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Introduction

Datasets and accompanying metadata

are an important currency of scientific and

intellectual advancement, deserving the

same attention, planning, and scrutiny

that research dollars receive. The move

towards digital data is ubiquitous across

disciplines [1–5]: earth scientists use satel-

lite data to understand global patterns;

ecologists use GPS tagging of mammals to

understand migration paths; biomedical

researchers produce and consume record

amounts of clinical and genetic informa-

tion; and social scientists are inundated

with social media data. These data must

be synthesized and analyzed to conceptu-

alize, comprehend, and solve real-world

problems [6].

The digital nature of data means more

data more quickly. This ‘‘data deluge’’ has

been explored in academic literature

[1,5,7,8] and major media including The

Economist [9] and The New York Times [10].

Among the most pressing problems asso-

ciated with it is good data stewardship—

the ability to effectively and efficiently

record, curate, and facilitate access to

large volumes of data. For in actuality,

data are seldom shared, re-used, or

preserved [11–13], resulting in inefficient

use of research dollars, missed opportuni-

ties to exploit prior investment, and overall

loss for the scholarly community [14]. The

development of good data stewardship

techniques, software, and education lags

behind the data deluge.

In February 2011, the US National

Science Foundation (NSF) [15] prescribed

that a two-page data management plan

must accompany all research proposals.

The National Science Board’s Data Poli-

cies Task Force informs this requirement:

‘‘Progress in science and engineering

has always been dependent on the

collection of data through observa-

tion, experimentation, and more

recently, computation. A core ex-

pectation of the scientific process is

the documentation and sharing of

results along with the underlying

data and methodology, thereby al-

lowing others to verify data, repro-

duce results, validate interpretations,

and build upon previous work.

(p.17)’’

To improve data stewardship for pub-

licly funded projects, several US govern-

mental funders (e.g., NSF, NOAA, USDA,

EPA, DOD, NASA, NIH, CDC, DOE)

require data management plans (DMPs)

for all proposed research [16], and some

journals request that supporting data be

made available upon publication [17].

Data sharing policies are also in place for

the Research Councils UK, a consortium

of seven research councils (http://www.

rcuk.ac.uk/research/Pages/DataPolicy.

aspx), and the Digital Curation Centre

(DCC) lists the specific DMP requirements

by funder (http://www.dcc.ac.uk/

resources/data-management-plans/funders-

requirements). Canada’s NSERC specifies

data management requirements for grants

through SSHRC and CRIC (http://www.

nserc-crsng.gc.ca/Professors-Professeurs/

FinancialAdminGuide-GuideAdminFinancier/

Responsibilities-Responsabilites_eng.asp),

as does the Australian National Data

Service (ANDS) (http://www.ands.org.
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Abstract: Scholarly communication
is at an unprecedented turning
point created in part by the increas-
ing saliency of data stewardship
and data sharing. Formal data
management plans represent a
new emphasis in research, enabling
access to data at higher volumes
and more quickly, and the potential
for replication and augmentation of
existing research. Data sharing has
recently transformed the practice,
scope, content, and applicability of
research in several disciplines, in
particular in relation to spatially
specific data. This lends exciting
potentiality, but the most effective
ways in which to implement such
changes, particularly for disciplines
involving human subjects and other
sensitive information, demand con-
sideration. Data management plans,
stewardship, and sharing, impart
distinctive technical, sociological,
and ethical challenges that remain
to be adequately identified and
remedied. Here, we consider these
and propose potential solutions for
their amelioration.
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au/resource/data-management-planning.

html). Institutions interested in protecting

their investments increasingly look to

libraries and information professionals to

collaborate with scientists [18]; researchers,

in turn, demand properly managed data

from their colleagues [13].

Researchers are ethically obliged to be

good data stewards to advance scientific

knowledge, but those working with

human subjects must also protect partic-

ipant confidentiality [19]. Previously,

meeting these ethical obligations fell to

the individual researcher (or team) and

was managed in an ad hoc manner.

