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Abstract: (1) Background: Propensity score methods gained popularity in non-interventional clinical
studies. As it may often occur in observational datasets, some values in baseline covariates are
missing for some patients. The present study aims to compare the performances of popular statistical
methods to deal with missing data in propensity score analysis. (2) Methods: Methods that account
for missing data during the estimation process and methods based on the imputation of missing
values, such as multiple imputations, were considered. The methods were applied on the dataset of
an ongoing prospective registry for the treatment of unprotected left main coronary artery disease.
The performances were assessed in terms of the overall balance of baseline covariates. (3) Results:
Methods that explicitly deal with missing data were superior to classical complete case analysis. The
best balance was observed when propensity scores were estimated with a method that accounts for
missing data using a stochastic approximation of the expectation-maximization algorithm. (4) Con-
clusions: If missing at random mechanism is plausible, methods that use missing data to estimate
propensity score or impute them should be preferred. Sensitivity analyses are encouraged to evaluate
the implications methods used to handle missing data and estimate propensity score.

Keywords: propensity score; missing data; non-interventional studies

1. Introduction

Non-interventional (or non-randomized) studies are increasingly being used to infer
causal relationships between new treatments and health outcomes in real clinical set-
tings [1]. In non-randomized clinical studies, the allocation of subjects into treatment
groups often depends on their characteristics collected at baseline. Consequently, the
groups of individuals systematically differ from each other in terms of baseline covariates,
leading to the so-called confounding bias. In such situations, a naïve comparison of the out-
comes between the treatment and control groups would provide a biased treatment effect
estimate. Thus, statistical methods that explicitly account for the presence of confounding
are needed to make a causal assessment of the effect of a new treatment or therapy.

Propensity Score (PS) methods have been proposed to reduce confounding bias in
non-interventional studies and to provide consistent treatment effect estimates [2]. Briefly,
PS is defined as the individual probability of being treated given baseline characteristics.
As demonstrated by Rosenbaum and Rubin in their seminal paper [3], the PS acts as a
balancing score, i.e., the treatment groups are on average balanced in terms of baseline
covariates after conditioning on the PS. Thus, conditioning on PS allows the researcher to
mimic the settings of an RCT. PS techniques are increasingly becoming popular in non-
interventional clinical studies, especially in the cardiovascular and surgical literature [4–7].
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For example, PS methods have recently been used to compare coronary artery bypass
grafting (CABG) and percutaneous coronary intervention (PCI) [6,8]. The most popular PS
based methods used to minimize confounding bias are Propensity Score Matching (PSM),
stratification on the PS, Propensity Score as Inverse Probability of Treatment Weighting
(PS-IPTW), and covariate adjustment using the PS [9]. Recently, Full-Matching (FM) on PS,
which can be thought of as a synthesis of stratification and PS-IPTW, is gaining attention in
the applied literature [10,11].

The estimation of PS requires the individual baseline characteristics to be fully ob-
served. In practice, however, some values in baseline covariates are missing. When missing
data arises, individual PS cannot be estimated for individuals with one or more missing val-
ues in baseline variables. The standard approaches to deal with missing data in PS analysis
are complete case (CC) analysis and the missing indicator method (MIND) [12,13]. Popular
alternatives to classical techniques are represented by methods that impute missing data,
such as Multiple Imputation (MI) [14], and statistical models that include the missingness
during the estimation of PS, such as Generalized Boosted Modeling (GBM) [15]. To the best
of our knowledge, there is a paucity of literature on which an approach for dealing with
missing data provides more advantages from a practical point of view, especially when
assumptions on the missingness mechanism cannot be assessed using observed data. Only
a few studies performed a comparison of different strategies for handling missing in PS
analysis [16–18].

The present study aims to compare several missing data strategies in combination
with different PS based methods. We used as a motivating example a dataset from an
ongoing multicenter prospective registry of the treatment of unprotected left main coronary
artery disease. Since the registry data collection is still ongoing, the results and findings
of the study have not yet been published. Thus, we will focus only on the design stage of
the PS analysis. That is, we are interested in evaluating the balance of baseline covariates
obtained with the examined statistical methods rather than estimating a causal quantity of
interest. The remainder of this paper is organized as follows. In Section 1.1, we describe
the data of the motivating example. In Section 1.2, we introduced the PS methodology. In
Section 2, we introduce the PS and missing data framework, describe the methods used in
the study, and the implementation of the statistical analysis. In Section 3, we present the
results of the analysis. In Section 4, we discuss the findings and contextualize them with
the current literature. In Section 5, we provide some practical recommendations for the
implementation of the methods.

1.1. Motivating Example

The main objective of the registry was to evaluate the safety and efficacy of a new
generation stent in the treatment of unprotected left main coronary artery disease (ULM-
CAD), both isolated or in association with two- or three-vessel coronary artery disease. The
registry has been designed to be comparable in terms of primary endpoint to the PCI arm
of the Evaluation of XIENCE Everolimus-Eluting Stent Versus Coronary Artery Bypass
Surgery for Effectiveness of Left Main Revascularization (EXCEL) and Nordic-Baltic-British
Left Main Revascularization Study (NOBLE) trials [19,20]. Study details are not disclosed
as per the research agreement.

