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Abstract

We propose a new method for vectorizing a document using the relational characteristics of

the words in the document. For the relational characteristics, we use two types of relational

information of a word: 1) the centrality measures of the word and 2) the number of times that

the word is used with other words in the document. We propose these methods mainly

because information regarding the relations of a word to other words in the document are

likely to better represent the unique characteristics of the document than the frequency-

based methods (e.g., term frequency and term frequency–inverse document frequency). In

experiments using a corpus consisting of 14 documents pertaining to four different topics,

the results of clustering analysis using cosine similarities between vectors of relational infor-

mation for words were comparable to (and more accurate than in some cases) those

obtained using vectors of frequency-based methods. The clustering analysis using vectors

of tie weights between words yielded the most accurate result. Although the results obtained

for the small dataset used in this study can hardly be generalized, they suggest that at least

in some cases, vectorization of a document using the relational characteristics of the words

can provide more accurate results than the frequency-based vectors.

Introduction

We propose a document vectorization method using the relational characteristics of words in

the document. In general, a document is represented as a vector using the bag-of-words model

[1]. The entries of the vector are the frequencies of each word in the document (i.e., the term

frequency (TF)) [2]. In addition to the TF, the TF–inverse document frequency (TFIDF) is fre-

quently used to better represent the unique characteristics of a document [3].

The main purpose of the vectorization of a document with words is to represent the unique

characteristics of the document numerically so that computers can handle such unstructured

text data [4]. In many machine-learning algorithms used for text mining, how well the unique

characteristics of a document are represented by its words plays a critical role in analyzing the

document [5]. For example, when calculating the similarity between two documents, we typi-

cally use vectors made of the information about the frequencies of the words used in the docu-

ment, such as the TF or TFIDF. The accuracy of the similarity is highly dependent on the
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degree to which the vectors correctly represent the unique characteristics of the documents

[6].

However, traditional methods such as the TF and TFIDF have limitations in representing

the unique characteristics of a document, mainly because they do not consider important char-

acteristics of the words used in a document, for example, the relations of each word with other

words in the document.

To alleviate these limitations, we suggest a new method of document vectorization using

the relational characteristics of each word, that is, information about what other words the

word is used together with and the frequency of co-occurrence between the word and other

words in the document. How (and how often) a word is used with other words in a document

can reflect unique characteristics of the document. The author of a document attempts to con-

vey his/her thoughts and opinions using words, not in a random way but in a systematic way.

Thus, the topic or content of a document significantly depends on which words are used in the

same sentences. For example, even if two different words, e.g., Words 1 and 2 are used with

the same frequency (e.g., 10 times) in a document, the case where they are used in the same

sentences 10 times differs significantly from the case where they are used in different sen-

tences. In the former case, Word 1 has a close relation to Word 2, whereas in the latter case,

the two words have a less close relation. This indicates that if we consider the relational charac-

teristics of words used in a document when vectorizing the document, we can extract the

unique characteristics of the document more effectively.

In this study, we attempt to vectorize a document using two types of relational information

of a word: 1) the centrality measures of the word and 2) the number of times that the word is

used with other words in the same sentences in the document. After introducing the proposed

methods, we evaluate their performance by applying them for clustering analysis and compare

the clustering results with those obtained via traditional methods, i.e., TF and TFIDF. The

main purpose of clustering analysis is to find clusters among different data points, which are

documents in this case, based on the similarity between documents. If the vectors represent

the unique characteristics of a document better, then it is expected that the similarity (and dif-

ference) between documents will be more cleared distinguished, which will lead to more accu-

rate results of clustering analysis.

For the evaluation, we used small text data composed of 14 news articles, each of which cov-

ers a particular topic. There are four different topics covered by the 14 articles; thus, the num-

ber of clusters that we wish to find is four. We used this small corpus mainly because 1) the

documents can be manually labeled according to their topics and 2) we can specifically calcu-

late the similarity between two particular documents and examine where the differences exist

between them, which helps compare the new method with the existing methods more clearly.

We found that the clustering analyses based on cosine similarities between vectors of the

new methods outperformed those based on the vectors of traditional methods. However, the

results of clustering analysis based on the Euclidean distances between document vectors

obtained using the proposed methods were less accurate than those resulted from vectors of

traditional methods.

