with combined intramuscular and rectal delivery for the
heterologous virus vectored prime-boost regimen in this study as this
had been shown to improve mucosal immune surveillance, effector
cell recruitment and long-term control of chronic infection in mouse
studies (Hoegh-Petersen et al., 2009; Uddback et al., 2016). Importantly,
we verified robust and broad CD8+ T cell responses against the vaccine
antigens in blood (Fig. 3), and in agreement with our previous results,
we observed minimal antigen specific CD4+ T cell activation (Fig. 4),
and no generalized increase in T cell activation before the challenges de-
spite the use of hAd5 vectors (Fig. 6c–d). Following repeated low-dose
SIVmac251 challenges, a clear effect was seen on early virus replication
observed as delayed set-point viremia or absence of detectable viremia
following challenges (P = 0.01, for reduced early viremia, Mann-Whit-
neyU test). A vaccine effectwas statistically apparent, even if absence of
viremia and delay of set-point viremia were treated as independent
events (P b 0.02, combined test) which is highly unlikely to be the
case as we saw increased immune responses towards vaccine antigens
and novel responses towards the non-encoded gag sequence also in
aviremic animals. Such detection of SIV protein specific responses
strongly suggest occult infection, but the infection must have been
kept at a very low level and/or abrogated early, as we used a very sensi-
tive plasma based assay (Monjure et al., 2014) without detecting vire-
mia for more than a year. Furthermore, we could not detect the viral
DNA in lymph nodes in the aviremic animals using a highly sensitive
PCR assay on sorted CD4+T cells. Notably, such presumed T cell depen-
dent early abrogation of detectable infection has previously been found
in animals infectedwith live attenuated vaccines (Fukazawa et al. 2012;
Hansen et al. 2011; Hansen et al. 2013).

Although our vaccine cannot have caused sterile immunity, the
trend of 64% reduction of per-exposure risk of viremia we observed
(P = 0.08) is comparable to that obtained using most other vectored
systems that have targeted env in prime-boost regimens (Barouch et
al. 2012; Barouch et al. 2015; Pegu et al. 2013; Selinger et al. 2014;
Xiao et al. 2012). From a clinical perspective, prevention of viremia is
a quite relevant readout and itwould therefore be interesting to explore
if it could also be observed in larger trials, or if it could provide an addi-
tive effect to other vaccine designs.

The mechanism of the profound control of acute viremia cannot be
deduced from our observation as the animals responded rather
homogenously with CD8+ T cells and not with CD4+ T cells, and we
failed to recover responsive intestinal T cells pre-challenge for technical
reasons. It is nevertheless worth noting that we previously observed
CD8+T cell dependent andMHC class II independent control of chronic
viral infection (Holst et al., 2011), and that in the current study even the
animals without directly measurable infection had recall tat, vif, rev and
vpr vaccine primed T cell responses, gag specific T cell responses, and
virus driven CD4+ T cell responses. These immune response patterns
accurately mimics our observations during LCMV infection in inbred
mice where occult infection was present, but undetectable using stan-
dard assays (Holst et al., 2015), and is similar to some of the effects ob-
served during assumed preventive pharmacological inhibition of SHIV
infection (Kersh et al. 2011; Promadej-Lanier et al. 2008; Tsegaye et al.
2015). However, unlike the LCMV studies in inbred mice where a sub-
dominant antigen could reliably prevent exhaustion and allow the



Fig. 6. Vaccination preserved mucosal CD4+ T cells, reduces immune hyperactivation and exhaustion induced by SIV infection. Immune cell phenotyping was performed on blood and
lymph node biopsies pre-challenge and 180 dplc (days post last challenge, cf. Fig. 1d). a, Percentages of CD4+ T cells from rectal biopsies were determined from total gated CD3+ T
cells. b, Percentage of Ki-67+ CD4+ T cells or c, CD8+ T cells from PBMC's. d, Percentage of CD8+ T cells from lymph node biopsies co-expressing PD1. e, Percentage of CD8+ T cells
in PBMC's co-expressing PD-1. Statistical comparisons are indicated by brackets with the width of the brackets indicating if aviremic vaccinees are included in the comparison or not.
Vaccinated animals are grouped as indicated based on their levels of acute viremia.
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infection to raise dominant antigen specific T cells, this primate studies
used randomly selected macaques. Notably, the two aviremic animals
did express two of the three elite resistance associated alleles present
in the vaccinated cohort (A*08 and B*17), and it is possible that this is
part of the explanation of the observed effect. The absence of an early
peak in virus replication that we observe in infected vaccines and in-
deed in animals that become infected and rapidly and durably control
the infection is a highly unusual finding in vaccine studies. Other studies
that successfully achieved partial control of replication evenwithmulti-
ple log reduction in peak viremia, still exhibit an early peak replication
phase with normal viral kinetics (Casimiro et al. 2005; Liu et al. 2009).
This normal consistency of peak viremia also includes the much larger
Barouch et al. study which observed a combination of reduced acquisi-
tion and potent post-infection viremic control of SIV mac251 (Barouch
et al., 2012). While the infection progresses different in our animals as
compared to other vectored vaccination attempts, the course of infec-
tion in our infected vaccinees show some resemblance to the slow pro-
gression of infection in animals infectedwith an ultimately unsuccessful
mismatched live-attenuated vaccine (Johnson et al. 1999; Wyand et al.
1999). This could be consistent with the original hypothesis rom the
mouse studies, that viremic control is maintained by an infection
primed response made possible by an early vaccine induced reduction
in viral replication (Holst et al., 2015),with the caveat that SIV can grad-
ually escape most T cell responses if near complete virological suppres-
sion is not achieved, but this could not be confirmed in our trial thatwas
too small to perform meaningful correlate analysis. The task of achiev-
ing early reduction of virus control without dominant antigen was con-
sidered daunting from the onset and this is the reason whywe used the
MHC class II associated invariant chain adjuvant, a heterologous virus
vectored prime-boost regimens and combined mucosal and parenteral
immunization together with the unusual choice of antigens.