A subgroup of enrolled patients was expected to be treated with intravascular imaging-
intravascular ultrasound (IVUS) or optical coherence tomography (OCT) during PCI, which
are intracoronary imaging techniques that aid clinicians in optimizing stent implantation
and that were shown to improve patient’s prognosis compared with standard angiography-
guided PCI [21–23]. We focused on the pre-specified analysis of the study that aims to
evaluate the impact of the type of imaging on the clinical outcomes by comparing IVUS,
OCT, and standard angiography-guided groups of subjects.

At the onset of the study, data on 531 patients enrolled in 26 centers were available at
the investigators, with information on demographic, clinical, and procedural characteristics.
Data collection was managed using REDCap electronic data capture tools [24,25]. Among
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the enrolled patients, 263 underwent standard angiography-guided, 200 underwent IVUS,
15 underwent OCT, and 16 underwent fractional flow reserve (FFR), whereas for the
remaining subjects the imaging technique was not assessed yet. The illustration of the
methodology for estimating PS with missing data and assessing the balance of baseline
covariates was performed by comparing standard angiography-guided groups with a
group of subjects that underwent both IVUS and OCT. A separate comparison between
IVUS and OCT was not considered since the small number of patients in the OCT groups
would make the comparison inaccurate. Thus, the final dataset included 478 patients (263
in the standard angiography-guided group and 215 in the IVUS-OCT group).

1.2. Propensity Score Framework

The PS is defined as the individual probability that a subject receives the treatment
given the observed values of the pre-treatment covariates. Denoting with i = 1, . . . , n the
i-th subject among the n subjects enrolled in the study, with Ti = {0,1} the treatment received
by the subject, and with xi the observed values of the pre-treatment covariates, the PS can
be formalized as:

π (xi) = P(Ti = 1|Xi = xi) (1)

Rosenbaum and Rubin [3] showed that for a specific PS value the average difference of
the outcomes between treatment and control groups provides an unbiased estimate of the
treatment effect if the following conditions hold: (i) no unmeasured confounding, and (ii)
every subject has a non-zero probability of receiving the treatment (positivity assumption).

PS estimation is often conducted using classical logistic regression (LR). Multiple
methods to estimate PS have been described, such as MLTs, which are potentially able to
flexibly estimate treatment assignment mechanism, and covariate balancing propensity
score (CBPS), which aims to estimate PS model by maximizing the balance of pre-treatment
covariates [26–28].

Common techniques to estimate treatment effects using PS include PSM, PS-IPTW,
stratification on the PS, and covariate adjustment using the PS. PSM consists of forming a
matched set of treated and control observations with similar PS values. The most common
implementation of PSM is 1:1 nearest neighbor (NN) matching, which consists of pairing
one treated and one control unit that share close estimated PS. A caliper is often imposed
to improve the quality of the matched set. PS-IPTW technique creates weights based on
the estimated PS such that a new artificial sample of units, balanced in terms of measured
baseline covariates, is obtained. Individual weights are computed as:

wi = Ti/πi + (1 − Ti)/(1 − πi) (2)

Weights created using the PS-IPTW method are conceptually like those used in com-
plex survey design studies to make the sample at hand representative of the target popu-
lation. Thus, the weights are used to compute the summary statistics of the sample, e.g.,
measures used to evaluate the balance, or difference in the outcomes means. Stratification
on the PS partitions the observations into groups based on PS values, e.g., quintiles of the
estimated PS. Individuals in the same stratum will have similar PS values, which should
result in balance in terms of covariates between treatment and control groups in each
stratum. Once strata are defined, the treatment effect estimate on the whole sample can
be obtained by thinking of each stratum as a single RCT and pooling stratum-specific
estimates using meta-analysis methods. Stratification on PS has been shown to remove 90%
of the bias in the treatment effect estimate [13]. Covariate adjustment using PS consists of
fitting a regression model using as covariates the treatment indicator and the estimated
PS. The treatment effect is then represented by the coefficient of the regression model
associated with the treatment variable. Previous studies have shown that this is generally
not a statistically valid method [29–31]. FM is a PS based method that can be thought of as a
mix of stratification on PS and PS-IPTW. In summary, units are partitioned into strata with
at least one treated and one control such that the within-strata difference in PS between
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treated and controls is minimized. Once strata are obtained, different sets of weights can be
constructed to obtain the treatment effect estimate of interest [32]. The main advantages of
FM over other PS based methods are: (i) it retains all the units in the final sample, avoiding
the risk of bias when discarding observations from the initial set of individuals; (ii) FM
permits the estimation of different causal effects based on the type of weighting scheme
that is used [33].