Prior studies have shown that network-based approaches can be useful for natural language

processing (LNP) tasks [7, 8]. Syntactic and stylistic characteristics of a language can be repre-

sented by network-based approaches, thus, they are useful to identify different languages [8,

9]. Networks of words have also been proven to reflect the unique writing style of an author

[10]. Word adjacency models have also been corroborated to reflect characteristics of texts

[11–15]. In a word adjacency model, a tie is defined to exist between two adjacent words

and a document is represented by an adjacency matrix of words [16]. Similarly, the Doc2Vec

proposed by Le and Mikolov in 2014 [17], which is based on neural networks, uses
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information about a word and its context words to represent a document with a low dimen-

sional vector.

Methods

Bag-of-words model

We explain the bag-of-words model using the following simple corpus composed of four dif-

ferent documents.

Doc1 = “banana apple apple eggplant”

Doc2 = “orange carrot banana eggplant”

Doc3 = “apple carrot banana banana”

Doc4 = “orange banana grape”

In the corpus, there are six words: “apple,” “banana,” “carrot,” “eggplant,” “grape,” and

“orange.” First, we can vectorize each document using the frequency of each word in the cor-

pus. For example, the vector for Doc1 is (2, 1, 0, 1, 0, 0), which indicates that “apple” is used

twice in Doc 1, “banana” and “eggplant” are used once, and the other words are not used in

Doc 1. By performing similar calculations, we can obtain the document–term matrix shown in

Table 1, where each row represents the vector of a document.

To determine the unique characteristics of a document compared with other documents,

the TFIDF metric is more frequently used than the TF. The TFIDF of a word in a document is

calculated as the product of the TF and IDF. The TF is the number of times that the word is

used in the document, whereas the IDF refers to the number of other documents in the corpus

that the word is not used [18]. The IDF is calculated as

idf t;Dð Þ ¼ log
jDj

jðd 2 D : t 2 dÞj
;

where |D| is the number of documents in the corpus, and |(d2D:t2d)| is the number of docu-

ments in which the term t is used [18]. The IDF has a large value if the term t is used in few

other documents in the corpus. The TFIDF of a term reflects the relative importance of the

term in the document. Terms with a large TFIDF are those that are frequently used in the doc-

ument but not in other document in the corpus. Thus, terms with a large TFIDF are likely to

represent the unique characteristics of the document better than terms with a large TF value

[18].

As shown above, TF and the TFIDF are based on the frequency of each word but not other

information about a word. Although frequency information can represent the unique charac-

teristics of a document well, sometimes, relational characteristics of words can be more useful.

Table 1. Document–term matrix for the example four documents.

apple banana carrot eggplant grape orange

Doc1 2 1 0 1 0 0

Doc2 0 1 1 1 0 1

Doc3 1 2 1 0 0 0

Doc4 0 1 0 0 1 1

https://doi.org/10.1371/journal.pone.0219389.t001
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Relational characteristics of words in a document

To identify the relational characteristics of the words in a document, that is, how a word is

used in relation to other words in the document, we can represent the document as a network

composed of the words used in the document. A tie between two words in the network can be

defined in several different ways. In this study, a tie exists between two words when they are

used in the same sentence. For example, for a sentence “An apple is a sweet, edible fruit pro-

duced by an apple tree,” a tie between “apple” and “fruit” is said to exist because they are used

in the same sentence. Further, a tie can have particular attribute information called a weight,

which refers to the number of times that the two words are used in same sentences. For exam-

ple, consider the following document, which consists of five sentences.

DocA = “banana apple carrot. banana grape apple watermelon orange. grape eggplant spin-
ach orange. banana eggplant apple. cherry melon pear eggplant.”

The network of words in the document is shown in Fig 1.

The size of each word in Fig 1 indicates the number of adjacent words, which is known as

the degree of the node. The adjacent words of a word are the words that are used with the

word in the same sentences. As mentioned previously, a tie exists between two words when

they are used in the same sentence. For example, there is a tie between “eggplant” and “spin-

ach” because they are used in the third sentence of DocA. The width of a tie reflects the weight

of the tie, i.e., the number of times that the two words are used in same sentences. Thus, a

thicker tie indicates a larger weight. For example, in DocA, the two words “apple” and

“banana” are used more frequently in same sentences than other words. They are used in three

same sentences, that is the first, second, and fourth sentences; thus, the weight of the tie is 3.