Human subjects research renders careful

data stewardship more than a matter of

scientific rigor—it requires ensuring con-

fidentiality while providing sufficient

information for validation, reproducibil-

ity, reuse, and reporting. The need for

rigor and data acquisition must be

balanced against the ethical treatment

of participants.

Data management plans require careful

consideration of accessibility and data

sharing; imparting challenges that have

yet to be adequately identified and ad-

dressed. Data sharing has transformed the

practice, scope, content, and applicability

of scientific research [20,21], and as calls

for data stewardship increase, researchers

need to consider how to most effectively

comply. We examine these inherent tech-

nical, socio-cultural, and ethical challenges

and propose some means for solving them.

Figure 1 summarizes the data life cycle in

context of this discussion of stewardship

and sharing.

Technical Challenges
The technical challenges of sharing

scientific data abound, and are amplified

in certain disciplines. For example envi-

ronmental (including social) data are

‘‘messy’’ in ways that are not the case

across much of the physical sciences

[22,23]. Datasets are often small, hetero-

geneous, collected via a wide array of

methods, stored in a wide variety of

formats, and analyzed using a plurality of

methods and techniques. The variability of

research approaches engaging human

subjects (ranging from observations to

attitudinal and network surveys to the

social scientific methods of interviewing

and ethnographic observations) and data

types (ranging from numeric data points to

photos, video, interview transcriptions,

ethnographic field notes, audio recordings,

and medical records) challenge the ability

to store, retrieve, combine, use, and

meaningfully re-analyze data [24,25].

Data sharing requires substantial time,

energy, and technical capacity to organize,

store, and preserve data and make them

widely accessible [26], while potentially

masking or securing sensitive or confiden-

tial information. It requires designing and

implementing rigorous metadata stan-

dards, and the creation of flexible, intuitive

databases [27]. Simultaneously, there aris-

es the real danger of data misinterpreta-

tion due to insufficient metadata standards

[28,29]. Such technical challenges are

heightened in remote locations or in

situations wherein the necessary capital—

i.e., technicians and data managers famil-

iar with metadata language, programs,

and standards—is unavailable, or where

discrepancies are created by discipline-

specific norms. Ironically, these are pre-

cisely the locations and conditions in

which much field research for conserva-

tion biology or emerging infectious dis-

ease, for example, takes place.

Socio-Cultural Challenges
Data sharing requires shifting from a

research culture predicated on perpetual

proprietary control over data to one that

promotes scientific openness, and which

values analysis and synthesis of secondary

data [20,21,30–32]. In science it is com-

mon to secret data and dole out findings

selectively in accordance with strategic

publication practices (e.g., [33,34]). Com-

petition can create anxiety about being

‘‘scooped’’ by colleagues; data sharing

raises the particularly vexing specter of

being beaten to the punch with one’s own

data [35,36]. Further, the benefits and

dangers of data sharing are distributed

unequally; e.g., scholars working in sensi-

tive, high-profile, highly politicized sys-

tems are at greater risk of being scooped.

Unequal data sharing risks also emerge for

scholars with limited funding, working far

from the academic mainstream or at

smaller institutions. Data sharing is more-

over challenged by varying disciplinary

practices and expectations, and by diverse

organizational and institutional cultures.

Interdisciplinary research data gatherers

and those with whom data are shared can

have divergent epistemological assump-

tions, professional mandates, and reward

systems [37–39], and legal and ethical

standards for data sharing and protecting

research subjects.

The study of ‘‘social-spatial linkage’’—

the characteristics and behaviors of indi-

viduals, households, or communities in

geographical space—represents an impor-

tant scientific advancement [40], but

including human subjects also introduces

the risk of confidentiality breach [41].

Global Positioning System (GPS) technol-

ogy allows spatially explicit longitudinal

studies [42], and increasing satellite and

aerial imagery, coupled with GPS and

radio-frequency identification tags, now

provides voluminous information on the

activities of people, animals, cars, etc.

within dynamic landscapes. Geospatial

technologies such as unmanned aerial

vehicles, Google Earth, Google Maps,

Wikimapia, and Open Street Maps offer

unprecedented access to place-specific

data and surveillance capabilities [43].