2. Materials and Methods
2.1. Propensity Score and Missing Data in Non-Interventional Studies

One of the major issues in PS analysis occurs in the case of missing data in baseline
covariates. Assuming that the treatment indicator is fully observed, two methods are often
advocated to handle missingness in PS analysis: CC and MIND. CC consists of estimating
the PS only for those individuals with observed values for all the covariates included
in the treatment assignment model. CC is known to provide unbiased treatment effect
estimate if the missingness mechanism is Missing Completely At Random (MCAR), i.e.,
the missingness depends neither on observed and unobserved data, although statistical
power is reduced due to the loss of observations. When the mechanism that generated
missing data is Missing At Random (MAR), i.e., the missingness depends only on observed
variables, or Missing Not At Random (MNAR), i.e., missing data are generated given
information not observed in the dataset, there may be the risk of obtaining a biased
estimate of the treatment effect [34]. The MIND [13] approach allows estimating PS for each
unit, even if some covariate values are not observed. Briefly, missing values are replaced
with an arbitrary specific value. When the covariate is continuous, the value 0 is often used
to replace the missing value, whereas a “missing” category is used for categorical covariates.
Furthermore, an additional indicator variable that assumes value 0 if the corresponding
value is observed and 1 otherwise is created. The missing indicator variables are then used
as covariates in the PS model. The MIND approach was shown to be equivalent to the
Missing Pattern Approach (MPA) proposed by Rosenbaum and Rubin [13] with a single
partially observed covariate. Additionally, it represents a simplified version of MPA in
more complex scenarios, e.g., one fully observed covariate and one partially observed
covariate, with the additional assumption that the association between the fully observed
covariate and the treatment is the same even if the other covariate is partially observed [35].
The MIND approach was shown to introduce bias in regression models [36,37], and its role
has been questioned in PS analysis [38].

Alternative methods that handle missing data during the fitting process are repre-
sented by PS estimation with GBM and logistic regression with a stochastic approximation
of the EM algorithm (SAEM). GBM is an MLT that allows a flexible estimation of PS
by modeling nonlinearities, interactions, and including a large number of potential con-
founders [27]. PSs are estimated by an iterative process that uses regression trees to model
the treatment assignment mechanism. Moreover, the parameters of the GBM algorithm can
be tuned such that the balance between treatment and control groups in terms of baseline
covariates is maximized [39,40]. The use of GBM in non-interventional studies has been
increasing recently [41–44]. The main advantage of GBM in PS analysis with partially
observed covariates relies on how GBM deals with missing data during the estimation
process. That is, each regression tree built by GBM handles observations with missing data
using surrogate splitting, i.e., a separate node for the missingness is created by the algo-
rithm. PSs are then estimated even if some covariates are partially observed. The SAEM
allows for the estimation of PS using logistic regression with a method that explicitly deals
with missingness in the covariates [45]. The logistic regression is fitted with a stochastic
approximate version of the EM algorithm, which is based on the Metropolis-Hastings
algorithm. The algorithm makes use of a fitting process that stochastically computes the
conditional-expectation of the likelihood function based on the fully observed data without
any needs to approximate it with a large number of Monte Carlo simulations. The SAEM
method assumes that the mechanism that generates missingness is MCAR or MAR. The use
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of the algorithm in PS analysis has been advocated by the authors as an appealing approach
to deal with missing data. Recently, the estimation of PS with SAEM method was explored
by a study from Mayer and colleagues who aimed at evaluating the performances of several
causal inference methods with missing data [46]. The authors found that the approach had
good performances across a wide range of simulated scenarios. However, they noticed
that treatment effect estimates may have some bias if the underlying assumptions of the
method are not fully supported by the data.

MI is a well-established method to handle missing data in medical studies [47–49].
Previous studies found that MI outperforms many alternative methods for handling miss-
ingness in covariates [50–52]. The classical MI approach is implemented in the following
steps: (i) a model for the missing data is specified; (ii) missing values are imputed m times
by sampling from the posterior distribution of the parameters of the missing data model;
(iii) m complete datasets are generated, and the statistical analysis is performed separately
in each dataset; and (iv) the results of the m analyses are pooled using Rubin’s rule [14].
When using MI to deal with missing data in PS analysis, two main approaches have been
proposed: the “within” strategy and “between” strategy [53]. Both approaches multiply
impute missing data and then estimate individual PS in each dataset. After that, the
“within” approach estimates the treatment effect in each dataset and pooled the estimates
using Rubin’s rule to perform inference, whereas the “between” approach averages the in-
dividual PS estimated in each complete dataset and performs inference using the pooled PS
values. Multiple manuscripts compared the performances of the “within” and “between”
approaches using simulation studies [52,54–56]. The results from previous studies did not
agree on which strategy should be used in practice. However, a recent work by Granger
and colleagues found that the “within” approach should be preferred since it produces less
biased estimates and it accounts for between-imputation variability [57].