Fig 1. Word network of DocA. � The size of a node refers to the degree of the node, whereas the width of a tie between

two nodes refers to the weight of the tie.

https://doi.org/10.1371/journal.pone.0219389.g001
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These relational characteristics of each word in a document can reflect the unique charac-

teristics of the document better than the frequency of each word. For example, according to

the network information, we know that “banana” and “apple” are used together frequently;

thus, it is likely that “banana” is used in the document in relation to “apple.” On the other

hand, although “eggplant” is used frequently in the document, the weights of its ties with other

words such as “apple” and “banana” are small. We know that “eggplant” might play a bridge

role in the network; i.e., it is located on the path between other words, as shown in Fig 1.

In this study, for the relational characteristics of the words in a network, we focus on 1) cen-

trality and 2) the number of times that two words are used in the same sentence in a document

(i.e., the tie weight).

Centrality measures. Four types of centrality measures are frequently used in network

analysis: degree, betweenness, closeness, and eigenvector centralities [19, 20]. These measures

reflect the degree to which a node plays a central role in a network [21]. These centrality mea-

sures have also been used in studies about NLP tasks using network-based approaches [16, 22].

Centrality measures of words have been found to reflect the characteristics of a document [23].

We use these centrality measures of each word used in a document to vectorize the document.

1) Degree centrality. The degree centrality of a node in a network is defined as follows [19].

di ¼
degreei

�

maximum degreeg

where degreei is the degree of node i, and maximum_degreeg is the maximum degree that a

node can have in network g, which is N-1, where N is the number of nodes in g. The degree of

a node refers to the number of nodes adjacent to that node. In a network of words (i.e., a docu-

ment), the degree of a word refers to the number of other words used in the same sentence as

the word. Thus, a word with a large degree centrality is used with more other words in the doc-

ument than a word with a small degree centrality. In Fig 1, the size of a node is determined by

the degree of the node, which is proportional to its degree centrality. The degree centrality of

each word in DocA is presented in the first row of Table 2.

2) Betweenness centrality. The betweenness centrality of a node is defined as follows [19].

bi ¼
X

s;t2V

sðiÞs;t
ss;t

where V is the set of nodes in the network, σs,t is the number of shortest paths between nodes s
and t, and σ(i)s,t is the number of shortest paths between nodes s and t that pass through node

i. In this study, we considered unweighted ties when calculating betweenness centrality. The

betweenness centrality indicates the degree to which a node plays a bridge role between other

nodes in the network. The meaning of the betweenness centrality of a word in a word network

can be vague. For illustration, consider a document consisting of the following two sentences.

Sentence 1: “The research shows that health is an important issue.”

Sentence 2: “The research also explains how media can play a critical role.”

Table 2. Centralities of the words in the network of DocA.

Centrality apple banana carrot cherry eggplant grape melon orange pear spinach watermelon

Degree 0.60 0.60 0.20 0.30 0.80 0.60 0.30 0.60 0.30 0.30 0.40

Betweenness 0.11 0.11 0.00 0.00 0.49 0.06 0.00 0.06 0.00 0.00 0.00

Closeness 0.71 0.71 0.45 0.53 0.83 0.71 0.53 0.71 0.53 0.56 0.53

Eigenvector 0.39 0.39 0.15 0.13 0.41 0.40 0.13 0.40 0.13 0.23 0.30

https://doi.org/10.1371/journal.pone.0219389.t002
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A word network consisting of three words “research,” “health,” and “media” for the docu-

ment is shown in Fig 2.

In the document represented in Fig 2, “research” plays a bridge role between “health” and

“media.” That is, without “research,” “health” cannot be reached by “media,” and vice versa.

The relationships between the three words can be interpreted in two ways. First, we can con-

sider that the document discusses two specific aspects of “research”: “health” and “media.” Sec-

ond, we can consider that the document discusses the same aspect of “health” and “media,”

that is, “research” or discusses “health” and “media” from the “research” perspective.

The betweenness centralities of the words in DocA are presented in the second row of

Table 2.

3) Closeness centrality. The closeness centrality of a node is defined as follows [19].

ci ¼
n � 1

Pn� 1

j¼1
disði; jÞ

where n is the total number of nodes in the network, and dis(i,j) is the distance between nodes

i and j. In this study, we considered unweighted ties when calculating the distance between

nodes. The closeness centrality of a node indicates how closely the node is connected to all the

other nodes in the network. The closeness centrality of a word in a word network might indi-

cate the degree to which the word is related to other words in the document, on average. A

word with a large closeness centrality is more closely related to other words in the document,

on average. That is, other words in the document likely possess some meaning that is related

to the word having a large closeness centrality. For example, if the word “research” has a large

closeness centrality in a document, other words in the network are likely to have some mean-

ing related to “research.” The closeness centralities of the words in DocA are presented in the

third row of Table 2.