While these data are helpful for making

maps, they can introduce complications.

For example, conservation biology focuses

on rare species, habitats, and resources,

but identifying their locations with high-

resolution geospatial data may render

them vulnerable to abuse and extraction.

Additionally, while social science data are

integral to conservation [44,45], their

inclusion adds related ethical challenges.

Traditionally, geographic information

mainly existed as maps and atlases pro-

duced by mapping authorities, agencies,

and corporations, subsequently dispersed

to users. Maps emphasized static attri-

butes; now, input from users is being used

for emergencies and everyday use [46].

Locational crowdsourcing or volunteered

geographic information (VGI) is an excit-

ing new area of data generation and

geographic information delivery [47],

wherein citizen volunteers contribute geo-

graphic data and geo-tagged photos. An

important advance in data collection and

delivery [47–50], this is also one of the

greatest ethical challenges because it can

provide near real-time, dynamic snapshots

of on-the-ground conditions [51,52].

Within the data deluge, geographic infor-

mation is more readily accessible, created

and distributed by a network of observers.

Protocols and institutions are needed to

ensure that the result is reliable, useful,

and ethical [48–50,53].

Ethical Challenges
Increased data-sharing requirements

pose potentially significant challenges to

researchers since they must ensure their

work meets the ethical standards of

academia [54]. These standards require

that research with human subjects respects

individuals, commits to nondisclosure of

participants, minimizes potential harm,

ensures that the benefits and burdens of

research be fairly distributed [19], and

that subjects be informed of the full nature

of the research so they can opt out of

participation. Researchers’ strategies for

addressing these ethical standards must be

clearly detailed when applying for ethics
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approval from Institutional Review Boards

(IRBs) [55].

The primary benefit of capturing loca-

tional human subjects data (e.g., socio-

economic conditions and demographics) is

to support longitudinal research, help

avoid over-researched locales, and capture

locational effects (e.g., elevated lead levels

[56]). The ability to identify and locate

these study ‘‘spaces’’ requires even stricter

data control to protect confidential infor-

mation. New methods aggregate social

data at larger scales or mask data loca-

tions, allowing data interpolation using less

distinct spatial patterns. New spatially

explicit IRB standards and virtual data

management institutions are being piloted

to improve privacy protection [57–60].

Researchers new to human subjects re-

search may not be sensitive to the ethical

restrictions of human data or know that

sharing spatially explicit data can breach

confidentiality commitments. Additionally,

research subjects may not want their

responses to be traceable for fear of

retribution, stigmatization, or prosecution.

Maintaining confidentiality protects par-

ticipants while promoting willingness to

participate in future studies. Yet alteration

of spatially specific data to protect confi-

dentiality can undermine data quality and

reliability. For instance, the United States

Forest Service Forest Inventory and Anal-

ysis National Program does not divulge the

locations of the thousands of research plots

throughout the US, hindering site-specific

longitudinal studies. This suggests that

better and more sensitive data ambigua-

tion techniques are needed.

Some IRBs now require that spatially

explicit social data be kept confidential or

that anyone with data access be made

aware of their ethical obligations and

added to ethics approval (e.g., [61]). For

instance, an integrated study linking spa-

tially explicit social data to other datasets

required the originating IRB to approve

all future uses of these social data, creating

logistical challenges for data sharing and

collaborative research. Beyond confidenti-

ality, sharing social data requires that

subsequent researchers understand how

participant harm was managed by the

original researcher. For instance, research

into illegal activities oblige the researcher

to protect subjects from retribution by

aggregating data or masking locations

[62]. Since datasets often contain general

socio-economic data, other researchers

unaware of the original use of these data

could publish maps permitting identifica-

tion of participants. There may also be

risks created by publishing seemingly

Figure 1. The life cycle of data: the steps needed to responsibly collect, record, store, and steward data. We illustrate the steps needed
to responsibly collect, record, store, and steward data, from collection, planning and design to sharing endpoints. The formative questions are a basic
guide to researchers at the outset of a project, to shape the design of a robust dataset with an extended life. The responsibilities and tools are
similarly guidance for consideration; the system triggers are a non-comprehensive list of when researchers might find themselves stepping into the
cycle.
doi:10.1371/journal.pbio.1001634.g001
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benign data—consider the implications of