2.2. Statistical Analysis
2.2.1. Propensity Score Estimation

We considered the following models to estimate individual PS: LR, CBPS, and GBM.
The following baseline characteristics were included in the PS models: gender, age, body
mass index (BMI), hypertension, diabetes, smoker (non-smoker vs. previous smoker or
current smoker), coronary artery disease (CAD), hyperlipidemia, previous PCI, previous
myocardial infarction (MI), previous stroke/transient ischemic attack (TIA), chronic ob-
structive pulmonary disease (COPD), peripheral artery disease (PAD), clinical presentation
(NSTEMI, STEMI, stable CAD, unstable angina, and other), New York Heart Association
(NYHA) classification, Canadian Cardiovascular Society (CCS) classification, EuroSCORE
II, glomerular filtration rate (GFR), hemoglobin, left ventricular ejection fraction (LVEF),
aspirin, thienopyridine, Syntax Score, lesion to left anterior descending coronary artery
(LAD), lesion to left circumflex coronary artery (LCx), and lesion to right coronary artery
(RCA). When PS was estimated with LR and CBPS, the baseline covariates were included
in the model as main effects. When PS was estimated with GBM, the default parameter
values of the model as implemented in the twang R package [58] were used. Three PS
based methods were considered: NN matching, FM, and PS-IPTW. NN was implemented
as the classical 1:1 matching without replacement. A caliper equal to 0.2 of the standard
deviation of the logit of PS was imposed to improve the quality of the resulting matched
set [59].

2.2.2. Missing Data Methods

In addition to the traditional methods used to handle missing data in PS analysis,
i.e., CC and MIND, we considered the following techniques that include the missingness
during the estimation procedure: GBM with surrogate splitting and SAEM. GBM with
surrogate splitting was implemented using the twang R package (version 1.6) [58] with de-
fault parameter settings. The misaem R package (version 1.0.0) [60] was used to implement
PS estimation with SAEM method. Furthermore, we considered three different methods
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based on MI to impute missing data before PS estimation: MI with the fully conditional
specification (FCS) [61] method via chained equation algorithm as implemented in the
mice R package (version 3.10.0) [62,63], MI with FCS method that combines sequential
regression and Bayesian Bootstrap Predictive Mean Matching (BBPMM) as implemented
in the BaBooN R package (version 0.2-0) [64] via chained algorithm, and MI with the FCS
method with additive regression models, bootstrap, and Predictive Mean Matching (PMM)
as implemented in aregImpute function of the Hmisc R package (version 4.4-1) [65,66]. These
three methods were labeled as MI-MICE, MI-BBPMM, and MI-AREGIMP, respectively.
The MI-MICE method was implemented using PMM for continuous variables, logistic
regression for binary variables, and multinomial logistic regression for categorical vari-
ables. Twenty imputed datasets were generated after 20 iterations. We did not choose
the number of imputed datasets using the fraction of missing data (FMI) as previously
suggested [67] since we focused on the design stage of the analysis without any knowledge
of the outcomes. The MI-BBPMM method was implemented with the default settings of the
BaBooN package, generating 20 imputed datasets after 20 iterations. The default settings
of the aregImpute function were used to implement the MI-AREGIMP method. Twenty
imputed datasets were generated after discarding the first 20 iterations of the algorithm
as “burn-in”. Regarding the MI methods, for each imputed variable, all the remaining
baseline characteristics and the treatment indicator were used as covariates in the imputa-
tion model. We implemented the design stage of PS analysis with MI using the “within”
approach. We assessed the similarity between the PSs estimated by each method using
the Intraclass Correlation Coefficient (ICC), a measure of agreement between continuous
measurements. We used the average PS values obtained in each imputed dataset when MI
methods were considered.

The structure of missing data in the dataset was explored using an approach based on
decision tree, as suggested by Tierney and colleagues [68]. The method was implemented
by fitting a regression tree on the data using as dependent variable the proportion of
missing values. The fitting process was performed using the rpart R package (version
4.1-15) [69], with default settings.

2.2.3. Measures of Balance

Covariate balance of the sets of individuals obtained after PS methods was assessed
using the standardized mean difference (SMD) of the PS distributions in the two groups
of patients, the overlapping coefficient (OVL), and the C-statistic [70]. The OVL is the
proportion of overlap between the density functions of the PS distributions. It ranges
between 0 and 1, and higher values represent higher degree of overlap. We considered 1-
OVL to make it comparable with other measures of balance. The C-statistic is the area under
the receiver operating characteristic (ROC) of PS in the sample of individuals reconstructed
after the application of PS methods. It ranges between 0.5 and 1, and lower values indicate
better balance. We computed 1-C-statistic to perform a fair comparison with other balance
statistics. When the balance was assessed on the imputed datasets generated with MI, we
computed the median, the minimum, and the maximum of the measures of balance to
account for the variation induced by the imputation process. We considered measures
that evaluated the overall balance of the final dataset by targeting the discrepancies in
the PS distributions after PS methods were implemented. The choice was motivated by
the practical need to simultaneously evaluate several methods and to provide an intuitive
and easy-to-read comparison of the achieved balance. We provided more details on the
goodness of the sets obtained after PS analysis by computing the proportion of retained
individuals (PRI), i.e., the proportion of patients that were not discarded from the final
set. When NN was used, the PRI was equal to the number of patients in the matched set
divided by the original number of patients. For FM, the PRI was always equal to 1 since
FM creates a matched set including all the observations from the original sample. When
PS-IPTW, we computed the PRI using the effective sample size as proposed by Kish [71],
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i.e., the sample size of an unweighted set of observations with approximately the same
precision as the weighted sample that was under consideration.