That the specific antigen choice or perhaps specific properties of the
targeted antigens plays a unique role was suggested in a study by Hel et
al., where a heterologous vectored virus vectored tat, rev and nef immu-
nization was used and a small, but consistent delay in the time to reach
peak viremiawas reported (Hel et al. 2006). Immunizationswith the tat
antigen has also previously been claimed to reduce immune activation
in patients on ART in prophylactic vaccination studies (Ensoli et al.
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2010), and it is associatedwith protection against SHIV challenge inma-
caques (Bachler et al., 2013). However, in these cases protection was
linked to antibody responses and we could not substantiate any associ-
ationwith tat antibodies and protection. Our vaccine did not include the
dominant antigen nef and the early effects on early viral control were
much greater in our study. Likely, the use of combined intramuscular
and mucosal priming which allow mucosal effector cell recruitment to
be maintained longer (Uddback et al., 2016), and/or the use of the
MHC class II associated invariant chain as an adjuvant is responsible
for the improved early control, but such causality is difficult to establish
when using a repeated low-dose challenge regimen. Importantly for fu-
ture studies attempting to build on our findings, the effects of the non-
structural antigen vaccine in Hel et al. were additive with the structural
gag-pol-nef vaccine also.(Hel et al., 2006). Thus, the ability to delay virus
spread could possibly be applied towork in concert with T cells directed
against other effective, but not normally very immunogenic epitopes
targeting conserved regions of the HIV/SIV structural genes (Kulkarni
et al. 2014; Mothe et al. 2015; Ondondo et al. 2016). When considering
the future prospect of a partially effective vaccine, the absence of peak
viremia is also an intriguing vaccine property in its own right. Thus, al-
though the exact contribution of acute infection to forward transmis-
sion is unknown, epidemiological data have emerged to support a
disproportionately large role, and genitalmucosal secretions are consid-
erably elevated in the weeks after acute infection (Miller et al. 2010;
Pilcher et al. 2007; Volz et al. 2013). A vaccine that reduces acquisition
as the RV144 trial or newer partly adenovirus based vaccines (Barouch
et al., 2012; Barouch et al., 2015), aswell as acute infectivity have an im-
pact on further spread of the infection, and it would be predicted to
synergize with treatment as a prevention strategy in reducing forward
transmissions.

In addition to the effect on early virus replication, there were also
signs in our study that the tvrv vaccine reduced the immune hyperacti-
vation normally associated with HIV/SIV infection and disease progres-
sion (Figs. 5 and 6). This is consistentwith the virological findings as the
immune scarring associated with acute infection must have been di-
minished, and it also holds clinical relevance. Thus, the HIV induced im-
mune hyperactivation is a pathogenic consequence of infection that
cannot be completely normalized with antiretroviral therapy (Cao et
al. 2016; Hazenberg et al., 2003).

In summary, here we present a novel experimental vaccine regimen
capable of inducing CD8+ T cell responses against subdominant anti-
gens. Thismucosally and systemically applied vaccinewas capable of re-
ducing early viral replication and reducing long term mucosal CD4+ T
cell decline and immune hyperactivation, but it was not capable of in-
ducing chronic controls except in those animals were durable control
happened early and were we could never detect viremia. Our study
demonstrates that responses targeting the SIV accessory antigens can
effect early SIV replication and delay the chronic phase of the infection.
In principle, such a vaccine capability could provide the time needed for
durable effector mechanism to become active as it is seen during early
treatment interrupted infection or live-attenuated vaccination. Clearly,
in 4 out of 6 animals our vaccine and the infection combined could
not elicit such responses in time, but it may be possible in future studies
combining subdominant accessory antigen vaccineswith other vaccines
and antigens.
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