4) Eigenvector centrality. The eigenvector centrality of a node is based on the principle that

the centralities of other nodes to which the node is connected represent the centrality of the

node [21]. The eigenvector centrality values of the nodes in a network are calculated using the

eigenvectors of the adjacent matrix of the network, which is why the metric is called “eigenvec-

tor centrality.” In this study, we considered unweighted ties when calculating eigenvector cen-

trality. The eigenvector centrality values of the words in DocA are presented in the last row of

Table 2.

Fig 2. Example network.

https://doi.org/10.1371/journal.pone.0219389.g002
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The aforementioned centrality values of words can be used to represent a document as a

vector. For example, if we use the degree centrality values of words, for DocA, we have the vec-

tor (0.6, 0.6, 0.2, 0.3, 0.8, 0.6, 0.3, 0.6, 0.3, 0.3, 0.4). A vector of a document constructed using

centrality values can be used for several purposes, such as document similarity and clustering

analysis.

Number of times that a word is used with other words (tie weight). In addition to the

centrality measures, we consider the tie information between the words used in the document,

especially the number of times that two words are used in the same sentence, which is known

as the weight of the tie. The tie weight between words in a document can indicate the charac-

teristics of the document, mainly because an author conveys his/her message in a document by

connecting words, which can be captured by ties between words in the document. For DocA,

we have 11 words, indicating that there are 55 possible pairs of two words. When there are

many words, which is common in text analysis, it is impossible to use all the possible combina-

tions of two words because of the large number of combinations. Instead, we select a certain

number of words to construct a vector using their tie information. Several different methods

can be used. First, we can select words according to their frequencies. Second, we can choose

words according to our research questions or theoretical background. Consider the following

five words from DocA: “apple,” “banana,” “eggplant,” “grape,” and “orange”; we have 10 pairs

of two words. The value of each pair of two words is the number of times that those two words

are used in the same sentence. For example, the two words “apple” and “banana” are used in

the same sentence three times. The weight values for the 10 pairs of words are presented in

Table 3.

Experiments

To evaluate how well the vectorization method using the network information about words

represents the characteristics of a document, we compare the results of clustering analysis via

vectors constructed using the relational characteristics of words (i.e., centralities and tie

weights) with those obtained via TF and TFIDF-based vectors. For the clustering analysis, we

use K-means and hierarchical clustering algorithms.

Example document data

For the experiments, we use example text data composed of 14 documents pertaining to four

different topics; thus, the number of clusters that we wish to find is four. The documents are

news articles, each covering a particular topic. Three articles belong to the same cluster—Clus-

ter 1—and discuss the release of a new battery case for the iPhone, which is known as a Smart

Battery Case. The second cluster—Cluster 2—is composed of three other news articles con-

cerning a shooting incident that occurred in Jacksonville, USA in 2018. Cluster 3 contains four

news articles about basketball player Kevin Durant, in particular, the charity foundation that

he established in Maryland, USA. The final cluster—Cluster 4—consists of four news articles

about tennis player Serena Williams, specifically her loss in the 2019 Australian Open.

Although articles in the same cluster discuss the same topic, the details of their contents differ.

Table 3. Weight values of the ties between two words of “apple,” “banana,” “eggplant,” “grape,” and “orange” in DocA.

Words

pair

(’apple’,

’banana’)

(’apple’,

’eggplant’)

(’apple’,

’grape’)

(’apple’,

’orange’)

(’banana’,

’eggplant’)

(’banana’,

’grape’)

(’banana’,

’orange’)

(’eggplant’,

’grape’)

(’eggplant’,

’orange’)

(’grape’,

’orange’)

Tie

weight

3 1 1 1 1 1 1 1 1 2

https://doi.org/10.1371/journal.pone.0219389.t003
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In the experiments, we test how well the 14 documents are clustered using the vectors devel-

oped via the new methods compared with the methods based on the TF and TFIDF.