The statistical analysis was implemented using R software for statistical computing
(version 4.0.2) (R foundation for statistical computing. Vienna, Austria) [72]. The MatchIt
R package (version 3.0.2) (R foundation for statistical computing. Vienna, Austria) [73]
was used for NN matching and FM, whereas PS-IPTW was implemented using WeightIt
R package (version 0.10.2) (R foundation for statistical computing. Vienna, Austria) [74].
PSs with CBPS were estimated using the CBPS R package (version 0.21) [75]. The R
code to reproduce the analysis workflow on a simulated dataset is available on Github
(https://github.com/UBESP-DCTV/ps.missing (accessed on 28 May 2021)).

3. Results

Table 1 shows the distributions of baseline covariates stratified by imaging group, i.e.,
angiography and IVUS/OCT. Continuous variables are expressed as 1st quartile, median,
and 3rd quartile, and percentages (total numbers) are used for categorical variables. The
SMDs were reported to evaluate the degree of imbalance separately for each covariate.
SMDs higher than 0.25 suggest a considerable amount of imbalance in the distributions
of the baseline covariates between the two groups [76,77]. The most notable differences
between angiography-guidance and IVUS/OCT were observed in terms of the proportion
of subjects with NSTEMI (higher in the angiography group), the EuroSCORE II (lower
in the IVUS/OCT group), the proportion of patients with an FE between 30–50%, which
was lower in the IVUS/OCT group, the Syntax score, higher for patients who underwent
angiography-guidance. Furthermore, LCx and RCA were less frequently observed in the
IVUS/OCT group. Overall, patients that underwent angiography-guidance had more
severe clinical conditions on average.

3.1. Missing Data

Overall, the percentage of missing data in the sample was 6.3%. In Figure 1 the
percentage of missing data for each baseline variable is depicted. The Syntax score and the
EuroSCORE II were the covariates that presented the highest percentages of missingness,
more than 60% and almost 40%, respectively. The CSS classification and BMI resulted had
between 10% and 20% of missing values, whereas percentages below 10% were observed
for the remaining baseline characteristics.

Figure 2 shows the decision tree that was used to explore the structure of missingness.
The CCS classification was identified as the variable most associated with the proportion
of missingness (root node of the tree). Patients who took Thienidopiridine and that were
labeled in the third and fourth levels of CCS classification had the lowest proportion of
missingness. In contrast to that, the highest proportion of missingness was observed for
patients with the following characteristics: CCS equal to 0, 1, or 2, did not take Thienidopiri-
dine, had NYHA class equal to 3 or 4, hemoglobin lower than 13 g/dL, and were less than
71 years old.

3.2. Propensity Score Estimation and Common Support

An ICC equal to 0.73 (95% CI; 0.70–0.75) suggests a moderate overall agreement
between the estimated PSs [78]. The pairwise correlations, computed with Pearson’s
coefficient, between the approaches are graphically depicted in Figure 3. Overall, the
correlation coefficients were always higher than 0.5, suggesting a moderate correlation
between PSs estimated with different strategies. SAEM method, and methods based on
MI with PS estimation performed using LR or CBPS showed the highest correlation, with
correlation coefficients close to 1.

https://github.com/UBESP-DCTV/ps.missing
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Table 1. Descriptive statistics of the sample of patients stratified by angiography-guidance and
IVUS/OCT groups. Continuous variables are represented with I quartile/median/III quartile and
categorical variable with percentage (absolute numbers). The Standardized Mean Differences (SMDs)
on the unbalanced sample are reported in the last column of the table.

Variable N Combined
(N = 478)

Angiography
Guidance
(N = 263)

IVUS or
OCT

(N = 215)
SMD

Gender: male 465 83% (385) 80% (205) 86% (180) 0.14
Age 471 65/72/79 65/73/80 64/72/79 −0.06
BMI 423 24/26/28 24/27/29 24/26/28 −0.01

Hypertension 478 78% (371) 79% (207) 76% (164) −0.06
Diabetes 477 30% (142) 30% (79) 29% (63) −0.02
Smoker 476 46% (221) 45% (119) 48% (102) 0.04

CAD 475 25% (117) 21% (56) 29% (61) 0.17
Hyperlipidemia 474 66% (311) 62% (162) 70% (149) 0.18

Previous PCI 476 35% (167) 34% (88) 37% (79) 0.06
Previous MI 476 25% (117) 25% (65) 24% (52) −0.01

Previous stroke/TIA 475 5% (25) 5% (13) 6% (12) 0.03
COPD 476 7% (34) 7% (18) 7% (16) 0.02
PAD 475 15% (73) 16% (42) 14% (31) −0.05

Clinical Presentation:
NSTEMI 474 31% (145) 37% (96) 23% (49) −0.30

Other 11% (54) 10% (25) 14% (29) 0.13
Stable CAD 33% (155) 31% (81) 35% (74) 0.08

STEMI 11% (50) 10% (27) 11% (23) 0.01
Unstable Angina 15% (70) 12% (32) 18% (38) 0.16

NYHA: I 459 56% (256) 54% (136) 58% (120) 0.09
II 28% (130) 28% (72) 28% (58) −0.01
III 13% (59) 14% (36) 11% (23) −0.09
IV 3% (14) 4% (9) 2% (5) −0.07