household tribal affiliation data when

ethnic unrest erupts. Hopefully, socio-

ecological data sharing will not face the

extremes of protection required for spa-

tially explicit medical data, but social

researchers are still bound by the ethics

of their discipline, and human subject data

sharing requires developing methods to

retain confidentiality and protect partici-

pants from harm [63].

Conclusions and Recommendations
Strategies for meeting the aforemen-

tioned challenges include: (1) establishing

standards and norms of practice; (2)

outlining governance structures to support

human subjects-related data; and (3)

enacting culture change towards better

data stewardship.
Establishing standards and

norms. Data sharing challenges are

dominated by issues of variable methods,

data, storage systems, and workflows.

While unlikely that researchers will

adhere to a limited set of research

systems and methods, we should begin

building on existing methods to facilitate

synthesis. Tools such as social media,

crowdsourcing, blogs, and wikis have

enormous potential for fostering

communication and collaboration around

particular methods, analyses, or data

types. Furthermore, durable and robust

methods for synthesizing and sharing

heterogeneous data have been pioneered

at high-profile research centers (e.g.,

National Center for Ecological Analysis

and Synthesis and the National Center for

Evolutionary Synthesis). Such skill sets,

statistical techniques, software packages,

and data curation protocols should be

widely disseminated and training

programs instantiated.

Outlining governance structures. Pro-

tecting human subject confidentiality,

ensuring safety, and preventing data

misuse are increasingly complicated as

data become more widely available. Data

governance structures have not yet caught

up to the pace of technology, thus many

established laws (notably copyright) are

inappropriate for digital datasets. IRB

approval for human subjects research is

similarly lagging. We must therefore define

new rules and regulations tailored to digital

data, with careful consideration for social-

spatial data. Furthermore, researchers must

be trained in data stewardship and

responsible development of IRB protocols

and data management plans.

Enacting culture change. We must

move towards a norm of openness and

sharing. Openly shared datasets require

careful documentation with clearly

outlined policies and procedures for

appropriate use. Researchers must

become much better data stewards, with

an in-depth understanding of metadata,

best practices for data organization, and

plans for archiving and preserving data.

Importantly, so must institutions; data

stewardship takes time and resources,

and researchers cannot simply be

expected to be data stewards without

sufficient resources and support. There

are many data standards (e.g., Darwin

Core, The Conservation Measurement

Partnership [64]) and tools (see e.g.,

dmptool.org; ecoinformatics.org; dataup.

cdlib.org) available for facilitating good

data stewardship. Emerging workflow

systems (e.g., Kepler and Taverna) hold

the promise of automated analytical

workflows that can be shared, reused,

and archived alongside datasets.

The technical, socio-cultural, and

ethical challenges associated with data

stewardship mentioned here are not the

only ones. New mandates are created by

funders as the culture of data steward-

ship evolves, and new challenges will

arise as data volume and precision

increases. Coping with interdisciplinary

differences will require cross-disciplinary

graduate training (e.g., NSF IGERT

programs) to lower cultural and episte-

mic barriers between disciplines. Differ-

ing organizational mandates and reward

systems are more difficult to manage,

but could be better accomplished by

making researchers aware of these

differences and working to find the

‘‘sweet spot’’ wherein collaborators’

organizational mandates, reward sys-

tems and research interests converge

[39]. The importance of sharing both

data and findings to build new knowl-

edge and advance science are para-

mount. We therefore challenge research-

ers, practitioners, and policy-makers to

devise the appropriate means, guide-

lines, and tools to responsibly manage

the rising tide of the data deluge.
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