Vectorization of the documents using words network information. To vectorize each of

the fourteen documents, we used the noun words in the corpus, which were identified using

the nltk module in Python. There were 869 noun words in the corpus. As explained in the pre-

ceding section, a tie between two noun words was defined to exist when they were used in the

same sentence. When calculating centralities whose values are influenced by the number of

nodes, which include degree, betweenness, and closeness centralities, we took into account the

length of each document and the corpus. For this, we first divided each centrality measure by

the number of noun words used in each document and multiplied it by the total number of

noun words in the corpus. The eigenvector centrality is calculated using the eigenvector of the

largest eigenvalue of the adjacency matrix of the network, thus, the centrality is not a function

of the number of nodes [24]. To vectorize each document using the tie weight information, in

this experiment, we only used top 10 percent words of the total words according to their fre-

quencies in the corpus. This is mainly because the number of possible pairs of two words

increases exponentially with the number of words. Further, because the weight of a tie between

two words can vary with the length of the document, we divided tie weight by the number of

words in the document.

Comparison using K-means clustering algorithm. For the 14 documents, a K-means

algorithm was applied using the “scikit-learn” module in Python [25]. The K-means algorithm

calculates the similarity between documents according to the Euclidean distance between their

corresponding vectors [26]. With the hyperparameter for the number of clusters to be found

set as 4, we ran several analyses using different vectors for the documents, that is, vectors of the

1) TF, 2) TFIDF, 3) centrality measures, and 4) tie weight information. The results of the clus-

tering analyses using the different vectors are presented in Table 4.

Table 4 shows that the results of the clustering analyses based on vectors of the relational

characteristics of the words are less accurate than the TF-based results, except for the analysis

using the vectors of eigenvector centrality. In general, the similarity between documents based

on the Euclidean distance does not work well for the vectors constructed using the relational

characteristics of the words.

We also present plots of the score values for each analysis with different numbers of clus-

ters, which indicate how accurately the analyses determine the number of clusters from the

text data. The results are shown in Fig 3. The score value of K-means analysis with a particular

number of clusters is calculated as follows [27].

score ¼ �
X

i

ðdi;centerÞ
2

Table 4. Results of the clustering analyses of the 14 documents.

Document ID NMI� 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Correct cluster ID - 0 0 0 1 1 1 2 2 2 2 3 3 3 3

TF 1.0 0 0 0 1 1 1 2 2 2 2 3 3 3 3

TFIDF 1.0 0 0 0 1 1 1 2 2 2 2 3 3 3 3

Degree 1.0 0 0 0 1 1 1 2 2 2 2 3 3 3 3

Betweenness 0.70 0 0 0 2 1 3 0 0 0 0 1 1 1 1

Closeness 0.82 0 0 0 1 1 3 2 2 2 2 0 0 0 0

Eigenvector 1.0 0 0 0 1 1 1 2 2 2 2 3 3 3 3

Tie weight 0.66 1 0 0 1 1 1 2 3 2 2 1 1 1 1

� NMI: Normalized mutual information

https://doi.org/10.1371/journal.pone.0219389.t004
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where di, center is the distance between Doc i and the center of the cluster to which the docu-

ment belongs.

If the clustering analysis returns the correct number of clusters, which is four in this case,

the value of the score should increase rapidly up to the correct number of clusters and should

increase slowly after the number. This is because dividing the corpus into more clusters than

the optimal number of clusters leads to a small decrease in the sum of squared distances (i.e.,

the score value). The plots in Fig 3 indicate that the clustering analyses based on the vectors of

the relational information about the words generated less accurate results than the analysis

using the TF or TFIDF vectors, except for the case of the eigenvector centrality vectors. The

plots for TF, TFIDF, and eigenvector centrality have a kink at the point where the number of

clusters is 4.

Comparison using hierarchical clustering algorithm. To use the cosine similarity

between vectors instead of the Euclidean distances, we employ a hierarchical clustering

method, which is implemented in the “AgglomerativeClustering” class in Python [28]. For the

Fig 3. Score plots of each method. Note: Horizontal axis: Number of Clusters, Vertical axis: Score.

https://doi.org/10.1371/journal.pone.0219389.g003

Document vectorization with network information of words

PLOS ONE | https://doi.org/10.1371/journal.pone.0219389 July 18, 2019 9 / 13

https://doi.org/10.1371/journal.pone.0219389.g003
https://doi.org/10.1371/journal.pone.0219389


“linkage” parameter, we use the “average” option, and for the “affinity” parameter, we used

“cosine.” Similar to the K-means analysis, we set the number of clusters to be found as 4.

In contrast to the results of the K-means analyses, in the case of the hierarchical clustering

analysis based on cosine similarities, all the methods based on different types of vectors

returned the correct answer. That is, four clusters were correctly identified via all the vector

methods. The dendrogram plots for each vector method are presented in Fig 4.