CCS: 0 391 26% (100) 27% (59) 24% (41) −0.07
1 16% (63) 18% (40) 13% (23) −0.13
2 25% (97) 25% (54) 25% (43) 0.01
3 16% (63) 14% (30) 19% (33) 0.15
4 17% (68) 16% (36) 19% (32) 0.06

EuroSCORE II 303 0.94/1.52/3.00 1.07/1.72/3.15 0.80/1.38/2.60 −0.20
GFR 439 56/74/90 53/69/90 58/75/90 0.17

Hemoglobin 454 12/13/15 12/13/15 12/14/15 0.08
LVEF: poor (<30%) 462 4% (17) 3% (8) 4% (9) 0.06

fair (30–50%) 36% (166) 41% (104) 30% (62) −0.25
good (>50%) 60% (279) 56% (140) 66% (139) 0.22

Aspirin 471 79% (373) 80% (208) 79% (165) −0.03
Thienidopiridine 471 54% (255) 52% (135) 57% (120) 0.11

Syntax score 188 18/23/29 19/25/30 17/22/27 −0.27
LAD 472 83% (394) 85% (220) 82% (174) −0.09
LCX 475 51% (242) 56% (147) 44% (95) −0.24
RCA 474 46% (218) 52% (135) 39% (83) −0.26

Table 2 reports the measure of overall balance in the set of patients before the ap-
plication of PS methods to evaluate the common support of angiography-guidance and
IVUS/OCT groups. When PSs were estimated using GBM, the highest degree of dissimi-
larity in terms of PS distributions was observed in all scenarios. Good common support
was observed when PSs were estimated using LR or CBPS.
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Table 2. Standardized mean differences (SMD), overlapping coefficient (OVL), and C-statistic com-
puted the original dataset before the application of PS methods. For methods based on MI, the
balance statistics are reported as median (minimum; maximum).

Measure of Balance

Missing Data PS Estimation SMD OVL C-Statistc

CC
LR 1.09 0.42 0.33

GBM 2.44 0.73 0.46
CBPS 1.07 0.38 0.29

MIND
LR 0.53 0.35 0.25

GBM 2.11 0.69 0.44
CBPS 0.53 0.33 0.24

SAEM LR (SAEM) 0.7 0.28 0.19

GBM (surr.) GBM 1.76 0.59 0.39

MI-AREGIMP
CBPS 0.7 (0.64;0.81) 0.27 (0.25;0.31) 0.19 (0.17;0.21)
GBM 1.86 (1.56;2.3) 0.63 (0.54;0.74) 0.41 (0.37;0.45)

LR 0.73 (0.68;0.84) 0.28 (0.26;0.3) 0.19 (0.18;0.22)

MI-BBPMM
CBPS 0.69 (0.65;0.75) 0.27 (0.25;0.29) 0.18 (0.17;0.2)
GBM 1.99 (1.7;2.29) 0.67 (0.56;0.72) 0.43 (0.39;0.45)

LR 0.72 (0.67;0.82) 0.27 (0.25;0.33) 0.19 (0.18;0.22)

MI-MICE
CBPS 0.74 (0.67;0.81) 0.28 (0.25;0.31) 0.2 (0.18;0.21)
GBM 1.9 (1.69;2.31) 0.63 (0.58;0.74) 0.41 (0.39;0.46)

LR 0.76 (0.71;0.84) 0.29 (0.27;0.32) 0.2 (0.19;0.22)
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3.3. Balance

Table 3 reports the measure of overall balance in the set of patients after the application
of PS methods to balance the dataset. The datasets that resulted in the highest imbalance
were obtained when classical methods to deal with missing data were used, i.e., CC and
MIND. Regarding PS based methods, NN and FM provided the most balanced sets of
patients in most of the situations. When MI was performed, the overall balance was
often satisfactory, with median SMD, OVL, and C-statistic values generally below 0.1,
except when PSs were estimated with GBM and PS-IPTW was applied. The highest degree
of balance was observed when SAEM and GBM (with surrogate splitting) were used to
handle missing data. When NN matching was done, the overall balance was always perfect,
with a balance statistics value equal to 0. Similarly, a good balance was achieved when
FM was used (values always lower than 0.1 for SMD, OVL, and C-statistic). However,
the imbalance was apparent for GBM (surrogate splitting) when PS-IPTW was applied,
whereas satisfactorily balanced sets of individuals were obtained with SAEM and PS-IPTW.
When NN was used, the PRI was often lower than PS-IPTW. As expected, FM retained all
the patients in the final balanced dataset, and it may guarantee higher generalizability of
the treatment effect estimates compared to NN and PS-IPTW.
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Table 3. Measures of overall balance for sets of patients obtained after the application of PS methods, i.e., Standardized mean differences (SMD), overlapping coefficient (OVL), C-statistic,
and proportion of retained individuals (PRI). For methods based on MI, the balance statistics are reported as median (minimum; maximum).

PS Based Methods

NN FM PS-IPTW

Missing Data PS Estimation SMD OVL C-Statistic PRI SMD OVL C-Statistic PRI SMD OVL C-Statistic PRI

CC
LR 0.36 0.24 0.2 0.74 0.1 0.07 0.12 1 0.1 0.05 0.03 0.54

GBM 0.16 0.09 0.1 0.21 0.44 0.26 0.32 1 2.19 0.66 0.44 0.97
CBPS 0.27 0.13 0.12 0.74 0.19 0.15 0.13 1 0.28 0.22 0.06 0.8

MIND
LR 0.24 0.33 0.23 0.88 0.1 0.05 0.07 1 0.13 0.1 0.02 0.81

GBM 0.2 0.13 0.11 0.32 0.32 0.22 0.22 1 1.79 0.58 0.39 0.95
CBPS 0.25 0.31 0.23 0.88 0.1 0.06 0.1 1 0.2 0.11 0.04 0.85

SAEM LR (SAEM) 0 0 0 0.42 0.01 0.01 0.06 1 0.03 0.1 0 0.88

GBM (surr.) GBM 0 0 0 0.26 0.06 0.04 0.11 1 1.29 0.44 0.31 0.94

MI-
AREGIMP

CBPS 0.06
(0.04;0.08)

0.04
(0.03;0.05)

0.02
(−0.01;0.03)

0.72
(0.69;0.75)

0.02
(0.01;0.04)

0.02
(0.01;0.03) 0.04 (0;0.09) 1 0.16

(0.1;0.19)
0.1

(0.06;0.13)
0.04

(0.02;0.05)
0.92

(0.9;0.93)

GBM 0.14
(0.1;0.27)

0.1
(0.07;0.19)

0.07
(0.05;0.15)

0.39
(0.29;0.46)

0.12
(0.02;0.39)

0.1
(0.03;0.29)

0.12
(0.06;0.23) 1 1.5

(1.17;1.99)
0.5

(0.41;0.61)
0.34

(0.29;0.39)
0.95

(0.93;0.96)

LR 0.08
(0.06;0.1)

0.05
(0.04;0.06)

0.03
(0.02;0.04)

0.72
(0.67;0.76)

0.02
(0.01;0.03)

0.02
(0.01;0.03)

0.03
(−0.01;0.08) 1 0.03

(0.01;0.06)
0.08

(0.03;0.11) 0 (0;0.01) 0.87
(0.84;0.89)

MI-BBPMM

CBPS 0.06
(0.04;0.08)

0.04
(0.03;0.05)

0.02
(0.01;0.03)

0.73
(0.7;0.76)

0.02
(0.01;0.03)

0.01
(0.01;0.02)

0.02
(−0.03;0.09) 1 0.14

(0.07;0.19)
0.08

(0.07;0.11)
0.04

(0.02;0.05)
0.93

(0.88;0.94)

GBM 0.18
(0.11;0.22)

0.12
(0.06;0.16)

0.09
(0.05;0.13)

0.37
(0.29;0.46)

0.2
(0.06;0.41)

0.15
(0.05;0.28)

0.13
(0.08;0.29) 1 1.66

(1.3;1.99)
0.55

(0.41;0.62)
0.36

(0.31;0.4)
0.95

(0.94;0.96)

LR 0.08
(0.06;0.1)

0.05
(0.04;0.07)

0.03
(0.02;0.04)

0.73
(0.68;0.76)

0.02
(0.01;0.03)

0.01
(0.01;0.02)

0.04
(−0.02;0.09) 1 0.03

(0.02;0.05)
0.08

(0.06;0.11) 0.01 (0;0.01) 0.88
(0.83;0.89)

MI-MICE

CBPS 0.07
(0.05;0.09)

0.04
(0.03;0.06)

0.03
(−0.02;0.03)

0.72
(0.68;0.74)

0.02
(0.01;0.03)

0.01
(0.01;0.02)

0.04
(−0.04;0.07) 1 0.14

(0.06;0.2)
0.08

(0.05;0.1)
0.04

(0.01;0.05)
0.91

(0.88;0.93)

GBM 0.16
(0.12;0.26)

0.11
(0.08;0.19)

0.08
(0.06;0.15)

0.39
(0.29;0.46)

0.14
(0.05;0.24)

0.1
(0.04;0.18)

0.13
(0.08;0.19) 1 1.46

(1.3;2.05)
0.49

(0.44;0.64)
0.34

(0.31;0.41)
0.94

(0.93;0.95)

LR 0.1
(0.08;0.11)

0.06
(0.04;0.07)

0.04
(0.03;0.04)

0.72
(0.67;0.74)

0.01
(0.01;0.02)

0.01
(0.01;0.02)

0.03
(−0.02;0.1) 1 0.02 (0;0.05) 0.07

(0.04;0.12) 0 (0;0.01) 0.85
(0.83;0.88)
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4. Discussion

The findings of our study have practical implications. Regarding missing data, several
guidelines in the literature have been proposed on the percentage of missingness above
which observations should not be discarded. When 5% of missingness arises, the benefits
provided by methods such as MI have been suggested to be negligible [79]. Moreover, if
more than 10% of the missingness arises, bias is likely to occur when observations with
missingness are discarded [34]. We observed an overall percentage of missingness of
above 6%. However, some important prognostic factors showed higher percentages of
missingness. Simply discarding observations with at least one missing value would results
in a considerable loss of information and would enhance the risk of introducing bias in
case of MAR mechanism. In such situations, methods that account for missing data should
be considered.