In a dendrogram, the values on the vertical line refer to the distance between documents or

clusters. Thus, as the results of the clustering analysis are more correct, the distances between

documents that belong to the same cluster should be small, while those between documents

that belong to different clusters should be large. In addition to the dendrogram plots, to more

Fig 4. Dendrogram plots of the hierarchical clustering analyses. Note: Horizontal axis: Document ID, Vertical axis:

Distance.

https://doi.org/10.1371/journal.pone.0219389.g004
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accurately compare the performances of the different vector methods, we calculated the ratio

of the similarity between documents in the same cluster to the similarities of the clusters.

Average similarity between documents in the same cluster, denoted as AT

To calculate AT, we first calculated the average consine similarity between documents in the

same cluster, as follows:

avg simC ¼

P
i;j2C cosyðdoci; docjÞ

.
�

n
2

�

where cosθ(doci,docj) is the cosine similarity between documents i and j in cluster C,

n

2

 !

¼ n!

2!ðn� 2Þ!
, and n is the number of documents in cluster C.

Using avg_simC for each cluster, we obtained the following average similarity metric for all

the clusters.

AT ¼

P
C2T avg simC

.

#Clusters

Here, T indicates the total text data. In this case, there are four different clusters in the total

data; thus, # Clusters = 4. A large AT indicates that the similarity between the documents in the

same cluster is high, on average.

Average similarity between clusters, denoted as BT

We also calculated the average similarity between clusters. For this, we first obtained the

average vector for each cluster, as follows:

avg vectorC ¼
P

i2Cvectori
.

#vectors in C
:

Using the average_vectorC of each cluster, we calculated the average cosine similarity

between the average vectors, as follows:

BT ¼

P
p;q2T cosyðavg vectorp; avgvectorqÞ

.

#Clusters
:

A small BT indicates that the similarity between the clusters is low, on average.

The distinction between clusters is related to the ratio of AT to BT, that is,
AT
BT

. If
AT
BT

is large, it

is likely that clusters are more accurately identified. The values of
AT
BT

obtained via each vector

method examined in this study are presented in Table 5.

Table 5.
AT
BT

of each vector method.

TF TFIDF Degree Betweenness Closeness Eigenvector Tie weight

AT
� 0.614 0.514 0.555 0.639 0.342 0.473 0.472

BT
�� 0.070 0.047 0.074 0.035 0.100 0.068 0.006

AT=BT
8.762 11.025 7.462 18.115 3.410 6.917 84.681

� AT ¼

P
C2T avg simC

.

#Clusters
�� BT ¼

P
p;q2T cosyðavg vectorp; avg vectorqÞ

.

#Clusters

https://doi.org/10.1371/journal.pone.0219389.t005
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The results in Table 5 indicate that the value of
AT
BT

obtained using vectors of the tie weights

was the largest (84.681), followed by those obtained using betweenness centrality-based vectors

(18.115) and TFIDF-based vectors (11.025). Thus, vectors constructed using tie weights

between words in a document can more accurately identify clusters composed of distinctive

documents than vectors constructed using other methods, especially the traditional methods

(TF and TFIDF).

Conclusion

We proposed a new method for vectorizing a document according to the relational character-

istics of the words in the document. For the relational characteristics, we used four centrality

measures and the tie weights between words. We suggested these methods because in some

cases, information about the relations of a word to other words in a document can better rep-

resent the unique characteristics of the document than frequency-based methods, e.g., the TF

and TFIDF. Thus, machine learning algorithms (e.g., clustering algorithms) based on the simi-

larity between documents can generate more accurate results by using vectors of the relational

characteristics of words than by using vectors of the TF or TFIDF. In general, the results of

clustering analysis based on the Euclidean distances between document vectors obtained using

the proposed methods were inaccurate compared with the results obtained using vectors of

traditional methods. However, the results obtained using cosine similarities between vectors of

the new methods were comparable to those obtained using the vectors of traditional methods.

In particular, the clustering analysis using vectors comprising the tie weights between words

generated the most remarkable result. One limitation of this study is that we used a small num-

ber of documents for the clustering analysis. Although the results obtained from the small

example dataset can hardly be generalized, they suggest that at least in some cases, vectoriza-

tion of a document using the relational characteristics of the words in the document can pro-

vide more accurate results than traditional methods.
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