In terms of overall balance, we found that classical methods that handle missing data
in PS analysis, i.e., CC and MIND, have the worst performances. Higher values of SMDs,
OVLs, and C-statistics suggest that some residual imbalance may be present in the final sets
of patients, and some adjustments in the outcome analysis should be considered to mitigate
the eventual presence of confounding bias. The imbalance was even higher when PS-IPTW
was applied, especially when PSs were estimated with GBM. The highest balance was
observed when methods that account for missing data during the estimation process, i.e.,
SAEM and GBM (with surrogate splitting), were considered. When NN matching and FM
were applied, the final sets resulted in the largest balance, with SMD, OVL, and C-statistic
values often below 0.1. However, the same pattern was not observed for PS-IPTW, which
showed results similar to CC and MIND. The results obtained with the SAEM method are
promising. The use of such an approach for PS estimation deserves further exploration
to assess if it can provide some benefits, as also suggested by the authors [45]. However,
the underlying assumptions of PS estimation with SAEM, i.e., the MAR mechanism is
plausible, should be carefully explored before using the method. A recent study [18] found
that PSs estimated GBM with surrogate splitting returned biased treatment effect estimates,
which is somewhat in contrast with the findings of our study that assessed an overall
good balance when the method is applied. This may represent an area for future research.
Methods based on MI showed competitive performances to SAEM and GBM with surrogate
splitting, with average values of SMD, OVL, and C-statistic often below 0.1. Moreover, the
maximum values of balance statistics computed on the imputed datasets were below 0.2
in most of the situations, suggesting that balance was achieved many times across all the
imputations. The worst overall balance was observed when PSs were estimated with GBM,
and PS-IPTW was considered. The choice of which method should be preferred between
MI and classical approaches such as CC and MIND is not clear. Previous studies found
that MI overcomes classical CC and MIND performances [56,80]. However, a recent study
suggested that although some statistical efficiency is lost, CC and MIND may be preferred
to MI since they can be used in synergy to control for unmeasured confounding [81]. The
results of our study are in line with those that found a superiority of MI to CC. Indeed,
the topic should be further explored to understand the performances of the methods in
different settings.

Regarding the method used to estimate PS, we found that when GBM was used, PS
distributions between angiography-guidance and IVUS/OCT patients were more different
than when LR or CBPS were used. Therefore, the sets of patients obtained after the
application of PS methods still showed a considerable amount of residual imbalance,
especially when PS-IPTW was considered. This issue may be related to the estimation
of more extreme PSs values obtained with GBM, which could undermine the positivity
assumption. These findings agree with the study of Alam and colleagues [82] who observed
better covariate balance and lower bias when PS was estimated with LR or Super Learner
than GBM.

PS methods based on matching, i.e., NN matching and FM, resulted in a better balance
of the overall set of patients than PS-IPTW. Furthermore, FM did not discard any subjects
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from the final sets. This feature of FM may represent an advantage since it guarantees
higher generalizability of the subsequent estimates than classical NN matching and PS-
IPTW. Moreover, FM allows the estimation of different causal effects using different types
of weighting schemes.

Our study has some limitations. First, the methods were compared only in terms of
the balance of the sets of patients. The choice was motivated by the fact that the registry is
still ongoing, and the follow-up is not yet completed. Thus, we focused only on the design
stage of the analysis without any knowledge of the clinical endpoints. Once the follow-up
will be terminated, further research will be performed by implementing simulation studies
that compare the methods in terms of bias and coverage of the treatment effect estimates.
Based on the results of the present study, we would expect to observe the least biased
estimates when PS is estimated with SAEM and NN or FM are applied. We would expect
good performances when missing data are imputed with MI methods and NN or FM are
used after PS estimation via CBPS. Besides, it would be interesting to evaluate the coverage
of the methods when estimators for time-to-event outcomes are applied, as the primary
endpoint of the study. Second, we considered methods for handling missing data that rely
on the assumption that the missingness mechanism is MCAR or MAR. Although such an
assumption is often stated in practice, deviations are often impossible to test from observed.
Future research studies should consider methods that assume an MNAR mechanism and
examine how the proposed methods perform in MNAR settings.

5. Conclusions

In summary, when missing data arise in PS analysis, the mechanism of missingness in
the dataset should be carefully studied to understand which are the factors that affected
the missingness itself. If MCAR o MAR mechanisms are plausible, we found that methods
that explicitly account for missing data provide better results than classical CC or MIND,
especially when the proportion of missingness is important for prognostic factors. We
recommended the estimation of PS with the SAEM method and applying FM to balance
the groups of patients in terms of baseline covariates. However, we suggested evaluating
the plausibility of the SAEM assumptions, since the method can introduce some bias in the
treatment effect estimate if the missingness mechanism deviates from MAR. Furthermore,
we encouraged the researchers to perform sensitivity analyses by implementing different
strategies to handle missing data and to estimate PS and comparing them using measures
of overall balance.
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